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A B S T R A C T

In this Thesis we focus on providing practical solutions to different prob-
lems related with the capture and manipulation of data, and simulation of
processes from the real world.

We dedicate one part of this work to explore novel use cases for tablet de-
vices, leveraging the natural user interaction they enable to prototype more
engaging image capture and editing tools. We present a novel framework
for the simulation of the craftsmanship involved in analog photography
techniques and other interesting optical manipulations.

A second part is devoted to image reconstruction algorithms that share
the use of perceptual cues to compensate for the missing data. First, we
introduce our SMAA anti aliasing filter for real time applications, where a
comprehensive morphological analysis is performed to provide smooth but
sharp results. Next, a simple procedure is described to capture extended dy-
namic range images with mobile devices, using computational photography
techniques.

The last part deals with the capture of 3D data from the real world. We
present a new depth from defocus algorithm for obtaining detailed depth
maps of scenes. Finally, we describe the first system for stylized capture of
hair, producing results suitable for 3D fabrication inspired by the abstraction
process performed by sculptors.

M E A S U R A B L E C O N T R I B U T I O N S

This Thesis has led to the following results, which can be found in detail in
Section 1.5:

• 6 JCR-indexed journal publications (1 of them ACM Transactions on
Graphics) [154, 153, 105, 61, 18, 58]

• 2 peer-reviewed conference publications [60, 59]

• 1 granted patent [206], 2 additional patent applications [25].

• 2 book chapters [107, 104]

• 2 research internships (6 months in total) at Adobe Systems

• 1 research internship (4 months) at Disney Research Zurich

• 2 research stays (2 months in total) at Porto Interactive Center

• 3 best paper awards

• 15+ invited talks

• Participation in 7 research projects

• Reviewer for 4 journals and 9 international conferences, and program
committee member for 1 international conference

• 3 supervised TFGs and 1 more in progress
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R E S U M E N

En esta Tesis nos centramos en proporcionar soluciones prácticas a dife-
rentes problemas relacionados con la captura y manipulación de datos, y
simulación de procesos del mundo real.

Así pues, dedicamos la primera parte de este trabajo a explorar nuevos
usos para dispositivos móviles, haciendo uso de la natural e intuitiva inter-
acción de usuario que habilitan, para prototipar herramientas de captura y
edición de imagen más atractivas para el usuario. Presentamos un novedoso
framework para la simulación del trabajo manual involucrados en técnicas de
fotografía analógica y otras interesantes manipulaciones ópticas.

Una segunda parte versa sobre algoritmos de reconstrucción de imáge-
nes 2D que comparten el uso de mecanismos de la percepción humana para
compensar la falta de información. Primero presentamos SMAA, un filtro de
antialiasing para aplicaciones en tiempo real, donde un exhaustivo análisis
morfológico es llevado a cabo para proporcionar resultados suaves pero ní-
tidos. A continuación, describimos un simple proceso para capturar fotogra-
fías con rango dinámico extendido mediante dispositivos móviles, usando
técnicas de fotografía computacional.

La última parte trata sobre la captura de datos 3D del mundo real. Pre-
sentamos un nuevo algoritmo de depth from defocus para obtener detallados
mapas de profundidad de escenas cotidianas. Y finalmente, describimos el
primer sistema para la captura estilizada de peinados, produciendo resul-
tados óptimos para su impresión en 3D, inspirados por los procesos de
abstracción que los escultores tradicionales llevan a cabo.
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Part I

I N T R O D U C T I O N & O V E RV I E W





1I N T R O D U C T I O N

Computer graphics and digital imaging have come a long way when it
comes to content generation, which can stay in the virtual world or end
up in the real one by means of fabrication or printing. This process can
start from zero, creating everything from scratch directly with a computing
device; or it can start by capturing data from the real world. In any case,
the user interacts with digital systems and follows processes that have been
designed to be practical and efficient. Most of the times because of that, lim-
itations appear in terms of data captured, the data generated, or the degrees
of freedom available to the user while using such systems.

In this Thesis, we focus on some of these limitations in different contexts:
creative manipulation of digital photographs, perceptual reconstruction of
2D images, and reconstruction of 3D models from the real world. In the
following we describe them and the approaches followed by our solutions.

1.1 creative manipulation of digital photographs

Probably the biggest change suffered by traditional photography was the
transition from analog to digital. With it, what previously was a process in-
volving light, chemicals and the physical interactions to control it; turned
into light, electrical signals and their processing. This paved the way to the
creation of very powerful pipelines, with plenty of control during the cap-
ture process with the nowadays ubiquitous digital cameras, and even more
control provided by processing software and digital tools, whom we see ev-
ery year to perform actions previously only in our wishlists [78, 136, 210].
Some of these tools are more intuitive than others, but in general it could be
argued that desktop image editing software is mostly used by profession-
als and enthusiasts, perhaps because of a deceiving perception of technical
difficulty.

However, things changed abruptly some years ago with the introduction
of mobile devices equipped with digital cameras, processing units with
enough computing power to perform advanced image editing, big high reso-
lution screens and the novelty of additional touch and gestures based input.
This new scenario made the whole imaging pipeline more streamlined than
ever: capture, processing and display of digital images is now performed on
the same device; being available to any user of such devices. Maybe because
of this streamlined and mobile nature, and the new user base that came with
it, image editing on mobiles devices feels currently like a watered-down
version of its desktop counterpart. This means, click and drag operations
everywhere, with lots of templates to browse through with a finger flick.

Unexpectedly, filter apps (the ones that abuse this paradigm the most) have
become hugely popular and relevant these days, all of them consisting in a
limited set of pre-defined templates that change color attributes and apply
texture overlays. However, being valid tools for quick content generation
to share in social media, they fall short as artistic tools given the limited
user experiences they provide. More interesting, though, is the popularity
of filters that try achieve a rawer and more imperfect look and feel, usually
inspired by analog photographic techniques.
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4 introduction

All of this presents a great opportunity to revisit the real photographic
processes that produce these popular looks, to explore their potential for
creating novel digital experiences and image editing tools. While analog
photography simulation is not something new [70], the fact that it usually
focus on the final results rather than the process itself, leaves still room for
exploration. In this line of research, we focus on studying photographic pro-
cesses and manual manipulations that are frequent in analog photography,
to create image editing tools with a newfound sense of craftsmanship and
serendipity. The novel interaction metaphors resulting from there will re-
quire constant user interaction, which coupled with detailed chemical and
physical simulations of their real counterparts, will lead naturally to intri-
cate and unique results. Leveraging the natural user interaction provided
by touch and gestures based interfaces, all this computation and procedural
generation of content is transparent to the user, providing more engaging
digital experiences.

1.2 perceptual reconstruction of 2d images

Digital images usually consist of a 2D grid of pixels that can represent the
projections of virtual or real worlds. During that process, multidimensional
data pases through an optical system until it reaches a sensor that integrates
everything into a 2D slice. Sometimes the time budget is too small to gener-
ate and process such data, while other times capture systems are not able to
acquire data with the desired accuracy and resolution. However, previous re-
search has shown that we can leverage the human perception and visual sys-
tem to devise processes that overcome such limitations [147], producing re-
sults plausible or appealing enough for a human observer [158, 109, 146, 80].

In the case of computer generated imagery, this process is called render,
and it simulates the light transport happening in a virtual world where light,
objects and materials are defined mathematically. The more accurate those
definitions and simulations, the more time it takes to compute their inter-
actions. Thus, for a given amount of time and resolution of the final image,
only a finite number of samples can be computed. For real time rendering
(as in videogames and other interactive applications), that time budget usu-
ally varies from 33ms to 16ms per frame; while resolution nowadays starts
typically at 1280x720. So typically when pushing for the highest overall im-
age quality, one can only afford one sample per pixel. When that happens
(specially for the lower range of resolutions), the image is undersampled
showing aliasing. Spatial aliasing shows in the form of jagged edges that
look harsh and unpolished when static; and silhouettes, thin structures and
shading that crawl in motion.

All these problems converged together a few years ago, when graphics
engines found specially in videogames were becoming more and more so-
phisticated and realistic, but the hardware for consoles and comodity com-
puters were not able to keep up. So, a renewed interest in real time anti
aliasing emerged, where traditional multi sampling approaches were not ef-
fective or applicable because of hardware and software limitations. During
the following years, a number of different techniques appeared [106], aim-
ing to overcome the lack of samples, with additional processing based on
perceptual cues to obtain more pleasing results. However, all of them pre-
sented different limitations that hampered their use or extension. Our work
in this topic explores such limitations, presenting a unified solution that
tackles every limitation with a modular approach, easy to integrate and be
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fit in different scenarios.

On the other hand, in the real world, the number of samples available
can be considered infinite. However, different hardware approaches are re-
quired to sample the different dimensions of the plenoptic function that de-
fines light [6]. In traditional photography, all of them are integrated into a
single wavelength-dependant radiance value when light reaches the sensor.
Due to the sensitivity limitations of current materials, the range of radiance
able to be captured by current digital sensors is typically smaller than the
one actually found in real scenes (up to several orders of magnitude). So,
automatic and manual metering techniques try to find then the best expo-
sure settings to best capture the radiance values around an area of interest.
However, they cannot avoid areas outside of the sensor range to be clamped
in the shadows end, highlights, or both.

To overcome this issue, high dynamic range (HDR) imaging techniques
have been available for a while [143, 54]. They make use of computational
photography to control the capture process in order to acquire additional in-
formation, which can be used afterwards to recover information a priori not
seen directly by the sensor. For the specific case of radiance, a bracketed
sequence of images of the same scene with different exposure settings are
usually captured. This sequence is then used to estimate the actual range
of radiance values in the scene. Before smart mobile devices, such process
implied the use of a camera and the posterior use of a computer to perform
all the required processing. When mobile devices with decent computing
power appeared, mobile computational photography emerged, with everything
happening on-device. In this line of research, we explore the first commer-
cially available platform specially targeted to mobile computational photog-
raphy. We implement a streamlined pipeline for extended dynamic range
imaging, avoiding expensive and sometimes unnecessary steps by using hu-
man perception cues to obtain again pleasing results.

1.3 3d reconstruction and stylization

As mentioned previously, traditional photographic systems capture only a
2D slice of the plenoptic function of light. However, there are lots of cases
where having additional depth information about the scene capture can be
very useful for advanced image editing or computer vision tasks [137, 153,
20]. Following this line of mobile computational photography, current smart
phones and tablets can become valid computational imaging devices. Inter-
esting challenges come from their design limitations, with fixed hardware
configurations that cannot be usually altered. In this line of research, we
explore depth from defocus approaches, general enough to be used in this
restricted scenarios, presenting a new fast and flexible pipeline for obtaining
detailed depth maps of scenes.

Other times, instead of a global reconstruction of a scene from a single
point of view, we are interested in obtaining full 3D reconstructions of single
objects. Thus 3D scanning has been a recurring topic in computer graphics
and computer vision over the years, as it gives us tools to quickly transfer
objects directly from the real world to the virtual one. Among all the objects
of interest, humans have been always a hot topic. Having digital replicas of
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people can be used in different fields like cinema, videogames, medicine...
and more recently fabrication. With the increasing popularity of 3D printers,
a direct application that has captured the imagination of people is having a
miniature replica of ourselves. This has been attempted since the required
scanning and printing technologies were available, increasing the accuracy
of the results as the solutions improved. However, hair, one of the key com-
ponents of our identity, has been traditionally challenging. While systems
for reconstructing hairstyles at single strands level exist [90], they are not
suitable for 3D fabrication for two main reasons: i) the scale of hair strands
is too small and does not scale well; ii) the structure of single hair strands
or wisps is too fragile. In this work we study the problem of capture and re-
construction of 3D hairstyles for 3D fabrication. Inspired by the abstraction
process followed by sculptors over the centuries, we present a novel stylized
hair capture system, able to reconstruct simplified 3D models that retain the
main features that identify each unique hairstyle.

1.4 goal & overview

The main goal of this Thesis is to provide practical solutions to different
problems related with the capture and manipulation of data, and simulation
of creative processes from the real world. While some of these problems may
seem unrelated, the solutions share in common that they usually feature
novel combinations of traditionally separated fields: fluids simulation and
image processing, image stylization and 3D reconstruction, computational
photography. Another recurring topic in this body of work is the relation
of these solutions with the world of art and human perception. Sometimes
they directly become creative tools for content generation, others simulate
artistic processes; while others take into account how we perceive the world
around us, to provide pleasing reconstructions where simple math or hard-
ware limitations do not reach.

Maybe as a result of having practicality in mind, the solutions proposed in
this Thesis can usually be seen as systems comprised of several well defined
pieces. This has the advantage of being easy to tweak and adapt to existing
scenarios, to be used in different contexts, and also leaves the door open to
be replaced by new or improved future work.

overview This Thesis is divided in three main parts:

• Part II explores the creation of novel image editing tools that leverage
the natural user interaction tablet devices provide for more engaging
user experiences. Chapter 2 describes a framework for the simulation
of the chemistry and craftsmanship involved in some analog photo-
graphic processes [98, 101], and demonstrate its potential building dif-
ferent prototypes. In Chapter 3 we use part of the previous framework
to replicate a different kind of creative manipulations, where the artist
places liquid or refractive layers in front of the main lens of a camera
to obtain very interesting distortions.

• Part III presents 2D image reconstruction algorithms that make use
of perceptual cues to compensate for the missing data in two different
domains: spatial and radiance. In Chapter 4, we present our SMAA
anti aliasing filter, which performs a morphological analysis of the im-
age to produce smooth but sharp results in real time. Then, Chapter 5

describes a practical pipeline for extended dynamic range imaging in
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mobile devices, that perceptually fuses a bracketed sequence of images
with different exposures.

• Part IV describes new algorithms and systems for 3D reconstruction
of scenes and objects. In Chapter 6, a new depth from defocus algo-
rithm for fast capture of depth maps is described. Then, Chapter 7

presents a system for stylized capture of hairstyles, where color and ge-
ometric information is abstracted to produce simplified models ready
for 3D printing, showcasing a pleasing hand-crafted look and feel.

While I am the leading author in most of the works presented here, they
have been done in collaboration with different colleagues. Thus, at the be-
ginning of each chapter the work described is put in context, and my contri-
bution is explicitly described when needed.

1.5 contributions and measurable results

1.5.1 Publications

Most of the work presented in this thesis has been already published, in
particular in four journals indexed in JCR, including one paper in ACM
Transactions on Graphics and presented at SIGGRAPH; one peer-reviewed
international conference, one book chapter and one granted US Patent:

• Computational Simulation of Alternative Photographic Processes (Chap-
ter 2, Part II):

– This work was accepted at Eurographics Symposium on Ren-
dering (EGSR) 2013, and published in Computer Graphics Fo-
rum [61]. This journal has an impact factor of 1.902, and its po-
sition in the JCR index is 18th out of 104 (Q1) in the category
Computer Science, Software Engineering (data from 2014).

• Simulation of the effects of liquids on a camera lens (Chapter 3, Part II):

– This work was granted with a US Patent filed with Adobe Sys-
tems [206].

• SMAA: Enhanced Subpixel Morphological Antialiasing (Chapter 4,
Part III):

– This work was accepted at Eurographics 2012, and published in
Computer Graphics Forum [105]. This journal has an impact fac-
tor of 1.902, and its position in the JCR index is 18th out of
104 (Q1) in the category Computer Science, Software Engineer-
ing (data from 2014).

– The method was built on top of our previous GPU version of
MLAA, published in the GPU Pro 2 book [107], a series collecting
state-of-the-art techniques for game development.

• Mobile Computational Photography: Exposure Fusion on the N900

(Chapter 5, Part III):

– This work was acccepted at the Ibero-American Symposium in
Computer Graphics (SIAGC) 2011 [59].

• Fast depth from defocus from focal stacks (Chapter 6, Part IV):
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– This work was published in The Visual Computer [18]. This jour-
nal has an impact factor of 0.922, and its position in the JCR in-
dex is 50th out of 104 (Q2) in the category Computer Science,
Software Engineering (data from 2014).

• Capturing and Stylizing Hair for 3D Fabrication (Chapter 7, Part IV):

– This work was accepted at SIGGRAPH2014, and published in
ACM Transactions on Graphics [58]. This journal has an impact
factor of 4.096, and its position in the JCR index is 1st out of
104 (Q1) in the category Computer Science, Software Engineer-
ing (data from 2014).A US Patent application was also filed with
Disney Enterprises [25].

In addition to the previous list of publications, during my PhD I have
contributed significantly to other projects and publications:

• Convolution-based simulation of homogeneous subsurface scattering.

In this work, lead by Adolfo Muñoz, we present a novel render-
ing algorithm for homogeneous translucent materials. It was first
accepted at CEIG 2010 [60], where it was selected Best Paper (1
in 2), to be later extended and published in Computer Graphics
Forum [154].

• BSSRDF Estimation from Single Images.

In this work, lead also by Adolfo Munoz, we propose a single-
image system to acquire plausible diffusion profiles for translu-
cent materials from real world (Figure 1.1). It was accepted at Eu-
rographics 2011 and published in Computer Graphics Forum [153].
It was also selected for FMX 2012 Best of Eurographics session, Eu-
rope’s most influential conference for digital entertainment.

• Practical and Realistic Facial Wrinkles Animation.

In this work, lead by Jorge Jimenez, we propose a simple tech-
nique to achieve realistic facial wrinkles animation for characters
in videogames (Figure 1.2). It was published in the GPU Pro 2

book [104].

• Intrinsic Light Fields.

In this work, lead by Elena Garces, we present the first method to
efficiently compute the intrinsic decomposition of 4D light fields,
ensuring angular coherence and practical processing times [69].

1.5.2 Awards

We include here a list of awards and fellowships received throughout this
thesis, that have allowed the realization of the work here presented:

• PIF Grant from the Universidad de Zaragoza (4-year PhD grant).

• Adobe Systems funding to extend the collaborative work after each of
the research internships.

Additionally, some projects described in this thesis have received different
awards or recognitions:
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Figure 1.1: Results from our method to capture the appearance of translucent objects. Insets
show the input images from which the materials were estimated. The renders
show virtual objects rendered with our estimations.

Figure 1.2: Results from our facial wrinkles simulations. Starting from a neutral pose and
textures (left), our method is able to produce realistic wrinkles for complex poses
and expressions (center and right), as can be seen in the forehead, chin and nose.
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• Our work Computational Simulation of Alternative Photographic Processes
was invited to the XXIV Spanish Conference in Computer Graphics (CEIG
2014).

• Our work Capturing and Stylizing Hair for 3D Fabrication was awarded
as the Best Paper at the GOLEM Workshop.

• Our work Capturing and Stylizing Hair for 3D Fabrication was also se-
lected for the SIGGRAPH 2014 Technical Papers Preview video.
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1.5.3 Research Stays and Visits

Five research stays, totaling 12 months, were carried out during this PhD in
three different institutions:

• April 2011 – May 2011 (one month): Early Stage Researcher within the
GOLEM Marie Curie project at Porto Interactive Center (Portugal).

• June 2011 – August 2011 (three months): Research Intern at the Ad-
vanced Technology Labs at Adobe Systems (San Jose, California, USA).
Supervisor: Dr. Gregg Wilensky. Publications [61, 206] were fruit of
this collaboration.

• June 2013 – July 2013 (one month): Early Stage Researcher within the
GOLEM Marie Curie project at Porto Interactive Center (Portugal).

• August 2013 – December 2013 (four months): Research Intern at the
Capture & Effects Group at Disney Research Zurich (Switzerland). Su-
pervisor: Dr. Thabo Beeler. We published [58] and applied for a US
patent as the result of it [25].

• July 2015 - October 2015 (three months): Research Intern at the Imagina-
tion Lab at Adobe Systems (San Jose, California, USA). Supervisor: Dr.
Byungmoon Kim. Worked on a novel solver for Poisson-based surface
reconstruction.

1.5.4 Research Projects

During my PhD studies I have participated in the following research projects:

• VERVE: Vanquishing fear and apathy through e-inclusion: personalised
and populated realistic virtual environments for clinical, home and
mobile platforms. European Commission (FP7-ICT-2011-7). Grant no.: 288914.
PI (in Spain): Diego Gutierrez.

• GOLEM: Realistic Virtual Humans. European Commission Marie Curie
Industry–Academia Program, Seventh Framework. Grant no.: 251415. PI:
Diego Gutierrez.

• MIMESIS: Técnicas de bajo coste para la adquisición de modelos de
apariencia de materiales. Spanish Ministry of Science and Education (TIN2010-
21543). PI: Diego Gutierrez

• TANGIBLE: Humanos realistas e interacción natural y tangible. Span-
ish Ministry of Science and Education (TIN2007-63025). PI: Francisco J.
Seron.

• Aumento del rendimiento gráfico, para sistemas de simulación y vi-
sualización en tiempo real, a través de técnicas de antialiasing mor-
fológico. Fundación ARAID (OTRI 2011/0180). PI: Diego Gutierrez.

• Advanced Multimodal Audiovisual Technologies (TAMA) Gobierno de
Aragón (regional government). PI: Carlos Orrite.

• Desarrollo de una herramienta digital para evaluar la función visual y
los procesos cognitivos visuales en niños preverbales. Carlos III Health
Institute. Spanish Ministry of Economy and Competitivity. PI: Victoria Pueyo.
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1.5.5 Professional Service

I have been given the chance to serve the research community by review-
ing and serving on the program committee of several journals and confer-
ences. Over the years, I have reviewed papers for ACM SIGGRAPH and
SIGGRAPH Asia, IEEE Transactions on Visualization and Computer Graph-
ics (TVCG), Computer Graphics Forum, Computer & Graphics, ACM Trans-
actions on Applied Perception, IET Computer Vision, Eurographics Sympo-
sium on Rendering, High Performance Graphics, Digital Media and Digital
Content Management (DMDCM), CEIG and SIACG; and I have served on
the committee of the IADIS Computer Graphics, Visualization, Computer
Vision and Image Processing (CGVCVIP). Finally, I was on the local orga-
nizing committee for the Eurographics Symposium on Rendering (EGSR)
2013, held in Zaragoza, and hosted by our research group.

1.5.6 Impact on the industry

Apart from the previous academic publications, the impact of some of this
work can also be found in the industry:

• Our stylized hair capture system presented in [58] is currently the
state of the art in hair reconstruction for full 3D miniature fabrication,
with no other method close to the look and feel of our results. It has
been widely covered in both industry and maintream media outlets
such as NBC News, Gizmodo, Engadget, Xataka, El Mundo, 3D Print-
ing Industry, 3Ders... A US Patent application was filed with Disney
Enterprises [25].

• Our SMAA [105] and MLAA anti aliasing filters [107] have been ex-
tensively used in commercial videogames for consoles and PC, and
also featured in gaming industry sites like Games Developer Maga-
zine, GamesIndustry.biz and Eurogamer’s Digital Foundry. SMAA is
currently the state of the art in post processing anti aliasing filters,
with more recent commercial solutions implementing similar ideas.

• The liquid on lens simulation has been recently granted with a US
Patent [206], proving the relevance such ideas can have in the image
editing apps to come in the next years.



Part II

C R E AT I V E M A N I P U L AT I O N O F D I G I TA L
P H O T O G R A P H S

In this part we present novel interactive image editing tools in-
spired by analog photography and the physical manipulations
that are required to create and develop such photographs. We
first introduce a computational framework that allows the simu-
lation of the chemical components and reactions that slowly cre-
ate the final picture; and the user interactions to control them in
their liquid state. We demonstrate it through different prototypes
for different user experiences. Then, based on this framework,
we also recreate interesting optical manipulations like placing
liquid or refractive layers in front of the camera lens to produce
very creative results.





2A LT E R N AT I V E P H O T O G R A P H I C P R O C E S S E S

In this Chapter we present a novel computational framework for physically
and chemically-based simulations of analog alternative photographic pro-
cesses. In the real world, these processes allow the creation of very personal
and unique depictions due to the combination of the chemicals used, the
physical interaction with liquid solutions, and the individual craftsmanship
of the artist. Our work focuses not only on achieving similar compelling
results, but on the manual process as well, introducing a novel exploratory
approach for interactive digital image creation and manipulation. With such
an emphasis on the user interaction, our simulations are devised to run on
tablet devices; thus we propose the combination of a lightweight data-driven
model to simulate the chemical reactions involved, with efficient fluids simu-
lations that modulate them. This combination allows realistic gestures-based
user interaction with constant visual feedback in real-time. Using the pro-
posed framework, we built two prototypes with different tradeoffs between
realism and flexibility, showing its potential to build novel image editing
tools.

This work is published in Computer Graphics Forum and presented at Eu-
rographics Symposium on Rendering (EGSR) 2013. It was developed in collab-
oration with Adobe Systems, which kindly funded the project until its com-
pletion.

J. I. Echevarria, G. Wilensky, A. Krishnaswamy, B. Kim & D. Gutierrez
Computational Simulation of Alternative Photographic Processes

Computer Graphics Forum, Vol.32 (4), EGSR 2013

2.1 introduction

Digital photography brought along powerful, intuitive image editing tech-
niques that allow the user to dramatically change the final look of the image.
Some of these techniques are designed to mimic the results from analog
photography, mainly by means of tone manipulation [70, 178, 17], or are
encapsulated into single-button filters, such as the popular Instagram. It is
interesting to see the way the general public has embraced such vintage filters.
This presents an opportunity to revisit the real photographic processes that
produce the looks they copy and to explore their potential for creating novel
digital experiences and image editing tools; this is something currently ne-
glected with the reduced selection of canned effects and textures available
to the digital artist.

The resulting interaction metaphors seek to bring back the craftsmanship
and exploratory approach to image creation of those analog alternative pho-
tographic processes [101], such as wet plate collodion or printmaking (as seen
in Figure 2.2), noticeably lost in the transition from analog to digital pho-
tography. Currently kept alive by professionals and aficionados, they allow
for a wide range of impressive tonal and emotional variations. Some are in-
tended and carefully chosen, such as the exact composition of the chemicals
involved; some arise serendipitously due to imperfections and the manual
manipulation of liquid solutions; and some are due to the individual skills
and particular methodology of each practitioner.

15
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Figure 2.1: Our image processing pipeline allows the simulation of the craftsmanship and
final looks of analog alternative photographic techniques like wet plate collodion
(left) or cyanotypes (right). The dynamic nature of our fluids-based chemical
reactions and the required manual work interaction provide unique results, simi-
lar to their analog counterparts and their unique local heterogeneities. The small
inset shows the original scene, courtesy of Tracie Tee.

We present a novel computational framework for physically and chem-
ically based simulations of some of these alternative photographic tech-
niques, allowing real time physical interactions with the aqueous solutions
involved. Over time, these fluids locally modulate the interactions between
emulsions, substrates and the composition of the chemicals. Such complex
chemical reactions are simulated using a lightweight data driven model.
This creates heterogeneities and tonal ranges similar to the equivalent real
analog processes (see Figure 2.1). While reliability, repeatability and total
control over the editing pipeline is critical in many professional environ-
ments, our system presents a forward simulation of the photographic pro-
cess for a more exploratory approach. Other uses for our framework may
include educational photographic tools. To better convey the feeling of ac-
tual physical manipulation, we target tablet devices, which impose an addi-
tional challenge due to their limited computational power and our hard real-
time constraint. Our prototypes showcase the flexibility of our framework
to create pipelines with different tradeoffs between realism and simplicity
of usage, depending on the target use cases.

Our main contributions are:

• A physically and chemically based framework that simulates alterna-
tive photographic processes, user interaction included, allowing the
creation of novel image depictions from the ground up (Section 2.4).

• A novel and efficient 3D Navier-Stokes solver that takes into account
vertical-to-horizontal flow transfer for natural liquid behavior and user
interaction, coupled to a Lattice Boltzmann solver for accurate subsur-
face water percolation through paper fibers (Section 2.5).

• A lightweight data-driven model that simulates the dynamic chemical
reactions of the aqueous solutions, based on their components and
processing times (Section 2.6).

• Fully working prototypes, running on tablet devices (Section 2.7 and
supplementary videos).

It is out of the scope of this work to describe and simulate each detail
of these photographic processes. Instead, we are focusing on the essential
steps needed to capture and develop an image, which are common to most
photographic pipelines. Therefore, our simulations, while physically and
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Figure 2.2: Examples of analog alternative processes. The top row shows wet plate collodion
ambrotypes with varying degrees of heterogeneities caused by the aqueous so-
lutions involved. The bottom row shows a rubytype (ambrotype over a colored
glass plate), a cyanotype and a split toned print, respectively. Artworks by Deb-
orah Parkin, Daniel Carrillo, Ian Ruhter, Indra Moonen, Mike Ware and Tim
Rudman (used with permission).

chemically based, are still not accurate enough to serve as a predictive tool,
but they serve to prove that plausible user experiences and results can al-
ready be built.

2.2 related work

Multiple papers exist which aim to enhance the look of an image or alter
its style; these usually follow data-driven or statistical approaches [88, 175,
198, 199]. As such, they do not focus on simulating any particular aspect of
the analog photographic processes. There exist mobile apps like Instagram
or plugins like Exposure 4 that mimic analog looks. However, they are based
on sets predefined filters and texture overlays for specific effects, while our
framework emphasizes the user interaction and the creative process, provid-
ing more engaging experiences with procedural unique results.

Geigel and Musgrave [70] provide a tone reproduction operator to sim-
ulate the standard photographic pipeline for black and white images. Our
work is related to this, although there are significant differences. First, we
focus on simulating analog photographic techniques which present more
local variations for which computational models do not exist. Second, our
work allows the user to physically interact with a mobile device to simulate
some of the manual work in those analog processes, such as pouring liquid
emulsions or controlling local development time. Third, we allow the users
to tweak the main parameters as they would do in the real world, including
chemical components concentrations and processing times. Last, given the
manual interaction required, two results will never be identical; each final
image has a unique look, just like the actual processes.

Based also on analog photography, Bae et al. [17] focus on the man-
agement of tonal aspects for more expressive renditions of the original
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Figure 2.3: Different steps of the wet collodion process as demonstrated by artist Quinn
Jacobson (used with permission). Left: Pouring of the emulsion. Center: Devel-
opment of the latent image after exposure. Right: Fixing bath to obtain the final
image.

scenes, drawing inspiration from well-known photography artists; their sys-
tem also allows for the transfer of pictorial styles between images. Reinhard
et al. [178] introduce a tone mapping operator based on Ansel Adams’ clas-
sic zones system. Last, German’s work [72] presents a technique to reverse-
engineer some aesthetic decisions made during the print making process,
and applies them to a digital scan of the original negative. These techniques
manipulate tonal ranges for a particular application, but do not focus on
reproducing actual photographic processes nor on user control over them.

2.3 the analog photographic pipeline

This section explains the basic concepts of the photographic pipelines and
techniques we are simulating. We refer the reader to modern manuals for
more in-depth explanations about them [181, 101, 98]. A general analog pho-
tographic pipeline consists of five core steps: the creation of a light-sensitive
emulsion, its exposure to actinic light, the development of the latent image,
the fixing of the final image and optional toning. Each photographic process
deals with these differently; for instance, while in film-based photography
the emulsion is created industrially, it is carefully handcrafted in the wet
collodion processes (an example can be seen in Figure 2.3). In the following,
we will describe the manual work required in each step, not focusing on any
technique in particular.

The creation of the emulsion starts with the artist selecting the chemicals
and formulas specific for the process, which give the liquid emulsion dif-
ferent density responses and spectral sensitivities. This is then poured onto
a plate and distributed across its surface by manually tilting it, or it is al-
ternatively coated over the supporting medium for a print. Both the liquid
nature of the emulsion and the state of the chemicals involved favor local
variations due to heterogeneities in the mix.

During exposure, light interacts with the emulsion creating small particles
which form the so-called latent image. Then, the developer liquid makes
those particles grow in size until they are clearly visible. Once the artist gets
the desired density a liquid fixer is used for eliminating unexposed areas,
obtaining the final image and avoiding further undesired chemical reactions.
Additional steps like toning can be performed at this point. Toning is based
on the (iterative) use of bleaching baths to re-enable a fixed image to keep
reacting to developers and toners. The artist can control its timing to limit
the reach of the toner gradually from highlights to shadows.

A key aspect of the described pipeline (and the unique results it pro-
duces) is the craftsmanship involved in most of the stages of the process. In
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particular, the artists needs to physically interact with the different aqueous
solutions to achieve the desired spatial distribution, development and set-
ting times, etc. The simulation of this interactive pipeline is explained in the
following Section, and is built around the same principle of unique physical
interaction.

2.4 computational pipeline

Chemical reactions happening in photographic processes are complex low-
level phenomena [77, 148, 151, 68], even more if one takes into account that
they are achieved and controlled using liquid solutions prone to complex
spatial distributions. A convenient way to represent the response of a photo-
graphic process are its characteristic (or Hurter-Driffield) curves g(e, b) [93].
These curves represent the final density of the processed emulsion as a func-
tion of exposure e, and the input parameters b (chemical components, pro-
cessing times), and they can be measured for a desired number of scenarios.

In our framework, we propose a dynamic data-driven characteristic curve
model based on the main parameters artists control in real life. These param-
eters are modulated in different steps of the pipeline by using interactive
fluids simulations to introduce heterogeneities and provide natural user in-
teraction. These two key components are explained in detail in Sections 2.5
and 2.6. Figure 2.4 shows an overview of our pipeline, described below. To
allow for more intuitive physical interaction, our techniques are devised to
run on tablet devices. We refer the reader to the video in the supplementary
material which shows actual interaction sessions.

Emulsion. First, the user selects the desired chemical mix, by adjusting val-
ues of three main components: halide concentration, iodide to bromide ra-
tio and cadmium concentration (Section 2.6 explains this selection of chem-
icals). Different mixes yield different contrast, density and spectral sensi-
tivity. Next, the user pours the virtual liquid emulsion over the surface of
the virtual plate, by touching the screen to add liquid on the desired areas
(see Figure 2.4, a), and using his or her fingers to stir and spread it over
the surface. Prolonged contact adds more liquid. Additionally, tilting move-
ments can be used for adding gravity and friction forces, estimated from
the normal of the screen based on the gyroscope data and the current fluid
distribution, respectively.

Our real-time, hybrid fluids system, described in Section 2.5, simulates
the dynamics of the real liquid on and under the surface, giving immediate
feedback to the user and updating a two-dimensional height map H = [hi,j]
describing its distribution over the surface1. To model heterogeneities in
the emulsion that may give rise to local variations in the results, we create
an additional Perlin noise [169] map to modulate the iodide to bromide
ratio in the chemical mix, which directly influences the contrast and spectral
sensitivity of the final image. For natural results, we advect this map along
with H as will be explained in Section 2.5 (Figure 2.11 and Figure 2.12, show
examples of these heterogeneities).

The spatially-varying setting time τs of the emulsion is dynamically cal-
culated based on its coverage of the surface of the plate or paper:

τs(t) = τs(t− ∆t) + σs(h) · ∆t, t > 0 (2.1)

1 We assume per-pixel values in all our equations and remove subindices from the variables.
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Figure 2.5: From top to bottom, temporal evolution (left to right) of the exposure, devel-
opment, fixing and toning steps. We provide the user with continuous visual
feedback to stop each process at the desired moment. The exposure map is shown
for visualization in false color as a heat map, and the development step is shown
as seen under safe light inside the darkroom. During fixing, inversion from neg-
ative to positive is achieved as in ambrotypes (underexposed negatives over dark
backgrounds [98]).

where t is time, τs(0) = 0, σs(h) is a binary function (σs(h) = 1 for h > 0 and
0 otherwise), and ∆t is the time step of the simulation. This yields a setting
time map (Figure 2.4, a), which affects the final density of the image.

Exposure. After the emulsion has been allowed to set, it is exposed. Expo-
sure e for a continuous spectral distribution of light is defined as:

e =
∫

t

∫
λ

I(λ) · S(λ) · dλ · dt (2.2)

where I(λ) is the irradiance from the exposing light for wavelength λ and
S(λ) is the spectral sensitivity. We obtain I(λ) using HDR RGB values from
the input images (and its corresponding CIE λ values). Alternatively, we can
approximate it from linearized LDR inputs [76] or access the camera sensor
of the device directly. S(λ) in alternative processes is usually very different
from regular digital RGB sensors, varying with the chemical mix (see Fig-
ure 2.6). To model this dependency, we use a data driven approach based
on previous measures [186] (more on this selection in Section 2.6), interpo-
lated using piecewise cubic Hermite polynomials and storing the result in a
2D lookup texture (Figure 2.7). The result of this step is an exposure map, as
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Figure 2.6: Left: Example of a spectral sensitivity curve for a collodion emulsion with a
iodide/bromide ratio of 60/40 [186]. Right: Typical sensitivity curves for the
RGB sensor of a digital camera (adapted from [122]). As can be seen, collodion
emulsions are almost insensitive to yellow-red wavelengths, while being more
sensitive to the UVA range (< 400nm) than digital sensors.

seen in Figure 2.5 (first row).

Development. Similar to the creation of the emulsion process, the user
pours the developer liquid and interacts with it, while the development
time τd is computed as:

τd(t) = τd(t− ∆t) + σd(h) · ∆t, t > 0 (2.3)

where σd(h) controls the development ratio. We use σd(h) = smoothstep(0.0, 0.5, h),
with a smooth Hermite interpolation between 0 and 1 when 0.0 < h < 0.5,
and set τd(0) = 0 (Figure 2.5, second row).

As explained in Section 2.3, the goal of the development step is to achieve
the desired particle density to make the latent image visible. We compute a
density map d(e, b) as a function of τd and the characteristic curve of the pro-
cess g(e, b) (see Section 2.6). Since unexposed areas of the image also become
foggy over prolonged developing times, we add a small offset controlled by
K f . A value of K f = 0.003 works well in our simulations:

d(e, b) = g(e, b) + K f · τd(t) (2.4)

Fixing. The role of the fixer is to dissolve the unexposed areas, preventing
further exposure and development of the emulsion. Usually, this fixing step
is performed by submerging the plate into the liquid fixer, so it is a uniform
process over the whole surface. We therefore define the final fixed density
map ψ based on a global fixing time τf :

ψ(τf ) = (d(e, b)− Kd · τf ) + (h− Kc · τf ), ψ(τf ) ≥ 0 (2.5)

where Kd and Kc are the dissolving and clearing power of the fixer. We use
empirical values of 0.0025 and 0.1 respectively for generic realistic fixing
times. Exposed areas are almost not affected by the fixer, but the image
could actually disappear if left long enough inside the fixing bath.

This final density map ψ gives a measure of the opacity of the processed
emulsion; so we can define a light transmission map T = 1/10ψ [70], with val-
ues in the [0, 1] range, that can be used directly for display (Figure 2.5, third



2.4 computational pipeline 23

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Exposure

D
en

si
ty

380 400 420 440 460 480 500
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Wavelength (nm)

S
en

si
tiv

ity

100
83
60
42

Figure 2.7: Top: Global optimal curve f0(e) obtained for parameters: halide concentration of
1.1, iodide/bromide ratio of 60/40, cadmium iodide ratio of 0.68, 60s of setting
time and 30s of development. Middle: Sensitivity curves S(λ, iodide/bromide).
Bottom: Lookup table obtained after interpolating S(λ, iodide/bromide) for in-
termediate iodide/bromide ratios, using piecewise cubic Hermite polynomials.
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Figure 2.8: Top: A calibrated negative step wedge with differences of 1/2 F-Stop in exposure
between steps, and a result for the cyanotype process [116]. Bottom left: From a
simple greyscale linear ramp (a), we obtain its corresponding cyanotype-looking
ramp (b) by mapping its values to the calibrated step wedge on the left. We then
process (a) with our framework, yielding the transmission map T (c). We map
the [0, 1] values in T to the [0, 1] x-coordinates of (b) (examples of this mapping
are shown in different colors), obtaining our final cyanotype look (d). Bottom
right: Split-toning effect with the FSA toner [181]. From the transmission map
T (c), and the toned ramp (e), we control τt to achieve the final result (f). τt
effectively limits the range of transmission values that are affected by the toning
step.

row) or further processing.

Toning. Real plates and prints can present colorful monochromatic looks as
a result of the chemicals used or additional toning processes (Section 2.3). In
the physical world, the final tone can be measured beforehand by exposing
and processing a calibrated negative step wedge, producing a positive gra-
dient with the resulting colors based on the transmission of such negative
(Figure 2.8, left). In our framework, density is decoupled from final appear-
ance, which allows us to map our neutral transmission map T to the specific
looks of different techniques and toners. We do this by using the transmis-
sion values [0, 1] as texture coordinates to sample their previously processed
step wedges, which we store as lookup tables [33]. Toning progressively oc-
curs from highlights to shadows, as a function of time (Figure 2.5, fourth
row). So, by controlling toning time τt, and thus which areas get affected by
the toner, split toning effects can be simulated. Figure 2.8, center and right,
shows examples of global toning mimicking the looks of cyanotypes and
split toning respectively.

Flexibility of the simulation. Our framework is flexible enough to simplify
or omit some of the previous steps in the pipeline (more details in Sec-
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tion 2.6), depending on its intended usage. The prototypes described in Sec-
tion 2.7 and shown in the supplementary video leverage this to provide
different tradeoffs between realism and simplicity of usage. Equally impor-
tant, each step of the pipeline could be adjusted to fit different photographic
processes if relevant data (characteristic and spectral sensitivity curves, color
ramps...) is available.

2.5 hybrid fluids simulation

To simulate similar heterogeneities, uniqueness in the results and engaging
physical interactions as in the real processes, we rely on computational flu-
ids to drive the dynamic chemical reactions which produce the final image.
The Navier Stokes equations (NS) rewrite Newton’s law for fluids, treating
the fluid as continuum. This is the natural choice to simulate liquids on
the surface [67, 66]. When liquids seep into paper, however, they move by
molecular interaction with paper fibers. In this case, the Lattice Boltzman
equation (LB) becomes the natural choice [48]. We propose a novel hybrid
method using both formulations that deals seamlessly with the interactions
between the liquid and uniform surfaces like glass plates, or percolating
surfaces like paper.

Hybrid methods have been studied before in the water color painting com-
munity [49, 124, 123]. All of these models used hybrid solutions combining
the shallow water equation (a form of simplified NS) with custom models
targeting particular effects. In contrast, we solve the 3D Navier-Stokes equa-
tions with an ultra-thin grid for emulsion and developer liquids on the sur-
face, and the Lattice Boltzman method for in-paper behavior. Both methods
yield numerical solutions that converge to the physically correct solution as
the grid is refined [193].

On Surface: Navier-Stokes Equations. Our method is based on the incom-
pressible Navier-Stokes (Eq. 2.6) and continuity (Eq. 2.7) equations:

∂u
∂t

= −u · ∇u + ν∇ · ∇u− 1
ρ
∇P +

f
ρ

(2.6)

∇ · u = 0 (2.7)

where u is the velocity vector of the fluid, ρ is the density of the fluid, P
is the pressure, f is external force such as ρg, where g is the gravity vector,
and ν is the kinematic viscosity. Equation 2.6 is the momentum equation that
accounts for the forces acting on the fluid, and Equation 2.7 is called the in-
compressibility condition that keeps the volume of the fluid constant [35].
We follow the semi-Lagrangian advection and pressure projection proposed
by Stam [190], given its stability when working with large simulation steps.
The system starts from an initial state u0 and then Equation 2.6 is solved
for each time step in four sequential steps: addition of external forces, ad-
vection of the fluid by itself, velocity diffusion due to viscous friction within
the fluid, and projection onto the divergence-free velocity field (imposed by
Equation 2.7). Additional scalar fields can be advected using the previously
calculated velocity field. We refer the reader to [190] for additional details.

If the liquid layer is thin, the 3D NS equations may be first simplified to a
2D height field for efficiency. This can be achieved by removing the pressure
term, yielding the shallow water equation [35]. This can be further simpli-
fied to shallow wave equations [113, 49, 200, 213]. Although computationally
efficient, behaviors are limited to wave-like effects. All these approaches lack
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the richness of 2D patterns that stem from vorticities produced by the pres-
sure term. In addition, to simulate horizontal flow induced by liquid height
variation, the shallow water equation needs careful tuning of time step, vis-
cosity and horizontal force coefficients in order to be stable and suppress
wave-like behaviors.

The emphasis for our framework upon user engagement is provided by
modeling a believable behavior for the virtual fluid. We therefore develop
an alternative method based on a 3D simulation grid (xyz), with only two
grid nodes in the vertical direction z, separated by a constant interval ∆z:
bottom and top layers covering 0 ≤ z ≤ ∆z and ∆z ≤ z ≤ 2∆z respectively.
Liquid may be higher than 2∆z on some locations. In this case, we treat the
weight above the domain as an external force applied to the top. Let h be
height. Combined with the weight of liquid in the cell itself, the force f in
(2.6) becomes

f =

{
ρg max(0, h− ∆z)/∆z on top layer

ρg max(h, ∆z)/∆z on bottom layer.
(2.8)

Then, we use a full 3D projection step by solving the Poisson equation:

∇2P =
ρ

∆t
∇ · ũ, (2.9)

where ũ is the velocity obtained from the velocity diffusion step, which
we apply before the pressure step. We set Neumann boundary conditions
(∂P/∂z = 0) on the bottom and Dirichlet boundary condition (P = 0) on
the top. Note that with boundary ghost cells, using only two grid nodes is
enough to take the second pressure derivative. Since the grid has only two
layers, the pressure projection is fast enough even for mobile devices.

Finally, the 3D continuity integrated over z yields the height rate by Navier-
Stokes and continuity:

∂h
∂t

∣∣∣∣
NS

=
∫ h

0

∂w
∂z

dz = −
∫ h

0

(
∂u
∂x

+
∂v
∂y

)
dz. (2.10)

Since the liquid is thin in z, by assuming that 2D flow difference along z
is small, we approximate (2.10) as ∂h

∂t

∣∣∣
NS

= −h(∂u/∂x + ∂v/∂y)|bottom. Thus,

we approximate ∂h
∂t from divergence in the bottom layer. We did not use the

divergence in the top layer since the flow should be similar to bottom layer,
and also to reduce computations. This produced satisfactory expansion ef-
fects, although the height rate can be more precisely computed by using the
top layer as well.

For efficiency, we use a multi-resolution scheme: we first calculate a 2D
low resolution velocity field of 64× 64× 2 which is then upscaled linearly
to 256× 256 for high resolution advections and user interaction. Since we
want to modulate the chemical reactions in Section 2.6 according to differ-
ent liquid distributions, we create the height map H by advecting the liquid
quantities injected by the user over the high resolution velocity field.

Subsurface: Lattice Boltzmann Equation. The simulation based on the Navier-
Stokes equations is suitable for getting natural behaviors when the liquid
moves over a uniform surface as happens with the plates used in wet plate
photography. However, if we want to simulate realistic liquid-paper inter-
actions for printing processes, this approach is difficult and impractical to
extend for real-time simulations, given the high grid resolutions required
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for fine scale details. A particle-based method was proposed by Lenaerts et
al. [129], but the large number of particles needed makes it unsuitable for
real time applications on mobile devices.

The Lattice Boltzmann equation (Eq. 2.11) [193] has been proved to be a
more suitable approach when macroscopic physics fail to provide a practical
description [212]. LB divides the simulation domain into a regular lattice,
where each point x is connected with its neighbors via lattice vectors ei.
φi(x, t) represents the expected number of particles moving along ei at a
given time. During each time step ∆t, propagation and collisions of these
particles are simulated over the lattice, redistributing them towards their
equilibrium distribution functions φ

(eq)
i :

φi(x + ei∆t, t + ∆t) = (1−ω)φi(x, t) + ωφ
(eq)
i (x, t) (2.11)

where ω is a relaxation parameter that can be used as global viscosity. To
reduce compressibility, He and Luo’s φ

(eq)
i formulation [83] can be adopted.

Chu and Tai [48] presented an interactive system for simulating eastern
ink paintings, based on three layers of simulation: surface, where user inter-
action takes place; flow, where water percolation through fibers is simulated
with LB; and fixture, where ink pigments and glue are deposited. For our
real-time liquid-paper interaction, we remove the fixture layer since we do
not deal with pigments nor glue. We also change the surface layer simulation,
employing our Navier-Stokes model instead, given theirs is tailored to sim-
ulate brushwork and ink deposition over paper, with a difficult extension to
handle stirring and surface tilting gestures.

Hybrid Simulator. Macroscopic movement of the liquid over the surface is
described by the NS equations, which then feed LB for percolation through
the paper. The fluid that is transferred from the surface to the paper is
subtracted from the NS simulation at the start of its next simulation step,
effectively connecting both approaches in a natural way. The rate of liquid
transfer from surface to paper is:

∂h
∂t

∣∣∣∣
seep

= cs
(
ρmax − ρp

)
, (2.12)

where ρp is the current density of liquid inside the paper and ρmax is the
maximum liquid density that the paper can hold. cs modulates the transfer
rate depending on the global viscosity from the NS simulation, which also
affects global viscosity inside the LB simulation.

This hybrid scheme allows us to provide the user with natural touch- and
gesture-based interaction and realistic liquid behavior on the surface, along
with intricate realistic liquid percolation. The supplementary video shows
our simulation system in movement.

2.6 characteristic curves

As explained in Section 2.4, Equation 2.4 expresses the final density as a
function of the characteristic curve of the process, which in turn is defined
by exposure e, and the input parameter vector b (specific for each process).
Given the local modulations introduced by the usage of liquids and time
dependent parameters like setting or development times, a continuous dy-
namic model for this curve is needed. Moreover, for an interactive use, it
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Figure 2.9: Top left: The global optimal curve f0(e). Top right: Characteristic curves fi(e, β)
for the setting time parameter [186]. Bottom left: A new set of curves f ′i (e, β)
is obtained from Equation 2.13. Bottom right: 3D surface obtained by inter-
polating between the different f ′i (e, β) curves, which we store as a regular 2D
lookup table. The curves for all five parameters of our model can be found in the
supplementary material.

needs to be both efficient and use intuitive parameters. Thus, low level com-
putational models based on accurate simulations like Ramsden’s one [177]
are discarded. Instead, we adopt a data driven approach, and derive a model
based on sparse sensitometric measurements.

We follow the work by Skladnikiewitz and colleagues [186], who focused
on the wet collodion process given its historic importance as the first practi-
cal photographic technique. This leads to a five-dimensional vector b, defin-
ing halide concentration, iodide to bromide ratio, cadmium concentration,
setting time for the emulsion, and development time. Apart from matching
the behaviors described in practical manuals [98], this data set has the ad-
ditional advantage of using parameters similar to the ones an artist would
use in the real world.

Although this model would formally be valid for accurate simulations
of the collodion process, the approach described below can be adopted as
an approximation to model other specific processes, if similar sensitometric
data is available. We show how, using the global toning approach described
in Section 2.4, our simulations can be extrapolated to other alternative pro-
cesses like cyanotypes.

In [186], each parameter in b is analyzed separately, obtaining a set of
characteristic curves fi(e, β), where β is the value of the parameter i being
analyzed. From these, optimal values of β are found2, which define an opti-
mal curve f op

i (e) for each parameter. As result of concatenated tests, a global

2 The optimal value represents a good compromise between high final density and time allowed
to physically handle the plates.
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optimal characteristic curve f0(e) for the process is obtained (Figure 2.9, left),
where all the parameters are fixed to their optimal values (refer to the Sec-
tion 2.A for the complete set of data used).

However, we do not want to be constrained by optimal values. Instead,
we want to give the user the freedom to modify any of the input parameters
at will, which means that new characteristic curves should be used. So, we
redefine the existing characteristic curves fi(e, β) (Figure 2.9, center left) with
respect to its optimal ones (Figure 2.9, center right):

f ′i (e, β) = fi(e, β)/ f op
i (e) (2.13)

We then interpolate f ′i (e, β) using piecewise cubic Hermite polynomials,
obtaining a smooth 3D surface that can be stored and accessed efficiently as
a 2D lookup table (Figure 2.9, right). Finally, we define a new global curve
g(e, b) as a function of the global optimal characteristic curve f0(e) and the
redefined curves f ′i (e, β):

g(e, b) = f0(e)
5

∏
i=1

f ′i (e, β) (2.14)

Note that omitting any given parameter assumes its default optimal value,
yielding f ′i (e, β) = 1.0. Although Equation 2.14 assumes each parameter i
works independently from the others, our model yields coherent results, is
based on ground-truth data, and is computationally very efficient. Coupled
with our fluids simulation, it provides the real-time performance required
for constant feedback and interactivity. Section 2.A includes an exploration
of this model with different combinations of parameters.

2.7 implementation

Using the described framework, we have built two prototypes, tailored to
wet plate collodion and printmaking respectively. All the prototypes have
been tested on an Apple iPad R© (4th generation) with an A6X dual core CPU
at 1.4GHz, 1GB of RAM and a PowerVR SGX 554 GPU. The Navier-Stokes
fluids simulation runs on the CPU, and the Lattice-Boltzmann one on the
GPU using OpenGL ES 2.0 shaders. Note that reading back from the GPU
is required since the height map H must be updated on the CPU with the
result from the GPU LB simulation. Both simulations provide texture maps
of 256x256 pixels, which are then up-sampled to the resolution of the results.
The prototypes are CPU bound, with image processing times around 30 ms.
For efficiency, the interactive image processing is performed using 1024x768
framebuffers; final results can be generated at the full resolution of the input
image when saving them to memory. Our NS simulation runs at 27 frames
per second, and our hybrid NS-LB at 22 fps, although suboptimal memory
transfers from GPU to CPU (readback) limit the effective frame rate to 13 fps.
This may be improved by offloading advection and upsampling to the GPU,
and scheduling the readback before CPU workload, from separate threads.

Prototypes. Our collodion prototype follows the full pipeline described in
Section 2.4, with the different maps and steps evolving in real time in front
of the user, at actual speeds.

In order to show the versatility of our framework, we have implemented a
second prototype with some simplifications and a more flexible pipeline. In
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Figure 2.10: All the input images used for the results shown. Top row images courtesy of
Michelle Meiring, Raven Cornelissen, Tracie Tee and Marius Adrian Rusu
(respectively).

particular, the chemical mix and the spectral sensitivities can be changed at
any time throughout the process, setting and exposure maps are based on
global times set by the user, development time is obtained directly from the
liquid (so pouring the emulsion and development occur simultaneously),
and the fixing step is skipped, obtaining a transmission map directly from
the density map.

2.8 results

Input images for the results shown can be found in Figure 2.10. We refer
the reader to the accompanying video showing real-time demonstrations of
our prototypes. Figures 2.1 and 2.11 show some results simulating wet plate
photography, using the first prototype. Like in the real process, different
combinations of the chemical components and processing times allow to
achieve a rich range of tones in the final images, whereas varying degrees of
heterogeneities are achieved by manipulating the liquid solutions (as shown
also in Figure 2.12). In this case, no LB simulation is performed, since there
is no percolation of the liquid within the glass plate.

We have created more results with our second prototype, which make use
of our full hybrid NS-LB fluids simulation. Figure 2.13 shows additional re-
sults, including: i) wet plate rubytype; ii) cyanotype print; iii) a multi toning
example with two different toners applied); iv) a basic color cross process-
ing mode that modulates the luminance channel of the source image (in
Lab color space) with the final transmission map, inspired by Bae et al. [17];
and v) a free-style printing result. The last two along with the cyanotype in
Figure 2.1 show clearly visible results of liquid percolation. Different toners
for analog prints are shown in Figure 2.14. Section 2.B includes Tables with
the parameters used to create the results presented.
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Figure 2.11: Different results simulating the wet collodion process. Different combinations
of the chemical mix and processing times, along with varying modulations by
the aqueous solutions, lead to different, unique results, comparable to some
results from Figure 2.2.

2.9 conclusions and future work

We have presented a novel framework for digital image manipulations based
on alternative analog photographic processes. We have implemented two
fully working prototypes on a tablet device, for wet plate collodion and
printmaking respectively, which provide an engaging way of physically ma-
nipulating digital images. Both realistic simulations and simplified physi-
cally based experiences can be built with our framework. In any case, our
real-time data-driven model and hybrid fluids simulations lead to personal
unique results, bringing a sense of craftsmanship and serendipity to the
process. With this work, we have introduced a novel exploratory approach
to image creation and manipulation when it comes to digital photography,
something that was missing when compared with other artistic disciplines
that have digital counterparts, like drawing and painting. We believe the
ability to create engaging digital experiences by coupling physically-based
simulations with natural user interfaces can appeal all kind of users, with
potential uses for entertainment, educational or artistic purposes.

Our system is not free of limitations. Although based on real data, our sim-
ulations cannot be compared directly against real results because of many
reasons. First, our data driven model does not take into account parameters
that also influence the final outcome (temperature, aging of chemicals, addi-
tional chemicals that control the physical properties of emulsions and other
liquids...). Second, our fluids simulations are simplified with respect to the
behaviors on some rare supporting media used for prints, or the unique pat-
terns that arise in the edges of plates due to dirt and organic matter. Third,
digital cameras clamp IR and UVA wavelengths, whereas alternative photo-
graphic emulsions are very sensitive to UVA wavelengths specially, and so
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differences in exposure and final look are expected. Fourth, it is outside of
the scope of this paper to compare sensitometric data from real world and
our simulations. All this, plus the inherent unique nature of the real results,
makes side-by-side comparisons difficult. Nevertheless, one can see that our
results share resemblances with the real examples shown in Figure 2.2, pro-
viding plausible results when performing similar manual work.

All of these limitations present interesting venues for future work, such
as refinements in the final appearance based on grain formation during de-
velopment, optical resolution of the emulsions during exposure, more gen-
eral models for the chemical reactions or more detailed ones for specific
processes, or extensions to the fluids simulations to deal with the very in-
teresting artifacts that arise specially on the edges of the plates and other
interesting liquid-paper interactions. We hope to also inspire extensions or
adaptations of our framework to deal with more modern film stocks or other
darkroom crafts based on the same concepts of physically based image ma-
nipulations, bridging the gap between current digital pipelines and these
fascinating analog ones. Also it can be interesting to study and apply usabil-
ity concepts over these new pipelines that favor not just the final result but
also the processes that led to it.
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Figure 2.12: Results with more visible modulations from the interaction with the liquids.
Variations at different scales can be seen coming from either liquids themselves,
heterogeneities in the mix, or both.
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Figure 2.13: Top row: simulation of a rubytype and a cyanotype. Bottom row: a multitoned
print (left) (as seen in Figure 2.2). Since the second prototype is not bounded by
real physics, we can also create color (center) or more freestyle results (right).

Figure 2.14: Examples showing the use of different toners used in alternative printmaking,
adapted from [181]: From left to right, top to bottom: cooper, selenium, polysul-
phide and blue toner. Note the reproduction of the solarization artifacts in the
midtones for the cooper toner, as they occur in real life.
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appendices

2.a characteristic curves

Figures 2.15 to 2.19 show the data from [186] adapted to create our data-
driven characteristic curve model presented in Section 2.6. Our model is
explored in Figures 2.20 to 2.25. Starting from a reference result (Figure 2.20)
we test different values for the input parameters b: halide concentration,
iodide/bromide ratio, cadmium iodide ratio, setting and development times.
The results show the model behaves in concordance with [186].
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Figure 2.20: Reference image obtained with the following parameters: halide concentration
of 1.0, iodide/bromide ratio of 60/40, cadmium ratio of 0.68, average setting
time of 30s, 17 seconds of exposure and development time of 30s on average.
Each of the following tests changes one of this parameters independently (except
exposure time).

Figure 2.21: From left to right: Exploration of the iodide/bromide ratio parameter with values
of 42/60, 70/30 and 100/0 respectively. A higher ratio produces an increase
in contrast due to a steeper and shorter spectral sensitivity (Figure 2.7, center)
and in final density (as seen in Figure 2.16).

Figure 2.22: From left to right: Exploration of the cadmium iodide ratio parameter with
values of 0.68, 0.78 and 0.86 respectively. In concordance with Figure 2.17, the
higher the amount of cadmium iodide, the lower the final density achieved.
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Figure 2.23: From left to right: Exploration of the halide concentration parameter with val-
ues of 0.9, 1.2 and 1.5 respectively. Slight changes in density appear in the
highlights with increasing values of this parameter, while density in shadows
decreases more abruptly (Figure 2.15).

Figure 2.24: From left to right: Exploration of the setting time with average values of 30, 60
and 90 seconds respectively.

Figure 2.25: From left to right: Evolution of the results as development is calculated. Average
values of 10, 20 and 30 seconds are shown. After 30 seconds, little more density
is obtained, as seen in Figure 2.19.
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2.b results

β1 β2 β3 β4 β5 τe τf

1.0 0.68 50/50 28s 24s 13s 32s

1.0 0.68 45/55 31s 27s 10s 24s

1.0 0.68 90/10 33s 23s 8s 22s

1.0 0.68 42/58 31s 22s 21s 35s

1.0 0.68 42/58 30s 21s 28s 30s

1.0 0.68 70/30 31s 23s 13s 24s

Table 2.1: Parameters used for creating different results shown. β1 is halide concentration,
β2 is cadmium ratio (the same for all results), β3 is iodide/bromide ratio, β4 is
setting time τs, β5 is development time τd, τe is exposure time and τf is fixing
time.
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β1 β2 β3 β4 β5 τe τf

1.0 0.68 55/45 30s 31s 13s N/A

1.0 0.68 60/40 25s 23s 12s 24s

1.1 0.68 42/58 30s 34s 15s N/A

1.0 0.68 45/55 30s 27s 14s N/A

1.0 0.68 70/30 30s 23s 16s N/A

1.0 0.68 45/55 30s 24s 30s N/A

1.0 0.68 60/40 34s 23s 10s 31s

1.0 0.68 42/58 30s 28s 27s N/A

Table 2.2: Parameters used for creating different results shown. β1 is halide concentration,
β2 is cadmium ratio, β3 is iodide/bromide ratio, β4 is setting time τs, β5 is devel-
opment time τd, τe is exposure time and τf is fixing time. N/A is used when the
prototype used for creating the image did not implement that feature.
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Figure 2.26: Results shown in the supplementary video. Top: result using the wet plate
prototype. Mild fogging appears as result of a short exposure time and pro-
longed development. Bottom: Platinum print obtained with the printmaking
prototype.





3L I Q U I D - O N - L E N S S I M U L AT I O N

In a similar spirit to the previous Chapter, here we focus on the manipula-
tion of the optical path of a camera by placing liquids or refractive layers on
the surface of the its lens. This is something artists have been using to create
interesting and unique distortions. To provide an engaging interactive user
experience, we ensure a natural interaction using the fluids solver from our
previous framework, running on a tablet device with touch and gestures
based input. To obtain realistic and predictable results, we use ray tracing to
compute the deformation of the light rays passing through the manipulated
optical paths. Given the relatively low computing power of mobile devices
and the interactive rates required, we propose using efficient screen space
ray tracing algorithms. Our prototype shows use cases impossible to achieve
with existing systems and traditional image editing pipelines.

This work was developed during a three-months internship at the Ad-
vanced Technology Labs at Adobe Systems in San Jose (California, USA); and
was recently granted with US Patent.

G. Wilensky, A. Krishnaswamy & J. I. Echevarria
Systems and methods for simulating the effects of liquids on a

camera lens

US Patent US9176662 B2 (2015)

3.1 introduction

One of the more straightforward manipulations a photographer usually per-
forms during the capture of a scene is to alter the optical path of the rays
from the scene to the sensor. This is usually done using conventional lenses
and changing focal length, aperture size or focus. However, more specialized
hardware allows additional degrees of freedom to achieve tilt-shift effects or
selective focus. Taking this to the limit, the artist can place any refractive ob-
ject in front of (or replacing) the main lens of the camera, or manipulate
the surface of the lens by adding some liquid over it to obtain very creative
distortions (Figure 3.1 shows some examples).

Drawing inspiration from these manipulations, we created a novel tool
that allows the user to pour and stir liquid over a virtual lens, recapturing
then a distorted image as would have been seen by the sensor of the camera.

3.2 overview

Our system is composed of a virtual sensor, a virtual lens, the interactive
liquid layer, and the scene to be captured (from the sensor feed in real-time)
or manipulated (from a single image). Then, rays are traced from the sensor
to the scene to obtain the final image. Figure 3.2 shows an overview of the
system.

45
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Figure 3.1: Left: Photo taken through an object made of crystal that alters the path of
the light rays from the scene to the lens and sensor (by Paulina Aleshkina).
Right: Photo taken after the selective application of a liquid over the lens (by Jill
Auville).

3.3 implementation details

Since we want real-time visual feedback, we need to render realistic refrac-
tion as fast as possible, thus discarding the use of conventional CPU-based
raytracing given its computational cost. So, we make use of GPU screen-
space ray tracing given its quality and efficiency [163]. Then, we model each
component of the optical system (lens and liquid layer) efficiently using 2D
height and normal maps (see Figure 3.2).

The virtual scene to capture is a 2D plane that will be sampled by the
rays coming from the optical system. We simplify Oliveira and Brauwers’
approach [163] by assuming all rays through the lens and liquid are traced
orthogonally from the virtual sensor, so we can use a simpler binary search
for traversing the depth maps [174]. We extend these refraction calculations
adding other optical effects like light dispersion, scattering and color tint for
a wider range of results (see Figure 3.3 for some examples).

For light dispersion, we take the refracted outgoing direction from the
liquid to the scene, and create two additional rays by using a user-defined
dispersion coefficient. Then we use each ray for sampling the red, green and
blue channels at close but different positions, so the effect of light dispersion
is achieved. To be completely accurate, we should trace three different rays
from the sensor, but this simpler approach produces physically-plausible
results more efficiently.

Accurate scattering of light through the liquid would require accumu-
lating several different incoming ray directions, making it an impractical
approach for real-time. We simplify its simulation by creating an additional
blurred version of the source image based on a user-defined scattering ra-
dius. This way, depending on whether the ray traverses the fluid layer or
not, we sample the original image or the blurred one. For efficiency, we blur
the image using a separable gaussian kernel applied as a GPU shader.

For the interactive liquid layer, we use our Navier-Stokes fluids solver
presented in the previous Chapter (Section 2.5) with touch and gestures en-
abled interaction. As said before, we model the layer itself with height map
extracted directly from the fluids simulation. A normal map is computed
efficiently on the fly on the GPU.
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Figure 3.2: Schematic representation of our system. Assuming the distance between the lens
and liquid elements is small, we trace orthogonal rays (in orange) from the vir-
tual sensor to the scene. For efficiency, we trace just one ray per pixel on the
final image. Given we are using a screen-space ray tracing approach, we model
our virtual lens with normal and depth maps (for both the front and back facing
sides of the objects). We do the same for the liquid distribution, getting its depth
map from the fluids simulation and deriving its normal map on the fly inside the
GPU shader.

Figure 3.3: Top left: Refraction after [163]. Top right: Light dispersion added. Bottom left:
Light dispersion plus scattering. Bottom right: Light dispersion plus scattering
and a honey-like color tint.

3.4 results

We demonstrate a prototype running on an Apple iPad R© (4th generation)
with an A6X dual core CPU at 1.4GHz, 1GB of RAM and a PowerVR SGX
554 GPU. The fluids simulation run on the CPU while the ray tracing and
additional processing runs entirely on the GPU.

Figure 3.4 shows a screenshot of the prototype, with the interaction with
the fluid happening in the lens area located on the bottom left corner. The
rest of the controls expose the different parameters that affect the result, both
for the physics of the fluids simulation and for the optical properties of all
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Figure 3.4: Screenshot showing our prototype. The development interface exposes all the
parameters that control the physics simulation and the optical properties of the
system.

the components. Figures 3.5 and 3.3 show different results obtained with
our prototype. We refer the reader to the accompanying video for watching
it in action.

Some of our results may present unnatural sharp transitions from the
liquid to the clear areas. This happens mostly because we are currently as-
suming both the liquid and the background to be in focus at the same time.
Those transitions would be smoother if proper defocus blur is calculated
for each layer [86]. Related to this, we are currently modeling the scene as
a 2D plane, so having per-pixel depth information would allow more accu-
rate calculations for the refraction and also the defocus blur, being able to
simulate more complex camera models [127, 92].
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Figure 3.5: Examples simulating different effects very difficult to achieve using regular im-
age editing tools, but very easy to obtain using our prototype. It can be seen they
present a similar look and feel to the real ones from Figure 3.1.

3.5 conclusion

We have presented a new image editing process based on physical manip-
ulations. Although it could be run on any computer with some limitations,
it is specially tailored for mobile devices, which by means of touch and ges-
tures based user input can provide a more natural and engaging experience.
In this work we used part of our previous framework to model one kind
of creative manipulations an artist can easily perform over the optical path.
Future work may extend the range of manipulations to general optical ar-
rangements, from more traditional lens designs to arbitrary custom ones.
With this work, we demonstrated mobile devices have the potential to pro-
vide novel digital experiences for digital image editing that go way beyond
traditional approaches with simplified touch-based interfaces, something
we would like keeping exploring in the future.





Part III

P E R C E P T U A L R E C O N S T R U C T I O N O F 2 D
I M A G E S

This part deals with reconstruction algorithms to obtain plausi-
ble and pleasing images from a perceptual point of view in two
common but different scenarios. First we introduce our SMAA
anti aliasing filter for videogames and other real time applica-
tions. We explain how to perform a conservative but compre-
hensive morphological analysis of the aliased image to obtain
smooth but sharp reconstructions for different sample counts.
Next, we demonstrate practical HDR imaging for mobile pho-
tography, describing strategies for capturing multiple exposures
that are then perceptually fused directly on the device using com-
putational photography techniques.





4S M A A : S U B P I X E L M O R P H O L O G I C A L A N T I A L I A S I N G

In this Chapter we present a new image-based, post-processing antialiasing
technique, which offers practical solutions to the common, open problems
of existing filter-based real-time antialiasing algorithms. Our method shows
for the first time how to combine morphological antialiasing (MLAA) with
additional multi/supersampling strategies (MSAA, SSAA) for accurate sub-
pixel features, and how to couple it with temporal reprojection; always pre-
serving the sharpness of the image. All these solutions combine synergies
making for a very robust technique, yielding results of better overall quality
than previous approaches while more closely converging to MSAA/SSAA
references but maintaining extremely fast execution times. Additionally, we
propose different presets to better fit the available resources or particular
needs of each scenario.

This work is published in Computer Graphics Forum and presented at Eu-
rographics 2012. It builds on top of our previous GPU version of MLAA,
published in the GPU Pro 2 book. Having participated in the original algo-
rithm, for this project I worked with Jorge Jimenez analyzing the problems
and limitations of the existing methods and discussing and implementing
solutions to them.

J. Jimenez, J. I. Echevarria, T. Sousa & D. Gutierrez
SMAA: Enhanced Subpixel Morphological Antialiasing

Computer Graphics Forum, Vol.31 (2), Eurographics 2012

J. Jimenez, B. Masia, J. I. Echevarria, F. Navarro & D. Gutierrez
Practical Morphological Anti-Aliasing (MLAA)

GPU Pro 2: Advanced Rendering Techniques (2011)

4.1 introduction

Aliasing is one of the longest-standing problems in computer graphics, pro-
ducing clear artifacts in still images (spatial domain) and introducing flick-
ering animations (temporal domain). While using higher sampling rates can
ameliorate its effects, this approach is too expensive and thus not suitable
for real-time applications. During the last few years we have seen great
improvements in real-time rendering algorithms, from complex shaders to
enhanced geometric detail by means of tessellation. However, aliasing re-
mains one of the major stumbling blocks for trying to close the gap between
off-line and real-time rendering [10].

For more than a decade, supersample antialiasing (SSAA) and multisample
antialiasing (MSAA) have been the gold standard antialiasing solutions in
real-time applications and video games. However, MSAA does not scale
well when increasing the number of samples and is not trivial to include
in modern real-time rendering paradigms such as deferred lighting/shad-
ing [107, 11, 106]. To exemplify this problem with numbers, MSAA 8x takes
an average of 5.4 ms in modern video games with state of the art rendering
engines (increasing to 7.7 ms on memory bandwidth intensive games) on
a NVIDIA GeForce GTX 470. Memory consumption in this mode can be as

53
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high as 126 MB and 316 MB, for forward and deferred rendering engines re-
spectively, taking 12% and 30% of the rendering time of a mainstream GPU
equipped with 1GB of memory. This problem is aggravated when HDR ren-
dering is used, as the memory consumption and bandwidth increases even
further.

Recently, both industry and academia have begun to explore alternative
approaches, where antialiasing is performed as a post-processing step [106].
The original morphological antialiasing (MLAA) method [180] gave birth to an
explosion of real-time antialiasing techniques, rivaling in quality the results
of MSAA and with a performance within the [0.1− 5] ms range. However,
analyzing the current generation of filter-based antialiasing techniques, they
all share at least some of the following problems:

• Most edge detection methods only take into account numerical differ-
ences between pixels, ignoring the fact that the surroundings of an
edge also affect how humans perceive them.

• The original shape of the objects is not always preserved; an overall
rounding of the corners is most of the times clearly visible in text,
sharp corners and subpixel features.

• Most approaches are designed to handle horizontal or vertical patterns
only, ignoring diagonals.

• Real subpixel features and subpixel motion are not properly handled.

• Specular and shading aliasing is not completely removed, especially
when it happens at subpixel level.

Addressing all these issues while maintaining practical real-time perfor-
mance poses a real challenge. We propose a novel post-process antialias-
ing technique, Enhanced Subpixel Morphological Antialiasing (SMAA). Our ap-
proach follows the divide-and-conquer paradigm, and tackles these complex
problems separately, offering simple, modular solutions. First, we extend
the number and type of edge patterns in order to keep sharp geometric
features while processing also diagonal lines. Second, by adding multi/su-
persampling and temporal reprojection to morphological antialiasing, we
are able to reconstruct real subpixel features and handle subpixel motion.
Last, we introduce a robust edge detection that exploits local contrast along
with accelerated yet precise distance searches for a more accurate pattern
classification.

Given the modular nature of our approach, specific features can be en-
abled or disabled, adjusting to the needs of each particular scenario and
hardware configuration. We propose four different modes, from the sim-
plest to the more sophisticated version, which includes a novel combination
of antialiasing as a post-process filter, and both spatial and temporal super-
sampling. This flexibility allows for direct, practical use of our technique
even in current mainstream hardware. Furthermore, we have made public
all the source code at http://iryoku.com/smaa/, including very exhaustive
comments for both implementation and integration, to ensure both repro-
ducibility and an easy and fast adoption of the technique.

4.2 related work

The simplest form of real-time antialiasing is supersampling antialiasing (SSAA),
which involves rendering the scene at a higher resolution, then downsam-

http://iryoku.com/smaa/
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pling to the final resolution. It is also the basis of multisampling antialiasing
(MSAA) [7], where the color of a pixel is only calculated once instead of
running at subsample frequencies. To display the scene, all samples are ag-
gregated using some filter (a resolve operation). Although recent related
techniques like CSAA [211] and EQAA [9] reduce bandwidth and storage
costs by decoupling coverage from color, depth and stencil, these methods
still inherit MSAA drawbacks.

The addition of new real-time rendering paradigms such as deferred shad-
ing [55, 79, 71] and the lighting pre-pass [62], along with current limitations
in graphics hardware, have recently motivated a great amount of exciting
new research in this field [106]. Most of the recent antialiasing solutions han-
dle the aliasing problem as a post-process, devising filters that are applied
over the final, aliased image, usually rendered at final display resolution.
The basic idea is to find discontinuities on the image and to blur them in
clever ways, in order to smooth the jagged edges. While the approach is
not entirely new [34, 196, 97], some advanced versions of it have been only
recently applied in games [185, 119, 188]. All these techniques alleviate the
aliasing problem, although the sharp definition of the edges is obviously
lost to a degree. More refined solutions like directionally localized antialias-
ing (DLAA) [12], use smarter blurs that produce very natural results and
good temporal coherence. Nevertheless, these approaches still yield blurrier
results than MSAA.

Other solutions, such as morphological antialiasing (MLAA) [180], try to
estimate the pixel coverage of the original geometry based on the color dis-
continuities found in the final image. Reshetov’s original work provides
great results, but the proposed CPU implementation is not fast enough to be
used in real-time. This triggered a number of real-time implementations that
run on different hardware platforms, such as the GPU [29, 8, 108], Playsta-
tion 3 SPUs and hybrid approaches that use both CPU and GPU [106, 53].
Topological reconstruction antialiasing (TMLAA) [28] uses topological informa-
tion to recover subpixel features from the final image. However, this recon-
struction can only fill one-pixel-sized holes, and it is not clear how well
its assumptions work for animated sequences. Fast approximate antialiasing
(FXAA) [138] approaches the subpixel problem by simply attenuating such
features, which enhances the perceived temporal stability. However, its re-
sulting images are still not at the quality level of standard methods like
MSAA.

Deviating from pure image-based solutions, in the distance-to-edge antialias-
ing technique (DEAA) the forward rendering pass calculates and stores the
distances of each pixel to near triangle edges with subpixel precision [106].
The post-process pass uses this information to derive blending coefficients.
Similar in spirit, Persson’s GPAA [170] and GBAA [106] use additional ge-
ometric information for coverage calculation. This produces almost perfect
gradients with great temporal stability. However, working at final display
resolution means they cannot handle subpixel features. Furthermore, they
require either additional output buffers in the main pass or additional ge-
ometry passes. Providing better handling of subpixel features in deferred
engines, subpixel reconstruction antialiasing (SRAA) [46] combines regular
shading at final display resolution with supersampled geometry maps (nor-
mals and depth). Then, a super-resolution color image is built propagating
the shaded samples over those maps; the resulting image is finally down-
sampled again to final screen resolution. Despite bringing subpixel features
to the table, they are based on heuristic estimations and the resulting gradi-
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ents are in general of lower quality when compared with other approaches.
Directionally adaptive edge antialiasing [95] leverages MSAA subsample val-
ues for better gradient and color estimation. However, execution times are
on the high side limiting the viability of the method to specific projects.

Finally, in very demanding realtime scenarios with complex shading and
geometry, temporal antialiasing approaches have regained interest recently
[160, 207] [106] (see section Anti-Aliasing Methods in CryENGINE 3). The
main idea is to distribute the cost of supersampling over contiguous frames.
Our work also takes this aspect into account, handling subsamples via
temporal reprojection. In a different context, the work of Yang and col-
leagues [208] aims at restoring jagged edges that occur after nonlinear image
processing filters, for which they require that the original, alias-free image
be available.

Table 4.1 provides a detailed summary of the features supported for a
representative selection of filter-based antialiasing techniques, including our
work. This selection covers most of the recent major publications in the
field, and includes all those for which implementations are available and
are currently in use, in order to perform fair comparisons. It can be seen
how each existing technique aims at solving a subset of all the problems
involved, at the cost of leaving others out. In contrast, we provide a more
holistic approach and systematically tackle all of them, while maintaining
modularity by design.

later work After the publication of SMAA, new real time anti aliasing
methods have appeared. Similar to our morphological component, CMAA
[51] and AXAA [155] aim for a more conservative processing of edges, with
a low performance hit. They are not able to handle several samples per pixel,
though. Other methods also follow a similar approach to ours, with careful
processing of borders and the gathering of additional samples per pixel for
a better reconstruction of subpixel features [161, 162, 56]. However, their
actual implementations are tied to specific hardware features from vendors
like NVIDIA or AMD, so they are not universally available. A promising
different route is to compute an analytical filtering to handle all the sources
of aliasing at once [15], but its computational cost is still not practical for
real time. In summary, it could be argued that SMAA is still the preferred
anti aliasing solution for cutting edge videogames and other real time ap-
plications for PC, consoles and mobile devices; with its modular approach
replicated by later AA solutions.

4.3 morphological antialiasing

Morphological antialiasing (MLAA) [180], tries to estimate the pixel coverage
of the original geometry. To accurately rasterize an antialiased triangle, the
coverage area for each pixel inside the triangle must be calculated to blend
it properly with the background (assuming a back-to-front rendering order).
MLAA begins with an image without antialiasing (no coverage taken into
account during rasterization), so it reverses the process by re-vectorizing the
silhouettes, in order to estimate such coverage areas. Then, since the back-
ground cannot be known after rasterization, MLAA blends with a neighbor,
assuming that its value is similar to the original background. Figure 4.2
describes this process; we refer the reader to the original publication for a
more detailed explanation [180].
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Figure 4.2: MLAA first finds edges by looking for color discontinuities (green lines), and
classifies them according to a series of pre-defined pattern shapes, which are then
virtually re-vectorized (blue line), allowing to calculate the coverage areas a for
the involved pixels. These areas are then used to blend with a neighbor. For
example, the pixel Copp fills the area a of the pixel Cold: cnew = (1− a) · cold +
a · copp.

Several morphological antialiasing implementations appeared after Reshetov’s
original paper [106]. Jimenez’s MLAA [108] is one of the fastest and most
documented. Its key feature is the use of novel texture structures for great per-
formance improvements. These textures are used to encode the location of
the edges and coverage areas, as well as the precomputed areas for blending.
The algorithm works in three passes: edge detection (which is performed
using depth or luma information), pattern detection plus calculation of cov-
erage areas, and final blending. Pattern detection is performed by searching
both ends of an edge (distance searching), halving the necessary iterations by
using hardware bilinear filtering. Once the ends are reached, the algorithm
looks at the crossing edges, which provide a mechanism for straightforward
pattern classification; these crossing edges are the perpendicular edges with
respect to the direction of a search (see for example the vertical green lines in
Figure 4.2). With length and crossing edges information, the coverage area
is retrieved with a single access to a precomputed texture, and used for the
final blending. Figure 4.3 exemplifies the different steps and components of
the pipeline. We choose this MLAA implementation as a starting point for
our algorithm, and refer the reader to the original publication for a more
comprehensive description [108].

4.4 smaa : features and algorithm

In this section we present the core components of SMAA, their motivation
and the main algorithmic ideas (see Figure 4.4). We build on Jimenez’s
MLAA pipeline, improving or completely redefining every step. In par-
ticular, we improve edge detection by using color information with local
contrast adaptation for cleaner edges. We extend the number of patterns
handled for sharp geometric features preservation and diagonals process-
ing. In a similar fashion, we enhance pattern handling with accurate and
fast distance searches for a more reliable edge classification. Last, we show
how morphological antialiasing can be accurately combined with multi/su-
persampling and temporal reprojection. Although our new technique shares
some of the core ideas of MLAA, it constitutes a major overhaul in terms of
quality and robustness (see Figure 4.3).
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Figure 4.3: MLAA overview. (a) Input image, with the intended approximation outlined by
red lines and the coverage areas shown in green. (b) Predefined patterns in the
original algorithm [180]. (c) Precomputed areas texture in Jimenez’s GPU im-
plementation [108]. (d) Detected edges. (e) Calculated coverage areas. (f) Final
blending. Our SMAA algorithm overhauls the whole pipeline by extending (b)
and (c) for sharp geometric features and diagonals handling. Local contrast adap-
tation removes spurious edges in (d). Extended patterns detection and accurate
searches improve accuracy in (e). SMAA can handle additional samples in (f) for
accurate subpixel features and temporal supersampling.

Figure 4.4: Overview of the key weaknesses of post-processing antialising filters (columns)
and how the core elements of SMAA handle them (rows).

4.4.1 Edge detection

Edge detection is critical in all AA filters, since each undetected edge will re-
main aliased on the final image. On the other hand, too many blurred edges
can reduce the quality of the antialiased image, while imposing unnecessary
performance penalties. Different information can be employed for edge de-
tection: RGB color, luma, depth, surface normal, object ID... or combinations
of them. We choose to use luma based on four observations: first, MLAA
expects edges to come specifically from color-based (either luma or RGB)
discontinuities; otherwise artifacts may appear [106] (see section MLAA on
the PS3). Second, as opposed to depth and normals, color information is al-
ways available. Third, it can handle shading aliasing. And fourth, it is faster
than RGB color while usually yielding similar results. For efficiency, we only
search for edges at the top and left boundaries of each pixel, since the bot-
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Figure 4.5: Top: Dominant contrast in green edges should mask the spurious red crossing
edges (left). Not taking this local contrast into account leads to artifacts (center).
Our SMAA algorithm corrects them (right). Bottom-left: left boundary (orange)
of a given pixel (marked with a dot) and surrounding candidate edges (blue) that
may dominate it, making it non-visible for human viewers. Bottom-middle: top
boundary scenario. Bottom-right: candidate surrounding edges actually calcu-
lated.

tom and right ones can be retrieved from the neighbors.

Local contrast adaptation: The human visual system tends to mask low
contrast edges in the presence of much higher contrasts in the surrounding
area. Thus, a naive color edge detection based exclusively on local numeri-
cal differences will produce spurious edges (usually undetected by humans)
that will affect pattern classification, downgrading image quality and tem-
poral stability (see Figure 4.5, top). To avoid these spurious edges, we per-
form an adaptive double threshold which allows to: a) prevent line searches
from stopping at non-perceptually-visible crossing edges; and b) choose the
dominant (much higher contrast) edge when there are two parallel edges
on a pixel (top-bottom, or left-right). This differs from previous approaches
that take into account local contrast by simply checking the range of lumas
found in the current pixel and its 4-neighborhood, and thus do not allow
the notion of perceptual masking between edges [138].

Figure 4.5, bottom-left, shows the case for left edge (orange) of a given
pixel (grey dot), plus the surrounding candidate edges (blue) that may dom-
inate (mask) it. We calculate the maximum contrast cmax for all these edges
and compare it with the contrast for the left edge. If the latter is above a
threshold of 0.5 · cmax the edge is preserved; otherwise, it is ignored. The
threshold was chosen empirically and provides good results in all our tests.
The bottom-middle image shows the similar case for the top edge. Since
computing all these edges involves too many memory accesses, we select a
subset that yields satisfactory results (bottom-right).

For the case of the left boundary, a straightforward algorithm would cal-
culate el = |L− Ll |> T, where el is the boolean value that codes whether the
edge is active, L and Ll represent luma values at the current and left pixels
respectively, and T is a given threshold (usually between 0.05 and 0.2). We
refine this naive approach with an additional test that can be expressed as:

cmax = max(ct, cr , cb, cl , c2l)

e′l = el ∧ cl > 0.5 · cmax (4.1)
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Figure 4.6: Left: Comparison between no antialiasing (top), a regular MLAA approach (mid-
dle), and the SMAA results (bottom). Notice how SMAA keeps the original
shape of the object much better, while MLAA tends to round its shape. Right:
Corners have crossing edges of length at least two (see the second pixel column),
while aliased contour lines have crossing edges of just one pixel in length (stair-
case towards the right). Fetching extended crossing edges (orange), in addition
to regular edges (red), allows to discern between both cases, yielding a more
accurate re-vectorization (pink), instead of rounding off corners (blue).

where ct, cr , cb, cl , c2l are the contrast deltas for the edges shown in Figure 4.5,
and e′l represents the final boolean value (active or not) for the left edge
boundary. The edge at the top boundary, e′t, is calculated in a similar fash-
ion.

4.4.2 Pattern handling

Our new pattern detection allows to preserve sharp geometric features like
corners, deals with diagonals and enables accurate distance searches.

Sharp geometric features: The re-vectorization of silhouettes of MLAA
tends to round corners on the image (see Figure 4.6, left). Given that the
crossing edges used for pattern detection are just one pixel long, it is not
possible to distinguish a jagged edge from the actual corner of an object,
which may be wrongly processed.

To avoid this, we make the key observation that crossing edges in con-
tour lines have a maximum size of one pixel, whereas for sharp corners
this length will most likely be longer. We thus fetch two-pixel-long crossing
edges instead; this allows to detect actual corners and apply a less aggres-
sive processing, thus retaining more closely the true shape of the object (see
Figure 4.6, right). The degree of processing applied is defined by a rounding
factor r, which scales the original coverage areas obtained by one-pixel-long
crossing edges (blue lines in Figure 4.6, right). The recommended range for
r is [0.0− 1.0]. For example, values of r = 1.0, 0.5 and 0.0 yield the blue,
yellow and pink lines respectively.

For the (academic) case of an horizontal line, we modify Jimenez’s MLAA
coverage areas calculation as follows:

1. We perform the original pattern detection, using the regular crossing
edges (red edges on Figure 4.6, right). This yields two areas ab and
at per pixel belonging to the pattern. ab is used to blend the bottom
pixel pb with its top neighbor pt, whilst at is used to blend pt with pb
(see [108] for details).
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2. We refine the areas at and ab according to the following:

a′t =


r · at if dl < dr ∧ e1

r · at if dl ≥ dr ∧ e2

at otherwise

(4.2)

a′b =


r · ab if dl < dr ∧ e3

r · ab if dl ≥ dr ∧ e4

ab otherwise

(4.3)

where a′t and a′b are the modified area values, dl and dr are the distances to
the left and to the right of the line for the current pixel, and ei are booleans
that indicate if an edge is active (see Figure 4.6).

Diagonal patterns: Most of the existing filter-based techniques search for
patterns made exclusively of horizontal and vertical edges (orthogonal pat-
terns). This translates into badly aliased results (in space and time) for diag-
onal lines (see Figure 4.7).

Figure 4.7: MLAA (left) and SMAA (center) re-vectorizations (blue lines) of near-45◦ diag-
onals. Thanks to our handling of diagonal patterns (green lines), SMAA recon-
structs the edge accurately. Right: our approach just requires the same informa-
tion as for the orthogonal case: distances dl and dr; and crossing edges e1 and e2
(right).

Figure 4.8: Diagonal patterns map (left) and their precomputed area texture (right).

We introduce a novel diagonal pattern detection that allows to detect
these scenarios. In these cases, a diagonal re-vectorization (Figure 4.7, cen-
ter) is used to yield coverage areas, instead of the original orthogonal re-
vectorizations (Figure 4.7, left). The mechanism developed to handle diag-
onal patterns is inspired by the orthogonal patterns handling of Jimenez’s
MLAA. We introduce a precomputed texture that takes as input the diago-
nal pattern, defined by the distances to both ends of the diagonal line and
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Figure 4.9: Top-left: Example of a search to find the left end of a horizontal edge (starting
position marked with a dot). Top-right: Hardware filtered accesses performed
by Jimenez’s MLAA (orange dots) just check the orange edges. SMAA bilinear
accesses (green dots) are able to additionally check all the crossing edges (green).
In this example, this will make the search stop when the first crossing edge is
found, instead of finishing at the left end of the horizontal edge. Bottom-left:
The different iterations of the search (represented by different colors) and the
values fetched by Jimenez’s MLAA. Note how it misses all the crossing edges (in
blue). Bottom-right: The same iterations and the values fetched by SMAA. It
can be seen how SMAA is able to check four different pixels (shaded pixels) with
just a single memory access.

the diagonal crossing edges information (Figure 4.7, right); and outputs the
accurate coverage areas. Figure 4.8 shows the possible diagonal patterns and
their corresponding pre-calculated areas.

Calculating diagonal coverage areas consists of the following steps, for
both the top-left to bottom-right and the bottom-left to top-right diagonal
cases:

1. We search for the diagonal distances dl and dr to the left and and to
right end of the diagonal lines.

2. We fetch the crossing edges e1 and e2.

3. We use this input information (dl , dr, e1, e2), defining the specific di-
agonal pattern, to access the precomputed area texture, yielding the
areas at and ab.

We perform this diagonal pattern detection before the orthogonal one in the
coverage area calculation. If the diagonal pattern detection fails, we trigger
the orthogonal detection. Otherwise, the areas produced by the diagonal
pattern detection are used. This model allows to seamlessly perform the last
blending step (step f in Figure 4.3) in a symmetric way for both orthogonal
and diagonal patterns, given the fact that the semantics of the produced
areas at and ab are the same in both cases.

Accurate distances search: Key to pattern detection and classification is
obtaining accurate edge distances (lengths to both ends of the line). Jimenez’s
MLAA makes extensive use of hardware interpolation (bilinear filtering) to
accelerate this process. Hardware bilinear filtering can be used as a way of
fetching and encoding up to four different values with a single memory ac-
cess (otherwise it would be necessary to perform one memory access per
value to fetch). This is exploited to fetch two edges at once, allowing to par-
tially reduce bandwidth usage (see Figure 4.9, bottom-left). However, it does
not check crossing edges during the search, which may lead to inaccuracies
in pattern detection [108].

Unfortunately, fetching the crossing edges in the search loop following
their scheme would imply two linearly filtered accesses per iteration, dou-
bling the bandwidth usage. We generalize the approach for two dimensional
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accesses, being able to fetch four different values with a single memory ac-
cess (Figure 4.9, bottom-right).

Jimenez’s MLAA uses a linear interpolation of two binary values produc-
ing a single floating point value:

fx(b1, b2, x) = x · b1 + (1− x) · b2, (4.4)

where b1 and b2 are two binary values (either 0 or 1, given that the edges
texture marks each edge as activated or not), and x is the interpolation value.
If x 6= 0.5, this produces a set of four unique values: {0, 1− x, x, 1}. So, it is
possible to find a decoding function f−1 that recovers the original b1 and b2
binary values. Instead SMAA performs bilinear interpolation of four binary
values as follows:

fxy(b, x, y) = fx(b1, b2, x) · y + fx(b3, b4, x) · (1− y), (4.5)

where y is the interpolation value in the second dimension. By choosing a
value of y = 0.5x, it is possible to create a binary base that allows to encode
a bilinear interpolation between four binary values into a single one, and
still be able to recover the sixteen possible original values. We exploit this
fact to fetch the four b1, b2, b3 and b4 binary edge values (see Figure 4.9,
bottom-right). We refer the reader to the source code for the specific details
of this feature.

4.4.3 Subpixel rendering

MLAA algorithms work with a single sample per pixel. This translates into
subsampling, which makes it impossible to recover real subpixel features
(see Figure 4.10, no AA and MLAA). Having more samples per pixel al-
lows for a better reconstruction of the antialiased image. A naive extension
would involve using MLAA in conjunction with MSAA, applying it over
each subsample group separately and then averaging them together. How-
ever, using such a simple approach leads to blurry results (see Figure 4.10,
MSAA 4x with MLAA). This is due to MLAA and MSAA making different
assumptions about the coverage of the samples, so they cannot converge
even increasing the samples per pixel count:

• MLAA is designed to work on the silhouettes of objects and not with
thin lines and features, as found in distant objects with high-frequency
details (see Figure 4.10, MLAA). As it can be seen, not taking into ac-
count sharp geometric features leads to blurry results (with unnatural
glows). Thus, sharp geometric features detection (Subsection 4.4.2) is
critical when applying MLAA over subpixel features. Ultimately, this
allows for corners to be conservatively reconstructed, in order to allow
multi/supersampling to reconstruct their real shape (see Figure 4.10,
SMAA 1x; notice how non-silhouette features are ignored).

• Given that MLAA assumes the positions of all the samples to be at
the center of the pixel for the re-vectorization, this simply does not
work due to the under-/overestimation of the corresponding coverage
areas, producing gradients that do not match in the resolve step, which
translate into a blurry appearance of distant objects.

In addition to sharp features detection, our solution is to take into account
the offset position of each subsample inside the pixel, in order to calcu-
late properly their coverage areas. This way, when the different subsample
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Figure 4.11: Left, top: usual MSAA 2x pattern, with offsets at (−0.25, 0.25) and
(0.25,−0.25). Left, bottom: For combining multi/supersampling with MLAA
(SMAA S2x and T2x), we have to offset the area calculations so that the aver-
age between the subsamples on top and bottom (pink and orange) corresponds
to the color at the center of the pixel (blue). Middle: MLAA area calculations
are devised to estimate the re-vectorization at the center of the pixel (blue). For
SMAA S2x and T2x, these areas must be offset by −0.25 (pink) and +0.25
(orange). Right: Example of combining four subsamples (SMAA 4x) coming
from both spatial multisampling and temporal supersampling, using two jit-
tered results of SMAA S2x (purple and green).

groups are blended together, we obtain the average color at the center of the
pixel (see Figure 4.11, left and middle). Then, the only required change to
the pipeline is to use different precomputed areas textures for each subsam-
ple position. This approach is general enough to handle additional samples
coming from standard approaches like temporal supersampling and spa-
tial multisampling, so several configurations are possible. In particular, we
have found the following modes to be the most interesting from a perfor-
mance/quality perspective:

• SMAA 1x: includes accurate distance searches, local contrast adapta-
tion, sharp geometric features and diagonal pattern detection.

• SMAA S2x: includes all SMAA 1x features plus spatial multisampling.

• SMAA T2x: includes all SMAA 1x features plus temporal supersam-
pling.

• SMAA 4x: includes all SMAA 1x features plus spatial and temporal
multi/supersampling.

The SMAA 4x mode requires to temporally jitter the SMAA S2x mode, as
shown in Figure 4.11 (right). Figure 4.10 shows how SMAA 4x converges
better to MSAA 4x than simply combining MLAA with MSAA.

4.4.4 Temporal reprojection

While temporal supersampling allows to efficiently render subpixel features,
coupling it with a naive resolve approach like linear blending results in
very noticeable residual artifacts, commonly referred to as ghosting (see Fig-
ure 4.12, left).

A better solution is to re-project instead the previous frames’ subsam-
ples into the current frame [160, 207][106] (Section Anti-Aliasing Methods
in CryENGINE 3). However, disoccluded regions (occluded regions in the
previous frame now visible in the current frame) still suffer from residual
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Figure 4.12: Left: Using a naive resolve results in visible ghosting. Middle: Reprojection
mitigates these artifacts but does not completely remove them. Right: The addi-
tion of velocity weighting allows to completely remove ghosting.

artifacts (see Figure 4.12, middle). To minimize them, we weight the pre-
vious subsample by w, which depends on the difference in velocity with
respect to the current subsample:

w = 0.5 ·max(0, 1− K ·
√∣∣‖vc‖ −

∥∥vp
∥∥∣∣), (4.6)

where vc and vp are the velocity of current and previous frames, and K is a
constant that determines how much we attenuate previous frame according
to velocity differences (we use a value of 30 for all our examples). Then, the
final resolve is performed as follows:

c = (1.0− w) · cc + w · cp. (4.7)

where c is the final resolved color, cc the color in current frame, and cp
the color in the previous frame. Such a solution robustly handles disoc-
cluded regions but at the expense of no antialiasing on such regions (see
Figure 4.12, right). Nevertheless, the other components of our technique (ei-
ther MLAA or spatial multisampling) will usually antialias these regions,
effectively eliminating the problem.

A remaining problem of combining velocity weighting with a morpholog-
ical strategy is that morphological antialiasing is actually blending pixels
from both sides of the silhouette of an object at subpixel level. However,
the velocity map remains aliased and so velocity is not propagated to the
antialiased pixels, which leaves trails of blended pixels behind objects in
motion. The solution is to apply SMAA also over the velocity buffer, in or-
der to propagate velocities to the blended pixels. To efficiently perform this
step, we coarsely store the velocity module in the alpha channel of the color
buffer, so SMAA processes it for free.

4.5 results

Figure 4.13 shows a comparison of the subpixel modes of our technique
against MLAA and SSAA 16x. Figures 1 and 2 from the supplementary ma-
terial contain a more detailed comparison with a large number of selected
antialiasing methods. We refer the reader to the supplementary material for
additional examples both with still images and video. We recommend the
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digital version of the article for proper examination. Performance metrics
are measured on a NVIDIA GeForce GTX 470 using 1080p images. Typical
execution times for our technique are of 1.02 ms for SMAA 1x, 1.32 ms for
SMAA T2x, 2.04 ms for SMAA S2x and 2.34 ms for SMAA 4x. Subpixel
modes allow higher thresholds for edge detection (see better fallbacks below),
which lowers execution times without visible loss of image quality.

Local contrast: The first column of Figure 4.13 shows how a conventional
edge detection approach (MLAA) usually fails to properly detect patterns
in the presence of gradients. Note how our approach is able to detect and
correctly antialias these difficult zones for smooth gradients.

Diagonal pattern detection: Our algorithm accurately reconstructs a per-
fectly straight diagonal line for the streetlamp silhouette. Traditional post-
processing approaches generate aliasing artifacts, which can be clearly seen
when looking at the image at native pixel resolution and in motion.

Sharp geometric features: Our technique manages to preserve the sharp cor-
ners in the base of the aerials (specially the one of the satellite dish), whereas
most filter-based antialiasing techniques introduce some degree of round-
ness. This information is vital for multi/supersampling to reconstruct the
accurate shape of an object. Also text present on textures or the user inter-
face is better preserved.

Accurate searches: Blindly following edges without checking crossing edges
at each step causes pattern detection to fail in some scenarios, as shown in
the MLAA image. Our accurate search allows to enhance the antialiasing
quality without increasing the number of memory accesses.

Subpixel features: Post-processing techniques using 1x (final display resolu-
tion) color inputs are unable to reconstruct accurate subpixel features (which
accounts for all selected techniques with the exception of SSAA), producing
artifacts like spurious pixels, gaps in surfaces and distracting effects due to
subsampling. In contrast, our SMAA T2x mode is able to better preserve
the connectivity of the lines, resembling more faithfully the results obtained
with SSAA 16x. SMAA S2x and 4x modes also provide real subpixel fea-
tures at the expenses of multisampling, an approach with varying viability
depending on the complexity of the shaders.

Better fallbacks: Subpixel SMAA modes not only allow actual handling of
subpixel features, but also provide better fallbacks for additional robustness.
If the morphological component of SMAA leaves any edge unprocessed, the
MSAA component of S2x and 4x modes will back that up. If the temporal
reprojection present in T2x and 4x modes fails due to changes in the occlu-
sion of objects between frames, the morphological and MSAA components
will reduce aliasing. And the possible shading aliasing of S2x will be made
up by temporal SSAA and MLAA in SMAA 4x, making it the most robust
mode.

Discussion: Most of the features we have described solve limitations of
not just MLAA in particular, but of all post-processing antialiasing filters in
general. Performance-wise, in a forward rendering scenario SMAA 4x and
SMAA T2x are about 1.46x and 4.09x faster than MSAA 8x respectively (the
first taking into account the required multisampling 2x overhead). With re-
spect to memory consumption, the most demanding configuration requires
only 43% and 17% of the memory used by MSAA 8x, in a forward and
deferred context respectively. Note that we are able to perform better than
MSAA 8x, while delivering superior overall quality, both in gradients and
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shading, resembling more accurately the results of SSAA 16x. In the case
of a deferred engine, using MSAA 8x would incur an excessive drop of
performance given the massive bandwidth required [11], along with the re-
quirement of supersampling the edges at 8x.

In SMAA 1x and T2x modes, the execution times are within the same 1

ms ballpark as other solutions (see Table 1 in the supplementary material).
The S2x and 4x modes are obviously more expensive due to multisampling
(an average of 1.57 ms overhead for rendering at 2x, minus the resolve time),
but they are still on-par with other techniques that handle subpixel features
(SRAA and MSAA 8x), still yielding smoother results. Note that SRAA re-
quires additional 4x multisampled depth and/or normal maps and possibly
two geometry passes; while our approach multisamples color information
at 2x. In the case of a deferred renderer, our approach would require su-
persampling the edges; however, stencil-masked implementations allow for
efficient performance.

The overhead introduced by each of our solutions is either negligible
or very affordable. In particular, local contrast adaptation is 0.08 ms, the
sharp geometric features detection and accurate distance searches take less
than 0.01 ms; diagonals processing and temporal supersampling introduce
a small overhead of 0.12 ms and 0.3 ms respectively. Spatial multisampling
adds 1.02 ms for filtering the second sample, and an additional average of
1.57 ms to render the scene at 2x. The delta that SMAA 4x adds on top of
a 2x forward-rendered scene is as little as 2.09 ms, making it an attractive
option for any scenario that can afford such a small multisample count.

4.6 conclusions

We have presented a technique that tackles all the weak points remaining
in filter-based antialiasing solutions. We have shown for the first time how
to combine a filter-based antialiasing technique with standard multi/super-
sampling approaches and temporal reprojection. This novel combination of
improved MLAA strategies with spatial and temporal multi/supersampling
accounts for a very robust solution, combining the different synergies for
better fallbacks. SMAA 1x delivers very accurate gradients, temporal stabil-
ity and robustness, while introducing minimal overhead, making it an obvi-
ous choice for low-end configurations. SMAA T2x, for little additional cost,
offers a very attractive tradeoff for any kind of rendering engine (deferred
or forward), avoiding 2x multisampling while still reconstructing subpixel
detail. SMAA S2x and SMAA 4x are the best options regarding image qual-
ity. We believe that SMAA will finally enable deferred engines to match the
antialiasing quality of forward rendering engines.
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appendices

4.a supplementary material

In the movie included, "SMAA.mp4", we show the behavior of the features
of SMAA in motion. We compare against Jimenez’s MLAA [108], FXAA
3.11 [138] (preset 39 for the highest image quality), and CSAA 16xQ [211]
(in order to have as reference the MSAA hardware implementation with the
best image quality). We also show clips of SMAA integrated in the commer-
cial game engine "CryENGINE 3" from Crytek.

File "Battlefield3.psd" contains the full resolution images used in Figure 4.13,
4.14,4.15, 4.16 and 4.17. Each layer corresponds to a method for an easier and
flexible comparison between them. We recommend to check them with soft-
ware like Photoshop or GIMP, and swap between layers. Since MSAA was
not available for this scene, we compare against different SSAA modes. Note
that because Reshetov’s criteria for edge detection and pattern handling can
be enhanced [180], differences between his implementation and Jimenez’s
MLAA [108] can be appreciated (the same happens with AMD’s implemen-
tation [8]). For example, while Reshetov utilizes RGB information for find-
ing edges, Jimenez’s MLAA uses luminance values. And while Reshetov
takes into account the largest pattern a pixel belongs to, Jimenez’s MLAA
uses the shortest. However, Jimenez’s threshold was tuned to be similar to
Reshetov’s. AMD’s implementation cannot be customized, so it was applied
with default settings. Additional screenshot comparisons can be found at the
project website: http://iryoku.com/smaa/.

Figure 4.18 extends Figure 4.10 by comparing SMAA and MSAA modes
with the same number of samples per pixel. It can be seen how SMAA
gradually converges to the MSAA reference, in some cases surpassing the
quality of MSAA modes with higher samples count.

Figure 4.19 demonstrates how offset positions must be taken into account
for the area calculations when several samples per pixel are used. In this
case, we test FXAA applied pre-resolve over each subsample coming from
MSAA 4x in the same fashion we did with MLAA in Figure 4.10. As can
be seen, not taking into account the exact position of each sample leads to
blurry results that do not converge to the MSAA reference. Additionally,
we test FXAA and MLAA applied post-resolve (Figure 4.20) over a resolved
MSAA 2x input. The results show how suboptimal (even incorrect) it is to
apply these antialiasing filters over an already antialiased input.

http://iryoku.com/smaa/
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MLAA FXAA SMAA 4x MSAA 4x MSAA 8x

Figure 4.19: AA filters applied pre-resolve to each sample of a MSAA 4x input. Unlike
SMAA, FXAA and MLAA do not take into account the offset position of
the additional samples, thus leading to blurry results when compared against
the MSAA 4x and 8x references. FXAA 3.11 preset 39 (max. quality) and
Jimenez’s MLAA were used in this test.

MLAA FXAA MSAA 2x SMAA S2x MSAA 8x

Figure 4.20: AA filters applied post-resolve over a resolved MSAA 2x input. It can be seen
that when FXAA or MLAA are not fed with clean edges, they introduce ar-
tifacts that make the final image look not to converge to the MSAA reference.
SMAA S2x and MSAA 8x included as a higher quality reference. FXAA 3.11
preset 39 (max. quality) and Jimenez’s MLAA were used in this test.
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This Chapter explores the Nokia N900 platform as a versatile playground
for mobile computational photography. We present the implementation of a
simple yet practical application to acquire high quality tone mapped HDR
images, and a relatively straightforward white balance selection. This project
was a way to test the flexibility and productivity of the platform, which was
also the first commercially available realization of the FCam architecture [4].
Back when we worked on this, HDR imaging in mobile devices was some-
thing uncommon, given the limited support from the operating systems and
APIs. Nowadays, it is a standard feature in most of the camera apps, follow-
ing the same core concepts and pipeline presented here.

This work was presented at the Ibero-American Symposium in Computer
Graphics (SIAGC) 2011, and it was possible through a collaboration agree-
ment with Nokia Research Center.

J. I. Echevarria & D. Gutierrez
Mobile Computational Photography: Exposure Fusion on the N900

SIACG 2011

5.1 introduction

Computational photography is an exciting and hot new field of research.
In fact, forty percent of the 439 papers submitted to SIGGRAPH 2009 had
to do with 2D imaging techniques applied to photography or video [131].
The overall goal of the field is to overcome the limitations of traditional im-
age capture methods. By encoding the light reaching the sensor in smart
ways, it is possible to later decode it and extract information that would
have been lost otherwise. Thus, the information stored at the sensor is usu-
ally not the final image, but an encoded representation of the scene: a com-
putational process needs to be applied afterwards, before the final image
is ready for consumption. Examples of recent advances include extended
dynamic range, deblurring out-of-focus images, digital refocusing or light
field capture. These examples show how photography can be taken to the
next level, and how consumer cameras could benefit from them, offering
improved versions to the market.

A few years ago, the estimated number of digital cameras in the world
broke the one billion mark. This is mainly due to the ubiquitous presence of
mobile devices (mainly cell phones) with a built-in camera, which in turn
has triggered an increasing number of photoblogs and online picture col-
lections. Images can not only be taken anywhere, anytime and by anybody
now; they can also be almost instantaneously shared, duplicated and manip-
ulated. This poses the challenge of how to make computational techniques
useful for this kind of mobile devices, which are hampered by several ob-
vious limitations, both in terms of hardware (limited extensible lenses, re-
duced sensor size...) and software (less computational power).

One key limitation that was slowing progress down was the impossibility
to access all the camera features, sometimes controlled by firmware and out
of reach for the user (or programmer). It was only a few months ago that
a team led by Stanford and Nokia Research [4] released an API to make

79



80 mobile hdr imaging

cameras fully programmable, allowing researchers to come up with new,
customizable algorithms. The new open architecture is called the Franken-
camera, and the authors offered implementations for two platforms: the F2

(built from off-the-shelf components), and the Nokia N900 smartphones.
In this Chapter, we focus on programming the complete high dynamic

range imaging pipeline on the N900, from multi-bracketed capture of low
dynamic range images, to final exposure fusion. Our implementation pro-
duces better results in general than the HDR Capture app provided by Nokia
Beta Labs, reproducing more detail in over- and under-exposed areas. Fi-
nally, we leveraged the versatility of the platform to program a very simple
white-balancing algorithm that cycles through different settings, in order to
offer the user multiple depictions of the captured scene.

5.2 previous work

Mobile computational photography is a quite recent research field, so little
literature can be found yet. However, there are already good examples of
some of its goals and applications.

The Frankencamera project [4] is the seminal work for the field. The goal
was to provide the community a base hardware specification and an API for
C++, to make cameras fully programmable. Its architecture permits control
and synchronization of the sensor and the image processing pipeline. It also
offers support for external hardware like lenses, flashes, accelerometers, etc.
A more detailed overview of it can be found in Section 5.3. Along with the
technical specifications, they also showcase the platform with applications
like HDR viewfinding and capture, low-light viewfinding and capture, au-
tomated acquisition of extended-dynamic-range panoramas, foveal imaging,
gyroscope-based hand-shake detection and rephotography.

During the gestation of Frankencamera, other interesting experiments
were performed, mainly following the same approach as in this work: stu-
dents were given the platform, and assigned a small task [131]. For instance,
4D Light fields capture and display was made possible by waving a cell
phone around an object. The captured light field can then be displayed in
the same or another phone, computing its spatial location and orientation
based on a card with markers, and displaying the appropriate slice of the
light field on the viewfinder. A virtual rearview mirror with no blind spots
was also built by combining the video streams from five Nokia N95 phones
mounted facing backwards on the roof of a car.

Real-time viewfinder alignment [3] is another example of algorithms that
can be useful for a wide variety of mobile applications, from assistance in
panorama capture, to low-light photography and camera-based controller
input for games. Finally, focusing on external components apart from cam-
era sensors, smart use of flash can provide favorable light conditions to
take photos in and interesting illumination effects, as Adelsberger and col-
leagues demonstrated [5]. They presented a spatially adaptive photographic
flash, in which the intensity of illumination is modified on a per-pixel ba-
sis depending on the depth and reflectivity of features in the scene. Their
results show images that are better illuminated than the original scene, still
looking natural and plausible.

later work After the publication of this work, several new methods
for HDR imaging have been developed. Bracketed sequences of images are
prone to artifacts due to alignment and ghosting [189], which can be ame-
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liorated by using optical flow [223], patch-based reconstruction [182], or
taking into account the noise distribution of color values [75]. Single-shot
approaches have also appeared, all of them requiring specialized hardware
with varying degrees of complexity [195, 47, 85, 217]. More recently, Serrano
et al. [183] proposed the use of affordable masked sensors for convolutional
sparse coding to capture HDR images and videos.

However, while providing higher quality reconstructions, from a practi-
cal point of view they are all still far from meeting the requirements of
current mobile devices (comodity hardware, low computing power and pro-
cessing times), which nowadays feature HDR capabilities based on the sim-
ilar pipelines to the one presented here.

5.3 the frankencamera architecture

The Frankencamera [4] is both an open source architecture and an API for
cameras. It includes a base hardware specification, a Linux-based operating
system and a C++ API. It is intended to be flexible enough to implement
most of the techniques proposed in the computational photography liter-
ature and also explore new ones. So, it presents a comprehensive list of
features: the factor form and usability of consumer level cameras, touch-
screen for designing new user interfaces, easy to program for with standard
libraries, low-level access to principal components affecting the capture pro-
cess on a per-frame basis, access to raw sensor pixels, acceptable processing
power and compatibility and upgradability with standard and experimental
camera accessories, to name a few.

The abstract architecture encompasses the image sensor, the fixed-function
imaging pipeline that obtains and produces image data and optional photo-
graphic devices such as lens, flash, etc. Figure 5.1 shows a diagram explain-
ing how these elements interact. The main characteristic of the image sensor
is its stateless behavior, meaning that capture parameters must be set on a
per-frame basis. The imaging processor has two main roles: to generate use-
ful statistics like histograms and sharpness maps that are attached to each
generated frame, and to perform basic operations as demosaicking, white-
balancing, gamma correction, etc. Additional devices can be connected to
the platform in order to expand the information obtained by the sensor [4].

Two platforms were constructed following the enumerated principles: the
F2 camera, built from different off-the-shelf components; and the Nokia
N900 smartphone. In this work we focus on our available version, which
is the N900 smartphone.

5.3.1 The Nokia N900

The Nokia N900 is a smartphone provided with an ARM CPU running at
600 MHz, 256 MB of RAM plus 768 MB of virtual memory and a 5 MP cam-
era with Carl Zeiss Optics, all of them governed by a Maemo Linux-based
operating system, which makes the platform instantly compatible with tons
of standard libraries for Unix development. Figure 5.2 shows some views of
the unit.

To start developing for the N900, Nokia provides their Qt Creator SDK, an
IDE to easily connect with the phone, which integrates the compiler and li-
braries needed to quickly start developing programs for the platform. Some
additional setup needs to be performed on the device (firmware updates,
drivers...), before it is finally ready to make the most of the unit through the
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Figure 5.1: Overview of the Frankencamera architecture (adapted from [4]). The image sen-
sor produces captures according to the requested parameters by the application.
Optionally, external devices can be brought in during the exposure, altering the
capture and providing useful additional info. Captures are then transformed into
images by the imaging processor, which will be finally used by the application
processor for further tasks.

Figure 5.2: Front and rear views of the Nokia N900 smartphone.

FCam API. This API provides low level access to most of the parameters of
N900’s sensor, lens and flash. With the FCam installed, the N900 turns into
an affordable playground for computational photography.

5.4 hdr acquisition

Our main goal is to study the Nokia N900 smartphone along with the
FCam API as a platform for mobile computational photography. For this
project, we have focused on the full pipeline of automatic acquisition of
high-dynamic range (HDR) images, including multi-bracketing, exposure
fusion and tone mapping. The objective is to have the N900 performing all
the calculations without any user intervention, before presenting the final
image. Note that a similar example application is presented in the original
Frankencamera paper [4]. However, as we will see, we propose two different
scene-independent mechanisms to choose the three input exposures used to
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create the HDR image, which in general yield better results than Nokia’s
own implementation.

Given the low dynamic range sensor of the N900, we start from a multi-
exposure bracketed sequence of low dynamic range images. The usual next
step would be to create an intermediate physically-based HDR image [54]
which would be finally tone mapped [57, 179, 134]. However, keeping in
mind our goals and the N900 specifications, we opt for using a more com-
putational affordable but still high-quality solution: Exposure Fusion [150].

The original exposure fusion technique fuses a bracketed exposure se-
quence of low dynamic range images directly into a high quality low range
tone mapped image. By skipping the intermediate HDR assembly it simpli-
fies the acquisition process and camera calibration, still producing results
comparable to widely used tone mapping operators. First, it measures the
quality of each pixel from each image of the sequence according to their
contrast, saturation and well-exposedness. Then it makes a weighted sum of
all the images, using the corresponding weight maps, for obtaining the final
result. In order to avoid artifacts due to this blending, each color image is
transformed into a Laplacian Pyramid, and each weight map is transformed
into a Gaussian Pyramid. The weighted sum is performed at each level of the
pyramids, fusing them into a single one, which is finally collapsed to obtain
the final full resolution image. In order to maximize the ratio between qual-
ity and required computational power, we choose to implement a simplified
version of the algorithm, leveraging only well-exposedness information and
simply ignoring contrast and saturation. Again, we have found that this not
only streamlines the process, but it tends to yield better results than the
implementation by Nokia Labs.

5.5 implementation

First of all, we need to obtain the bracketed sequence of images with appro-
priate exposure values. In the original Frankencamera implementation, the
authors propose to adjust the exposure times based on an analysis of the
scene content, following the work by Kang et al [112].

In this work we aim to make this process scene-independent, while pro-
viding good results in most cases, so we follow a different route. We rely
on the fact that on the N900, we can set the exposure time to any length
we want (in microseconds) inside the supported range of the device. How-
ever, in digital photography it is more standard to work with EV (Exposure
Value) stops [99], which depend on exposure time and aperture size. Given
that the N900 aperture is fixed at F/2.8, we can obtain the range of N900

EVs by setting up exposure time values as in Table 5.1.

EV 4 6 8 10 12

Exposure time (s) 1/2 1/8 1/30 1/125 1/500

Table 5.1: Exposure times for the selected EV values that tipically maximize the N900’s
sensor range, given its F/2.8 aperture. N900’s minimum EV is 2 and maximum
is 16.

For capturing input images with better quality, we have also added auto
focus and white balance to the acquisition process. Source code for these
tasks can be found in the documentation examples of the FCam API.
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To create the final HDR image from the bracketed sequence, we use Expo-
sure Fusion [150], which can blend together an arbitrary number of images.
However, one important limitation of general HDR acquisition techniques
is the fact that both the camera and the scene need to be static, to avoid
ghosting artifacts. This suggests that finding the minimum number of neces-
sary low-dynamic images is desirable, to reduce the total acquisition time.
In our experiments, we found that nice results can be obtained with just
three images (in accordance to the proposed method described in [4]). In-
stead of letting an analysis of scene content fix the three exposure times, we
capture images with the five EVs that usually maximize the valid range of
the sensor (EVs 4, 6, 8, 10 and 12). We then select the three resulting images
containing the largest total number of useful pixel values, avoiding the two
images with more over- or under-exposed pixel values (note that these two
are not necessarily the lowest and highest EVs respectively; the discarded
images will be a function of the scene original lighting level).

As an alternative, we have implemented another fully automated option,
which makes use of the built-in metering functions inside the FCam API.
Along with the auto focus and white balance, we additionally use the auto
exposure to let the camera deduce what would the optimal exposure be, if
just a single LDR image were to be taken. Then, we move two EV stops back
and forth from that value (two steps proven to be the better choice in our
tests). This way we have to capture just three images, lowering capture times
and making HDR imaging obtention even more straightforward.

As outlined before, the original work proposes three different quality mea-
sures for each pixel: contrast, saturation and well-exposedness. As the authors
discuss in their paper, the most influential measure seems to be the last one,
while the other two add really subtle differences most of the times. So, due
to our limited processing power, we use only the well-exposedness measure,
which accounts for pixels that are not under nor overexposed, based on how
close to 0.5 is the intensity of the pixel using a Gauss curve:

Wij,k = ∏
c

exp

(
−

(Iijc,k − 0.5)2

2σ2

)
(5.1)

where Iijc,k corresponds to the intensity of the pixel ij for each channel c,
and σ equals to 0.2. This weights are calculated for each image k, and then
normalized so ∑k Ŵij,k = 1, with Ŵij,k being the normalized weights.

At this point, if we make a naive weighted sum of all the images, artifacts
will appear due to the different absolute intensities. So, before the blending,
a Laplacian pyramid is built for the color images, L {I}, and a Gaussian one
for the weight maps, G

{
Ŵ
}

. Now, the blending can performed at each level
l, for each channel c:

L {R}l
ijc = ∑

k
G
{

Ŵ
}l

ijc,k L {I}l
ijc,k (5.2)

The multi resolution approach provided by the Laplacian pyramid helps
smoothing sharp discontinuities produced by Equation 5.2 during the col-
lapse of L {R} in order to obtain the final full resolution image. For building
and collapsing the pyramids [37], we use the separable convolution kernel
f = [0.0625, 0.25, 0.375, 0.25, 0.0625] [150].
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Figure 5.3: Two examples of photos captured and processed by our method. The insets show
the bracketed sequence input. The complete pipeline takes less than 20s for a
resolution of 640x480. Left: auto exposure. Right: manual selection of three EVs
out of five.

5.6 results and discussion

All of our examples have been obtained by blending a bracketed sequence
of three images with different EVs. In order to make computing times ac-
ceptable for taking photos on the go, we capture the images at 640x480 reso-
lution. The three images are taken in 2s (5s for the sequence of five images),
weights calculation (Equation 5.1) take 5s, and pyramids are built, mixed
(Equation 5.2) and collapsed in 11s. Our pyramids have 8 levels, the maxi-
mum number of levels for the chosen resolution. As they have the biggest
impact on the processing time of our application, we have tested less levels
for sparing calculations. Unfortunately the results always show artifacts like
halos an color shifts.

Figure 5.3 shows two challenging examples (as the low dynamic range
insets show) where our application produces natural looking results. Fig-
ure 5.4 shows a comparison between two captures with our application
(fully automatic version) and the results obtained via Nokia Beta Labs HDR
Capture application [4], with automatic exposure enabled and forced to use
three photos as input. We can see how, although built with the same tools,
the flexibility this FCam API provides can make results vary significantly
depending on its use.

Limitations of our application come in form of slightly loss of contrast and
saturation due to the exclusive use of the well-exposedness quality measure,
as explained in Section 5.5. However, we could directly introduce them, with
a higher execution time for the complete process.

Just right now, there are already other commercial platforms on the mar-
ket that are capable of simulate this kind of image processing [14, 73]. The
difference is that those platforms just provide limited high-level access to
some of the camera functions, thus making the exploration of other tech-
niques difficult. In contrast, the N900 in conjunction with the FCam API
offers direct low-level access to parameters that provide the flexibility and
power needed for real mobile computational photography research.

There are virtually infinite applications that can be devised and imple-
mented on the N900. Another simple example application is shown in Fig-
ure 5.5, where the camera cycles through seven white balance settings and
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Figure 5.4: Results obtained with the N900 using our application (left) and HDR Capture
app (right) by Nokia Beta Labs. Insets show the images used to build the final
one. Examples taken with auto exposure in both applications. We can see how
our application produces a more detailed and natural look.

Figure 5.5: From left to right, up to down: sequence of images obtained by capturing the
same scene with white balance ranging from 2800K to 11000K. Bottom right
shows the selection image presented to the user in order to choose the preferred
color temperature.
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offers the user a combined mosaic of the results. The user simply chooses
the one that best depicts the captured scene, and the system keeps that one
and (optionally) deletes the rest. In this case, the exposure time has been set
at 50ms, with a fixed gain of 1.0. The white balance range goes from 2800K
to 11000K.

5.7 conclusions and future work

We have demonstrated how the Nokia N900, via the FCam API, can be used
as a powerful and flexible platform for mobile computational photography.
We have shown an efficient implementation of the full HDR pipeline, from
the automatic acquisition of a bracketed sequence of images to the final
fusion of the multiple exposures. We have obtained good results by just
modifying exposure times of the sensor and adding an efficient algorithm
for image processing. These results most of the times surpass Nokia’s own
implementation. Future work will include exploration of concepts and tech-
niques that make use of more components of the mobile phone like lenses,
flash, etc.





Part IV

3 D R E C O N S T R U C T I O N A N D S T Y L I Z AT I O N

In this last part we focus on obtaining 3D reconstructions in
two different contexts. First, we introduce a new fast and flex-
ible depth from defocus pipeline to obtain the depth map of a
scene from the camera point of view. We explain how to use com-
putational photography to control the capture process to obtain
detailed and accurate depth maps efficiently. Next, we introduce
a novel capture system to obtain stylized 3D reconstructions of
hairstyles for 3D fabrication. We describe coherent color and ge-
ometry stylization in a multi-view environment, allowing vary-
ing levels of abstraction that still retain the main features that
make each unique hairstyle recognizable.





6FA S T D E P T H F R O M D E F O C U S F R O M F O C A L S TA C K S

In this Chapter we present a new depth from defocus method. It is related
with the previous one in the sense that we use computational photography
to have full control over the capture process of the scene. This allows us
to make the assumption that a per pixel blur estimate (related with the
circle of confusion), while ambiguous for a single image, can behave in a
consistent way when applied over a focal stack of two or more images. Such
assumption allows us to fit a simple analytical description of the circle of
confusion to the different per pixel measures to obtain approximate depth
values up to a scale. Our results are comparable to previous work while
offering a faster and flexible pipeline.

This work was published in The Visual Computer, as the result of a 2-
months research visit of Stephen Bailey from Vanderbilt University (Ten-
nessee, USA), whom I supervised until its publication.

S. W. Bailey, J. I. Echevarria, B. Bodenheimer & D. Gutierrez
Fast depth from defocus from focal stacks

The Visual Computer, Vol.31 (12) 2014

6.1 introduction

Among single view depth cues, focus blur is one of the strongest, allowing
a human observer to instantly understand the order in which objects are
arranged along the z axis in a scene. Such cues have been extensively stud-
ied to estimate depth from single viewpoint monocular systems [64]. The
acquisition system is simple: from a fixed point of view several images are
taken, changing the focal distance consecutively for each shot. This set of
images is usually called a focal stack, and depending on the number of im-
ages in it, different approaches to estimate depth can be taken. When the
number of images is high, a shape from focus [192] approach aims to detect
the focal distance with maximal sharpness for each pixel, obtaining a robust
first estimate that can be further refined.

With a small number of images in the focal stack (as low as two), that
approach is not feasible. Shape from defocus [202] techniques use the infor-
mation contained in the blurred pixels based on the idea of the circle of
confusion, which relates the focal position of the lens and the distance from
a point to the camera with the resulting size of the out-of-focus blur circle
in an image.

Estimating the degree of blur for a pixel in a single image is difficult
and prone to ambiguities. However, we propose the hypothesis that those
ambiguities are possible to disambiguate by applying and analyzing the
evolution of the blur estimates for each single pixel through the whole focal
stack. This process allows us to fit an analytical description of the circle
of confusion to the different estimates, obtaining actual depth values up to
a scale for each pixel. Our results demonstrate that this hypothesis holds,
providing reconstructions comparable to those found in previous work, and
making the following contributions:

91
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Figure 6.1: Circle of confusion (CoC) diameter vs. focus position of the lens for points located
at different distances from the camera S2 (axis units in meters). Plots show
how points become focused (smaller CoC) as the focal distance gets closer to
their actual positions. It can be seen how different combinations of focal and
object distances produce intersecting CoC plots, so a CoC measure from a single
shot (orange dot) is not enough to disambiguate the actual position of the object
(potentially at S2 = 0.5 or S2 = 0.75 for the depicted case). Blue dots show
estimations from additional focus positions that, even without being perfectly
accurate, have the potential to be fitted to the CoC function that returns the
actual object position S2 = 0.75 (shown by the green line) when its output is
zero.

• We show that single image blur estimates can behave in a robust way
when applied over a focal stack, with the potential to estimate accurate
depth values up to a scale.

• A fast and flexible method, with components that can be easily im-
proved independently as respective state of the art advances.

• A novel normalized convolution scheme with an edge-preserving ker-
nel to remove noise from the blur estimates.

• A novel global error metric that allows the comparison of depth maps
with similar global shapes but local misalignments of features.

6.2 related work

There is a vast amount of literature on the topic of estimating depth and
shape based on monocular focus cues; we comment on the main approaches
and how they relate to ours. First we discuss active methods that make
use of additional hardware or setups to control the defocus blur. Next we
discuss passive methods that depend on whether the information comes
from focused or defocused areas.

active methods Coded apertures that modify the blur patterns cap-
tured by the sensor for a better processing have been used [130, 145]. Moreno-
Noguer et al. [152] project a dotted pattern over the scene during capture. In
the depth from diffusion approach [220], an optical diffuser is placed near
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the object being photographed. Lin et al. [135] combine a single-shot focal
sweep and coded sensor readouts to recover full resolution depth and all-
in-focus images. Our approach does not need any additional or specialized
hardware, so it can be used with regular off-the-shelf cameras or mobile
devices like smartphones and tablets.

passive methods : shape from focus These methods start comput-
ing a focus measure [171] for each pixel of each image in the focal stack.
A rough depth map can then be easily built assigning to each of its pixels
the position in the focal stack for which the focus measure of that pixel is
maximal. As the resolution of the resulting depth map in the z-axis depends
critically on the number of images in the focal stack, this approach usually
employs a large number of them (several tens). Improved results have been
obtained when focus measures are filtered [159, 141, 184] or smoother sur-
faces fitted to the previously estimated depth map [192]. Our method uses
fewer images and the resolution in the z-axis is independent on the number
of them.

passive methods : shape from defocus In this approach, the goal
is to estimate the blur radius for each pixel, which varies according to its
distance from the camera and focus plane. Since the focus position dur-
ing capture is usually known, a depth map can be recovered [168]. This
approach significantly reduces the number of images needed for the focal
stack, ranging from a single image to a few of them.

Approaches using only a single image [16, 156, 221, 40, 222, 39] make
use of complex focus measures and filters to obtain good results in many
scenarios. However, they are not able to disambiguate cases where the blur
cannot be known to come from the object being in front of or behind the
focus plane (see Figure 6.1). Cao et al. [41] solves this ambiguity through
user input.

Using two or more images, Watanabe and Nayar [202] proposed an effi-
cient set of broadband rational operators invariant to texture that produces
accurate, dense depth maps. However, those sets of filters are not easy to cus-
tomize. Favaro et al. [65] model defocus blur as a diffusion process based
on the heat equation, then they reconstruct the depth map of the scene
estimating the forward diffusion needed to go from a focused pixel to its
blurred version. Our algorithm is not based on the heat diffusion model but
on heuristics that are faster to compute. Favaro [63] imposes constraints for
the reconstructed surfaces based on the similarity of their colors. The results
presented there show great details, but as acknowledged by the author, color
cannot be considered a robust feature to determine surface boundaries. Li
et al. [133] use shading information to refine depth from defocus results in
an iterative method.

Hasinoff and Kutulakos [81] proposed a method that uses variable aper-
ture sizes along with focal distances for detailed results. However, such an
approach needs the aperture size to be controllable and they use hundreds
of images for each depth map.

Our work follows a shape from defocus approach with a reduced focal
stack of at least two images. We use simple but robust per-pixel blur es-
timates, coupled with high quality image filtering to remove noise and in-
crease robustness. We analyze the evolution of the blur at each pixel through
the focal stack by fitting it to an analytical model for the blur size, which
returns the distance of the object from the camera up to a scale.
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Figure 6.2: Diagram showing image formation on the sensor when points are located on the
focal plane (green), or out of it (red and pink).

6.3 background

The circle of confusion is the resulting blur circle captured by the camera
when light rays from a point source out of the focal plane pass through a
lens with a finite aperture [84]. The diameter c of this circle depends on the
aperture size A, focal length f , the focal distance S1, and the distance S2
between the point source and the lens (see Figure 6.2). Keeping the aperture
size, focal length, and distance between the lens and the point source con-
stant, the diameter of the circle of confusion can be controlled by varying
the focal position using the following relation when the focal position S1 is
finite:

c = c(S1) = A
|S2 − S1|

S2

f
S1 − f

(6.1)

and when the focal position S1 is infinite,

c =
f A
S2

. (6.2)

As shown in Figure 6.1, the relation between the focal position S1 and
c is non-linear. The behavior of Equation 6.1 is not symmetric around the
distance of the focal plane (S2), and approaches infinity for objects in front
of the focal plane (making them disappear from the captured image) and
asymptotically approaches the value given by Equation 6.2 for objects be-
hind it.

Our goal is to obtain the distance of each object S2 for each pixel in the
image. But, as seen from Equation 6.1 and Figure 6.1, even knowing all
parameters A, S1, c and f , there is ambiguity when recovering the position
of S2 with respect to the focus position S1. So, instead of just using one
estimate for c, our approach is based on the assumption that additional
n ≥ 2 estimates of c, ci, 1 ≤ i ≤ n, for different known focal distances S1,
Si

1, will allow us to determine the single S2 value that makes Equation 6.1
optimally approximate all the measures obtained.
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6.4 algorithm

Our shape from defocus algorithm starts with a series of images that capture
the same stationary scene but vary the focal position of the lens, a focal
stack. For each image in the focal stack, we compute an estimate of the
amount of blur using a two-step process. First, a focus measure is applied to
each pixel of each image in the stack. This procedure generates reliable blur
estimates near edges. We next determine which blur estimates are unreliable
or invalid, and extrapolate them based on the existing irregularly sampled
estimates in each image. For this step, we propose a novel combination of
normalized convolution [117] with an edge-preserving filter for its kernel.

With blur estimates for each pixel in each image, we proceed to estimate
per-pixel depth values fitting our blur estimates to the analytical function
for the circle of confusion. We construct a least squares error minimization
problem to fit the estimates to that function. Minimizing this problem gives
the optimal depth for a point in the scene.

6.4.1 Focal Stack

The input to our algorithm is a set of n images where n ≥ 2. In our tests
we use 2 or 3 images. Each image captures the same stationary scene from
the same viewpoint. The only difference between each image is the focal
distance of the lens when the image is captured. Thus, each point in the
object space will have varying circles of confusion in each image of the
focal stack. Additionally, the focal position Si

1 of the lens when the image
is captured is saved, where i is the ith image in the focal stack. While this
information can be obtained easily from different sources (EXIF data, APIs
to access digital cameras or physical dials on the lenses), in its absence a
rough estimate of the focal distances based on the location of the objects in
focus may suffice

In this work we assume that the images are perfectly registered to avoid
misalignments due to the magnification that occurs when the focal plane
changes. This can be achieved using telecentric optics [202] or image pro-
cessing algorithms [81, 63, 197].

6.4.2 Local Blur Estimation

Our first step is to apply a focus measure that will give a rough estimate of
the defocus blur for each pixel and thus an estimation of its circle of confu-
sion. Several different measures have been proposed previously [171]. In our
case, Hu and De Haan’s [89] provided enough robustness and consistency
to track the evolution of blur over the focal stack.

Given user defined parameters σa and σb, representing the blur radii of
two Gaussian functions with σa < σb, the local blur estimation algorithm is
applied to the focal stack. The algorithm estimates a radius of the Gaussian
blur kernel σ for each signal in each image in the focal stack. Note that σa
and σb are chosen a priori and for the algorithm to work well σa, σb � σ.
We empirically chose σa = 4 and σb = 7 for images of size 720x480. For the
one-dimensional case, the radius of the Gaussian blur kernel, σ, is estimated
as follows:

σ(x) ≈ σa · σb
(σb − σa) · rmax(x) + σb

(6.3)
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with

rmax(x) =
I(x)− Ia(x)
Ia(x)− Ib(x)

(6.4)

where x is the offset into the image, and I(x) is the input image; Ia(x) and
Ib(x) are Ib(x) are blurred versions of I(x) using the blur kernels σa and σb,
respectively. For 2-D images, isotropic 2D Gaussian kernels are used. We
work with luminance values from the captured RGB images.

Because this algorithm depends on the presence of edges (discontinuities
in the luminance), regions of the image far from edges or significant changes
in signal intensities need to be estimated by other means. Consider a region
of the image that is sufficiently far from an edge; for example, around 3σa
from an edge, the intensities of the original image I(x) and the blurred im-
ages Ia(x) and Ib(x) will be close to each other because the intensities in
a neighborhood around x in the original image I are similar. This similar-
ity causes the difference ratio maximum rmax(x) from Equation 6.4 to go
to zero if the numerator approaches zero or to infinity if the denominator
approaches to zero. If rmax(x) approaches zero, then from Equation 6.3 the
estimated blur radius approaches σa, and if rmax(x) approaches infinity, then
the estimate approaches zero. Figure 6.3 shows an example of the blur maps
obtained with this method.

It is important to note that similar to other single image blur measures,
the method in [89] is not able to disambiguate an out-of-focus edge from a
blurred texture. However, since we are using several images taken with dif-
ferent focus settings, our algorithm will seamlessly deal with their relative
changes in blur during the optimization step (Section 6.4.4).

6.4.3 Noise Filtering and Data Interpolation

Because of the assumption that σa, σb � σ, the above algorithm does not per-
form well in regions of the image far from edges where σ → σa. Moreover,
for constructing our depth map, we assume that discontinuities in depth
correspond to discontinuities in the edge signals of an image, but the con-
verse does not hold since they can come from discontinuities due to changes
in texture, lighting, etc. The local blur estimation algorithm performs better
over such discontinuities, but leaves uniform regions with less accurate es-
timations. Thus, we need a way of reducing noise by interpolating data to
those areas. A straightforward approach to filter noise is to process pixels
along with their neighbors over a small window. However, choosing the
right window size is a problem on its own [142, 126] as large windows can
remove detail in the final results. So, we propose a novel combination of
normalized convolution [117] with an edge-preserving filter for its kernel.

We use normalized convolution since this method is well-suited for inter-
polating irregularly sampled data. Normalized convolution works by sep-
arating the data and the operator into a signal part H(x) and a certainty
part C(x). Missing data is given a certainty value of 0, and trusted data a
value of 1. Using H(x) and C(x) along with filter kernel g(x) to interpolate,
normalized convolution is applied as follows:

H̄(x) =
H(x) ∗ g(x)
C(x) ∗ g(x)

(6.5)

where H̄(x) is the resulting data with interpolated values for the missing
data.
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As the first step, we categorize good blur radius estimates and poor ones,
which we then mark as missing data. Poor estimates will correspond to
estimates for discrete signals in the input image that are sufficiently far
from detectable edges, and can be identified by their values being close
to σa. Thus, we define good estimates as any blur estimate σ contained in
the interval [0, σa − δ) and invalid estimates are contained in the interval
[σa − δ, σa] where δ > 0. In our experiments, we found that a value of 0.15σa
worked well for δ. The confidence values for normalized convolution are
then generated as follows:

C(x) =

{
1 if σ(x) < σa − δ

0 otherwise
(6.6)

where σ(x) is from Equation 6.3. Figure 6.3 shows the confidence maps for
the sparse blur map generated from the prior stage of pipeline. Similarly, the
discrete input signal for normalized convolution is generated as follows:

H(x) =

{
σ(x) if σ(x) < σa − δ

0 otherwise.
(6.7)

With the resulting confidence values and input data, we only need to
select a filter kernel g(x) to use with normalized convolution.

Since we have estimates for discrete signals near edges in the image and
need to interpolate signals far from edges, we want to use an edge preserv-
ing filter. A filter with this property ensures that discontinuities between
estimates that are caused by discontinuities in intensity in the original input
signal are preserved, while spatially close regions with similar intensities
will be interpolated based on valid nearby estimates that share similar inten-
sities in the original image from the focal stack. There are several filters that
have this property including the joint bilateral filter [172] and the guided
image filter [82]. We use the guided image filter because of its efficiency and
proven effectiveness [22]. In the absence of better guides, we use the orig-
inal color images from the focal stack as the guides for the corresponding
blur maps. With this filter as the kernel, we apply normalized convolution
as described in Equation 6.5. We use this technique to generate refined blur
estimates for each image in the focal stack. The size of the spatial kernel for
the guided image filter needs to be large enough to create an estimation of
the Gaussian blur radius for every discrete signal in the image. Therefore,
sparser maps require larger spatial kernels. The guided image filter has two
parameters, the radius of the window and a value ε related to edge and
detail preservation. Experimentally, we found that a window radius of be-
tween 15 and 30, and ε of 7.5e-3 works well for our focal stacks. The end
result is a set of n maps, H̄i(x), that estimate the radius of the Gaussian
blur kernel in image i of the focal stack. Since the circle of confusion can be
modeled as a Gaussian blur, these maps can be used to estimate the diame-
ter of the circle of confusion for each pixel in each image of the focal stack.
Figure 6.3 shows the output of the normalized convolution for each image
in the focal stack.

6.4.4 Fit to the Analytical Circle of Confusion Function

Through the previous steps, each image Ii in the focal stack of size n is
accompanied by the focal distance of the shot Si

1. We can then estimate



98 fast depth from defocus from focal stacks

Figure 6.3: From top to bottom, the different steps of our algorithm: Input focal stack con-
sisting of three images (left to right) from a synthetic dataset (more details in
Subsection 6.5.1). Initial blur estimations. Confidence maps from Equation 6.6.
Masked blur maps after Equation 6.7. Refined blur maps after the application of
normalized convolution. It can be seen how we are able to produce smooth and
consistent blur maps to be used as the input for our fitting step. Final recon-
struction for this example is shown in Section 6.5

actual depth information. We first show how to do this for one pixel and its
n circle of confusion estimations.

Given Equation 6.1 for the circle of confusion, every variable is currently
known or estimated except for S2, the unknown depth. Solving for S2 using
only one estimate for the circle of confusion is not possible because of the
ambiguity shown in Figure 6.1; otherwise, there will be two possible values
for S2, as shown in the following equation:

S2 =
S1

± c(S1− f )
A f − 1

. (6.8)

To find a unique S2, a system of non-linear equations is constructed where
we attempt to solve for S2 that satisfies all of the equations. Each equation
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solves for depth given the circle of confusion estimates ci for one image of
the focal stack:

S2 =
Si

1

± ci(Si
1− f )

A f − 1
for all i = 1, .., n (6.9)

Since these equations are not, in almost all cases, satisfied simultaneously,
we use a least squares method to minimize the error where we want to
reduce the error in measured value for the circle of confusion. Thus, we
obtain the following function to minimize:

n

∑
i=1

(
ci − A

|S2 − Si
1|

S2

f
S1 − f

)2

(6.10)

This equation leads to a single-variable non-linear function whose mini-
mizer is the best depth estimation for the given blur estimates. The resulting
optimization problem is tractable using a variety of methods [176]. In our
implementation we use quadratic interpolation with the number of itera-
tions fixed at four. This single variable optimization problem can then be
extended to estimate depth for each discrete pixel in the image. The result
is a depth map that can be expressed as:

D(x) = min

 n

∑
i=1

(
ci(x)− A

|S2 − Si
1|

S2

f
S1 − f

)2
 for S2

To make our optimization run quickly, we assume bounds on the range
of values that S2 can have for each pixel. In particular, we assume that the
depth of at every point in the scene lies between the nearest focal length and
the farthest focal length of all the images in the focal stack [202]. Note that
this assumption is only necessary for fast optimization; methods that have
an unbounded range exist [176].

However, because of this assumption every blur estimate needs to be
scaled to ensure there are local minimizers of Equation 6.10 that lie some-
where within the assumed range of depth. As shown in Appendix 6.A, to
ensure that there is a minimizer on the interval between the closest and
farthest focal distances, an upper bound on the blur estimates ci must be
imposed. This bound is given by

A f

Sj
1 − f

= r ≥ 2c. (6.11)

Furthermore, we know that all blur estimates generated from normalized
convolution are between 0 and σa. Thus some positive scalar s can be defined
as follows:

s ≤ A f
2σa(Sn

1 − f )
(6.12)

where Sn
1 is the largest focal distance in the stack. Multiplying each blur

estimate by s ensures that Equation 6.11 is satisfied for all blur estimates,
which implies that under normal conditions, there will be at least one local
minimizer for Equation 6.10 between the nearest and farthest focal distances.
Figure 6.5 shows the final depth map for the focal stack from Figure 6.3.
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Figure 6.4: 3D Visualizations of the original depth maps (left) and our estimated depth maps
(right). As can be seen, the global shape of the object is reconstructed in a recog-
nizable way in all cases.

6.5 results

In the following, we test our algorithm with synthetic scenes. Next, we run
it over real scenes from previous work to allow visual comparisons between
methods. Our algorithm can run in linear time. The C++ implementation
of our algorithm takes less than 10s to generate the final depth map for
640× 480 inputs on an Intel Core i7 2620M @ 2.7GHz.

6.5.1 Synthetic Scenes

To validate the accuracy of our algorithm, we generated synthetic focal
stacks similar to those in prior work [65, 141]. In particular, we used the
slope, sinusoidal and wave objects shown in Figure 6.4.

To create the synthetic focal stacks, we start from an in-focus image and
its depth map. Using Equation 6.1 we are able to estimate the amount of
blur c to be applied to each pixel of the image. We assume the depth map
ranges between 0.45m and 0.7m, and the lens parameters are f = 30mm and
f-number N = 2.5. We then obtain three different images for each focal stack,
with focal distances set to S1

1 = 0.4m, S2
1 = 0.6m and S3

1 = 1.0m (the resulting
focal stack for the wave example can be found in Figure 6.3).

Figure 6.4 shows the results of running our algorithms over these focal
stacks, compared against the ground truth data. As can be seen, the global
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Figure 6.5: Comparison of original depth maps (on the left) with our estimations (middle
left). Local error from the curve fitting step (middle right) where the errors
ranged between a magnitude of 10−9 and 10−8 (black and white respectively
for better visualization), and our global accuracy metric (right). In this last case
a value of one means a perfect match. Our local and global accuracy metrics
clearly show that while local errors may occur, the reconstructed global shape of
the object has a good resemblance with the ground truth one, as appreciated also
in Figure 6.4.

Figure 6.6: Example of estimating the global accuracy of a pixel (marked in red) for the wave
object from Figure 6.4. Pixels with depth values greater or equal to it are marked
in white, while the rest keep unmarked (black). This is done for both the ground
truth depth map (left) and the estimated depth map (right). A similarity measure
for that pixel is then computed by marking with one all the pixels with matching
values and dividing that number by the total size of the map.

shape of the object is properly captured, but there are also noticeable local
errors at different scales. Standard error metrics are thus difficult to apply
because of their aggregation of these local error measures. Thus we pro-
pose a novel error metric that favors the global shape comparing relativity
between original and estimated depth values.

6.5.2 Global and Local Error Metrics

We start choosing a reference pixel in the original depth map and mark
(with 1) all pixels in the map that are greater than or equal to the depth
value at that pixel. All other pixels remain unmarked (with 0). We repeat
this process for the estimated depth map using the same reference pixel, as
seen in Figure 6.6.We then compute a similarity map by comparing per-pixel
values in both previous maps, obtaining final values of 1 only for matching
pixel values. An accuracy value for the reference pixel is computed by taking
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the sum of all values in the similarity map and dividing it by the total
number of pixels of the map. So values closer to 1 are more accurate than
the ones closer to 0. This process is repeated for each pixel in the depth
maps to obtain accuracy maps as seen on the right in Figure 6.5.

In addition to our global accuracy metric, we can also obtain per-pixel
error maps from the optimization step. Such maps show the squared error
obtained when fitting Equation 6.1 to the estimated blur values for one pixel
through the focal stack, to obtain its final depth value. Examples of these
maps can be found in Figure 6.5 (middle right).

Looking at the blur estimates used for the optimization reveals that small
blurs were over-estimated while large blurs were under-estimated. These
inaccuracies caused the algorithm to compress the depth estimates such
that the range of estimated depths is smaller than the actual range. However,
since blur estimate errors are consistent across the entire image, the depth
estimates are still accurate relative to each other, and so the global shape
captures the main features of the ground truth.

6.5.3 Real Scenes

We also tested our algorithm with real scenes. We again used examples
from prior work [202, 65, 63] to allow direct visual comparisons with our
results. In these examples, the number of images for each focal stack is two.
As can be seen in Figure 6.7, we obtain plausible reconstructions comparing
favorably with both Watanabe and Nayar [202] and Favaro [65], even though
our depth maps look blurrier due to the filtering explained in Subsection
6.4.3. Our work presents an interesting tradeoff between accuracy and speed,
as it is significantly faster than the 10 minutes reported in [63]

Additional examples from real scenes can be found in Figure 6.8. The
first two rows show plausible reconstructions for different stuffed toys. The
bottom row shows a difficult case for our algorithm. Given the asymptotic
behavior of the circle of confusion function (Figure 6.1), objects from a cer-
tain distance show small differences in blur. Since our blur estimations are
not in real scale, this translates into either unrelated distant points recovered
into the same background plane, or inaccurate and different depth values
for neighboring pixels. This happens usually in outdoor scenes, so our algo-
rithm is better suited for close-range scenes.

6.6 conclusions

We have presented an algorithm that estimates depth from a focal stack of
images. This algorithm uses a least-squares optimization to obtain depth
values from a set of pixel measurements up to a scale. We have shown that
it compares well with prior work but runs significantly faster.

As mentioned previously, our algorithm possesses some limitations. The
focus measure we employed [89] has difficulties in estimating large blur
radii, producing an undesired flattening of the estimated depth map. It
would be interesting to test other measures included in Pertuz et al. [171]
to see their effect. In Figure 6.9, we show that our algorithm can robustly
handle small inaccuracies in focal distances, and it would be interesting to
analyze the effect of these inaccuracies in future work. Also, the guided
filter [82] used as the kernel for the normalized convolution shows texture-
copy artifacts sometimes given the suboptimal use of the color images as the
guides for the filter. However, it is not clear what could be a good guide for
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Figure 6.7: Close focus (left), Far focus (middle left), our estimated depth map (middle right),
and its corresponding 3D visualization (right). Colors and shading added for a
better visualization.

Figure 6.8: Close focus (left), Far focus (middle left), our estimated depth map (middle right),
and its corresponding 3D visualization (right). Colors and shading added for a
better visualization. The estimated depth map for the top scene used parameters
f=24mm, f/8, close focal distance of 0.35m, and far focal distance of 0.75m. The
estimated depth map for the middle scene used parameters f=26mm, f/8, close
focal distance of 0.4m, and far focal distance of 0.8m. The estimated depth map
for the bottom scene used parameters f=18mm, f/8, close focal distance of 0.5m,
and far focal distance of 15m.

this tasks, with possible choices like intrinsic images [218] being ill-posed
problems that may introduce their own artifacts. Finally, while our current
optimization step is already using interpolated blur data that took into ac-
count the confidence of each sample, it could be interesting to combine those
confidence values in order to place additional constraints during this step.

We believe our method presents an interesting tradeoff between accuracy
and speed when compared with previous works. The modularity of our
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Figure 6.9: Comparison between accurate and estimated focus positions. Top: Input images
captured with focal distances of 0.4m (left), and 0.8m (right). Bottom left: esti-
mated depth map using those focal distances. Bottom right: results using esti-
mates of 0.3m and 1.0m respectively. As can be seen, our algorithm can handle
small inaccuracies robustly.

approach makes it straightforward to study alternatives to the chosen algo-
rithms at each step, so it can greatly benefit from separate advances that
occur in the future.
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appendices

6.a least squares function analysis

In this appendix we show how to cast the depth estimation problem as an
optimization problem. Consider the optimization problem for a single signal
with n blur estimates, and each ci is captured with a focal position Si

1. Let

gi(x) =

(
ci − A

|x− Si
1|

x
f

S1 − f

)2

(6.13)

The function gi(x) has a critical point at Si
1 because the derivative at Si

1 of
gi(x) does not exist due to the term |x− Si

1| in the function. Furthermore, if
the blur estimate ci is less than the circle of confusion size

c =
f 2

N(Si
1 − f )

(6.14)

for a depth x at infinity, then the function will have two local minimizers, as
shown in Figure 6.10, at the points g(x) = 0 where

x =
Si

1 A f
A f − ci(Si

1 − f )
(6.15)

and

x =
Si

1 A f
A f + ci(Si

1 − f )
. (6.16)

Figure 6.10: Plot of gi(x) showing a local maximizer at the point Si
1 = 0.75m and two local

minimizers on either size of the maximizer.

However, if ci = 0 then the function will have one minimizer at x = Si
1,

and similarly if x is larger than the circle of confusion size for a depth
at infinity, then gi(x) will have only one minimizer somewhere within the
interval (0, Si

1).
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For the purposes of optimization, we assume that

0 < ci <
f 2

N(Si
1 − f )

. (6.17)

This assumption introduces the restriction that the depth of a signal in the
focal stack cannot be too close to the lens.

A further restriction for the depth x is that S1
1 < x < Sn

1 where 0 < S1
1 <

S2
1 < ... < Sn

1 . This restriction limits the depth of any point in the focal stack
to be between the closest focal position of the lens and the farthest focal
position.

With these assumptions, we can now look at the least squares optimiza-
tion equation

z(x) =
n

∑
i=1

gi(x). (6.18)

Because each g′i(x) is undefined at x = Si
1 for all i = 1, ..., n, the function z(x)

has critical points at S1
1, ..., Sn

1 . Furthermore, z(x) is continuous everywhere
else for x > 0 because the functions gi(x) are continuous where x > 0 and
x 6= Si

1. Because gi(x) has a local maximizer at Si
1, this point may be a local

maximizer for z(x). This gives us n− 1 intervals on which z(x) is continuous
for S1

1 < x < Sn
1 , and these intervals are (S1

1, S2
1), (S2

1, S3
1), ..., (Sn−1

1 , Sn
1 ). These

open intervals may or may not contain a local minimizer, and if an interval
does contain a local minimizer, it might be the global minimizer of z(x) on
the interval (S1

1, Sn
1 ).

Under certain conditions, z(x) is convex within the interval (S1
1, Si+1

1 ) for
all i = 1, ..., n− 1. Note that gj(x) is convex within the open interval for all
j = 1, ..., n. To see this, assume that Equation 6.11 holds and that the focus
position of the lens is always greater than the focal length f of the lens so
that r > 0. We also assume that

Sn
1 ≤

3rSj
1

2cj
. (6.19)

If x < Sj
1 then the absolute value term |x− Sj

1| in gi(x) becomes −x + Sj
1.

From this, we know that

rSj
1 ≥ 2cjx (6.20)

from Relation 6.11 and because x and Sj
1 are positive. Rearranging the rela-

tion, we get

−2cjS
j
1 + rSj

1 ≥ 0. (6.21)

Since x < Sj
1, 2rx < 2rSj

1 and 2rSj
1 − 2rx > 0. Therefore,

(6.22)

−2cjx + 3rSj
1 − 2rx =

−2cjx + rSj
1 + (2rSj

1 − 2rx)

≥ 2rSj
1 − 2rx

> 0
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Furthermore, since x > 0, r > 0, and Sj
1 > 0, we know that

2rSj
1

x4 > 0. (6.23)

Therefore, we know that

g′′j (x) =
2rSj

1(−2cjx + 3rSj
1 − 2rx)

x4 > 0 (6.24)

for 0 < x < Sj
1.

If x > Sj
1 then

x < Sn
1 ≤

3rSj
1

2cj
(6.25)

from Equation 6.19 and that x < Sn
1 . Since cj > 0, we can multiply the

relation by 2cj to get

3rSj
1 > 2cjx. (6.26)

From relation (6.11), we can say that

2r− 2cj ≥ 4cj − 2cj = 2cj. (6.27)

Therefore,

3rSj
1 > x(2r− 2cj) ≥ x(2cj). (6.28)

Distributing x in the above relation, we get

3rSj
1 > 2rx− 2cjx (6.29)

Rearranging the terms, we get

2cjx + 3rSj
1 − 2rx > 0. (6.30)

Multiplying by the left hand side of (6.23), we get

g′′j (x) =
2rSj

1(2cjx + 3rSj
1 − 2rx)

x4 > 0 (6.31)

for Sj
1 < x < Sn

1 .
As shown above, the second derivative of gj(x) is always positive on the

interval (S1
1, Sn

1 ) except at the point Sj
1 for all j = 1, ..., n. Since z(x) is the

summation of all gj(x), z(x) is also convex on the interval except at the
points S1

1, S2
1, ..., Sn

1 . Therefore, z(x) is convex in the intervals (Si
1, Si+1

1 ) for all
i = 1, 2, ..., n− 1. As a consequence, if Si

1, and Si+1
1 are local maximizers, then

there is some local minimizer within the open interval (S1
1, Sn

1 ). From this, a
global minimizer can be identified which gives the best depth estimate for
the given signal on the interval (S1

1, Sn
1 ). Figure 6.11 shows an example of

z(x) with the local maximizers and minimizers.
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Figure 6.11: Plot of z(x) shown in show dark blue with g1(x), g2(x), and g3(x) shown in
red, light blue, and green respectively. This shows z(x) with local maximizers at
S1

1 = 0.75, S2
1 = 1, and S3

1 = 1.5 and local minimizers in the intervals (S1
1 , S2

1)
and (S2

1 , S3
1).



7C A P T U R I N G A N D S T Y L I Z I N G H A I R F O R 3 D
FA B R I C AT I O N

Recently, we have seen a growing trend in the design and fabrication of
personalized figurines, created by scanning real people and then physically
reproducing miniature statues with 3D printers. This is currently a hot topic
both in academia and industry, and the printed figurines are gaining more
and more realism, especially with state-of-the-art facial scanning technol-
ogy improving. However, current systems all contain the same limitation
– no previous method is able to suitably capture personalized hair-styles
for physical reproduction. Typically, the subject’s hair is approximated very
coarsely or replaced completely with a template model.

In this Chapter we present the first method for stylized hair capture, a
technique to reconstruct an individual’s actual hair-style in a manner suit-
able for physical reproduction. Inspired by centuries-old artistic sculptures,
our method generates hair as a closed-manifold surface, yet contains the
structural and color elements stylized in a way that captures the defining
characteristics of the hair-style. The key to our approach is a novel multi-
view stylization algorithm, which extends feature-preserving color filtering
from 2D images to irregular manifolds in 3D, and introduces abstract ge-
ometric details that are coherent with the color stylization. The proposed
technique fits naturally in traditional pipelines for figurine reproduction,
and we demonstrate the robustness and versatility of our approach by cap-
turing several subjects with widely varying hair-styles.

This work is published in ACM Transactions on Graphics and presented at
SIGGRAPH 2014. It was developed during a four-months internship at the
Capture & Effects Group at Disney Research Zurich (Switzerland), and a US
patent application was filed with The Walt Disney Company.

J. I. Echevarria, D. Bradley, Diego Gutierrez & T. Beeler
Capturing and Stylizing Hair for 3D Fabrication

ACM Transactions on Graphics, Vol.33 (4), SIGGRAPH 2014

T. Beeler, D. Bradley & J. I. Echevarria
Capturing and Stylizing Hair for 3D Fabrication

US Patent Application US20160071316 A1

7.1 introduction

A mainstream goal in computer graphics is to create data-driven methods
for building geometric models of humans. In recent years we have seen
advances in 3D face and body scanning, motion capture and real-time per-
formance capture. While human scanning has many applications in fields
like video games, films and medical analysis, a fast-growing field is the
physical reproduction of miniature statues or figurines. Physical reproduc-
tion in general, and particularly of humans, has become a hot topic both
in academia [133, 191, 194] and industry [2, 1, 50, 164, 173]. Recently, 3D-
Systems even announced the release of a 3D-photobooth, which will facilitate
3D-portraits for the masses. The underlying pipeline of all these systems is
essentially the same: A person is scanned, the resulting mesh is processed

109
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Figure 7.1: Our work is inspired by artistic sculptures of hair in the real world and those
created by digital artists in professional modeling software.

often with artist interaction, and the figurine is printed using a 3D printer.
Consequently, all systems have similar drawbacks, and in particular, no pre-
vious approach can capture personalized hair-styles with adequate details,
while being suitable for physical reproduction.

Almost as much as the face, a person’s hair-style is a defining character-
istic of an individual. The reproduction of figurines without properly cap-
turing the hair is a severe limitation of current systems, since the hair-style
contributes so substantially to the person’s identity. Existing research in hair
capture methods either focus on reconstructing highly-detailed individual
wisps or hair strands [139, 24, 167], which do not meet the physical man-
ufacturing constraint of a closed manifold surface, or they produce coarser
reconstructions [140] that lack the level of stylization, detail or colors re-
quired to produce appealing 3D-printed models. In this work we present
the first method for stylized hair capture, which addresses current limita-
tions of physical reproduction systems, enabling the faithful miniaturization
and physical reproduction of figurines with drastically varying hair-styles.
Our method automatically reduces the complexity of hair to an abstract,
printable 3D surface, while still capturing the essential structural and color
elements that define its style. The proposed method fits naturally into exist-
ing physical reproduction pipelines, and so our work has the potential to
significantly impact the growing industry of figurine reproduction.

Our work is inspired by existing artistic sculptures of hair. For centuries,
artists have shown that the essence of a hair-style can be represented on a
continuous manifold surface, such as marble or clay, through stylized sculpt-
ing of geometric details (Figure 7.1, left). Today in the digital world, CG
modelers follow the same principles by virtually sculpting hair structure
on a 3D mesh (Figure 7.1, right). Our goal is to computationally achieve a
similar level of abstraction in the captured hair-style of an individual.

To this end, we start by obtaining a smooth surface representation of the
hair-style from multi-view stereo reconstruction. As our primary contribu-
tion, we introduce a novel color stylization operator that works directly over
the geometric mesh domain, and can be applied over non-uniform manifold
surfaces. This way, color information can be sampled, stored and processed
in a consistent way with respect to the input views. As it is important to
retain the appearance of directional wisps and the overall flow of hair, the
color is stylized over the mesh using a combination of directional smooth-
ing and orthogonal shock filters, inspired by analogous 2D image styliza-
tion [111, 121]. The per-vertex stylized color is then used to generate coher-
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Figure 7.2: We present the first method to capture an individual’s hair style (left) in a man-
ner suitable for miniaturization and physical reproduction while still faithfully
preserving the essential visual look of the style (right).

ent geometric displacements over the surface, effectively stylizing the shape
as well. The final result is a printable surface that can be miniaturized so
that both geometry and color convey the hair-style of the captured person
(see Figure 7.2). Our method allows the user to adjust the level of abstraction
to match the scale of the final printout and to achieve different visual styles,
which behave in a consistent way no matter the complexity of the original
hair-style. Ultimately, the stylized hair is combined with state-of-the-art face
scanning and traditional 3D printing methods for fabricating full-head fig-
urines. We show the flexibility of our approach by reconstructing a large
number of varied, complex hair-styles, and even non-human furry objects.

7.2 related work

Our work is related to methods for creating personalized figurines, recon-
structing hair, geometry abstraction and image stylization.

personalized figurines . A large variety of methods are being em-
ployed to capture a person in 3D, ranging from depth sensors such as the
Kinect to photogrammetric systems. Li et al. [133] present a system to cap-
ture 3D self portraits from a 3D sensor, based on non-rigid registration of
several partial scans and Poisson texture blending for smooth colors from
the input views. Sturm et al. [191] propose a signed distance function that
is updated at interactive rates directly from the sensor feed, obtaining dense
3D models. Tena et al. [194] develop a semi-automated, commercial system
to seamlessly integrate customer faces into figurines. However, all meth-
ods have problems when it comes to reconstructing hair, either approxi-
mating the hair-style in low-resolution or replacing it completely with a
pre-modeled template.

In addition to research efforts, the consumer market is exploding with
products and services that offer physical reproduction of personal figurines [2,
1, 50, 164, 173]. However, these systems suffer from the same drawback that
the hair-style is not sufficiently captured. Our work is complementary to
these efforts, proposing the first approach to address this limitation and
provide personalized hair-styles suitable for 3D reproduction.
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hair reconstruction. Early work on reconstructing hair from im-
ages targeted simple hair-styles [118] or reconstructed only partial hair [74].
More recently we have seen several advances in generating photo-realistic
hair reconstructions [166, 204, 167, 100, 24, 87, 44, 139, 90] and synthe-
sis [201]. These methods aim to reconstruct individual strands of hair, which
do not meet the physical reproduction constraint of a manifold surface. In
contrast, we aim to create 3D-printable hair with enough geometric detail
to convey the same style as the original. Luo et al. [140] obtain a hair surface
from multiple images, based on the observation that orientation fields are
reasonably coherent across views. However, hair-style results tend to lack
the level of stylization, detail and color required to produce appealing 3D-
printed models. Finally, coarse hair reconstructions have been obtained from
a single image for the application of advanced image editing [45], which dif-
fers significantly from our goal of stylized 3D hair capture.

geometry abstraction. Several works have recently appeared on the
topic of abstraction of geometrical features for simplification of complex
models [214, 157, 149]. However, those focus on man-made shapes, which
are very different from the geometry of hair-styles.

image and video stylization. The field of non-photorealistic ren-
dering is traditionally very active in studying the problem of stylizing and
abstracting 2D images and videos (refer to Kyprianidis et al. [120] for a
detailed survey). Specifically related to hair stylization are methods that
stylize images while preserving the directionality of the most prominent
features [111, 121]. These techniques are designed for single images repre-
sented as 2D regular grids, and are thus unsuited for 3D hair stylization.
Even in the context of multi-view styling, consistency of existing 2D styliza-
tion algorithms across views is not guaranteed. We draw inspiration from
these 2D operators, and propose a novel extension to irregular 3D geomet-
ric domains and multi-view settings. This allows us to stylize hair while
handling its view-dependent appearance and geometric complexity in a co-
herent way.

later work After the publication of the proposed method, new work
has appeared about 3D hair reconstruction and fabrication. Some of it focus
on the obtention of complex detailed 3D models, still not suitable for suc-
cessful 3D printing [91, 19]. While not being their main goal, other works
are able to produce realistic 3D reliefs from single images [42, 43], which
can be easily printed with current technologies. However, it is not clear how
they should be extended to produce full 3D models. Finally, focusing on the
printing technology itself, the method of Laput et al. [125] is able to print
single strands of hair. They demonstrate results for different objects, includ-
ing simple hairstyles and facial hair, although it is yet to be seen how more
complex models would look, and if they would be affected by the lack of
stylization [215].

In summary, our work represents the first and only approach for recon-
structing full 3D hair that is suitable for manufacturing personal figurines,
yet stylized with subject-specific details that capture the identity of the indi-
vidual.
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Figure 7.3: Our approach starts with a data acquisition process to construct a coarse proxy
surface of the hair from multiple images. Stylized hair capture then begins by
initializing, and then stylizing color information over the proxy surface using a
novel stylization filter. We then extract detailed structure from the stylized colors
in order to consistently stylize also the geometry. The result is a 3D-printable
surface that captures the defining features of the hair-style.

7.3 method overview

Figure 7.3 shows a diagram of our pipeline. Our algorithm takes as input
several color images of a person with a given hair-style from a multi-view
capture system (Section 7.4). Using these images, an initial smooth and
coarse proxy geometry is obtained using multi-view stereo [23]. This proxy
is then initialized with per-vertex color information from the input images,
split into multiple frequencies (Section 7.5). Next, stylization operators are
applied over the color information to achieve the desired level of abstraction
(Section 7.6). From the stylized color information, new geometric details for
the proxy are synthesized giving the artist control over the geometric ap-
pearance (Section 7.7). The final output of our method is a stylized mesh
which abstracts the complexity of a real hair-style while still preserving its
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defining features (Section 7.8). This mesh is suited for miniaturization and
3D printing (Figure 7.2, right).

7.4 data acquisition

As a domain for computing stylized effects, our algorithm requires a coarse,
low-resolution geometric proxy surface of the hair. This proxy may be gener-
ated with any 3D capture system that provides geometry and images, such
as Li et al. [133]. In this work, we use a multi-view reconstruction setup as
described in the following.

Ideally, the geometry proxy would be captured in a single shot from suf-
ficient viewpoints to cover the full head. Since this approach requires a sig-
nificant amount of camera and lighting equipment, we describe a technique
that makes use of only limited hardware. We place ten digital SLR cameras
in a quarter-spherical setup and photograph the subject under four consec-
utive orientations defined by 90-degree rotations (Figure 7.4).

Figure 7.4: Our capture setup consists of 10 cameras placed in a quarter-sphere and we
capture 4 different orientations of the subject.

Although we take care not to change the hair-style or alter the facial ex-
pression drastically between the four takes, minor differences are tolerated
since we require only a low-resolution proxy shape. We use a multi-view
stereo reconstruction algorithm [23] to compute partial reconstructions from
each of the four orientations (Figure 7.5, left). These reconstructions are
aligned rigidly through the Iterative Closest Points (ICP) algorithm [27], and
a single surface is obtained through Poisson reconstruction [114] of the com-
bined point cloud. This surface represents our geometric proxy, including
both hair and face (Figure 7.5, right). We manually identify the hair region
through simple masking. The proxy will serve as a base for synthesizing
stylized details in both shape and color. The four rigid transformations com-
puted from ICP are also applied to the calibrated camera views to produce
virtual cameras surrounding the proxy. In total we could obtain 40 virtual
cameras; however, while such a dense view sampling is advantageous for
multi-view stereo, we found that a subset of eight views is sufficient for hair
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Figure 7.5: Partial reconstructions from four sequential orientations (left) are combined to
form a proxy geometry (right) shown with the hair masked in green.

stylization once the geometry is reconstructed. To this end, we select the
eight views that cover the hair volume from front, back, and both sides at
two different elevations. We refer only to this subset of inputs in the rest of
this Chapter.

7.5 color initialization

Once the proxy geometry has been obtained, the next step is to assign colors
to its vertices. Contrary to face colors, which come from [23], coloring the
hair requires special treatment because the proxy surface only poorly ap-
proximates the volumetric nature of hair and is not geometrically accurate,
so there will inevitably be inconsistencies between different views. Further-
more, hair has a very complex appearance, with strong view dependent
effects, such as specular reflection, translucency and occlusions. Obtaining a
sharp and seamless colorization from multiple views is therefore extremely
challenging. On the one hand, assigning colors per vertex based on a single-
best viewpoint will lead to strong color seams (Figure 7.6 (a)). On the other
hand, computing color by averaging multiple viewpoints will lead to blurry
results (Figure 7.6 (b)). As shown in Figure 7.6 (c), color seams due to single-
best viewpoint selection are most apparent in the lower frequencies, while
they are masked in the high frequency bands. In contrast, blurryness due
to color averaging has the biggest impact on the high-frequency compo-
nents (Figure 7.6 (d)). Following from this observation, we separate color
information into two frequency bands, low and high, using a Difference of
Gaussians (DoG) filter. These color bands are processed separately accord-
ing to their complementary nature and combined back together on the mesh
(Figure 7.6 (e-f)).

Subsequent steps in the pipeline will make use of the intensity values to
enhance contrast (Section 7.5.3) and guide geometric stylization (Section 7.7).
To be able to directly operate on intensity values we convert the images from
RGB to HSV color space as a preprocessing step.
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Figure 7.6: a) All-frequency colorization from the single-best view introduces strong seams
but locally preserves sharpness. b) All-frequency colorization by averaging mul-
tiple views leads to blurry results, but reduces seams. c) Seams are most appar-
ent in low-frequency bands, while they are masked in the high-frequency bands
(shown in false color given they are offsets from the DoG). d) Loss of sharpness
on the other hand is most apparent for high frequencies. e,f) We colorize the
proxy by averaging low-frequency information from mutliple views but sample
high-frequency information from the single-best view, leveraging to the comple-
mentary nature of the two approaches. g) This approach might cause a change in
contrast, which we equalize as described in Subsection 7.5.3. h) Contrast may
be further boosted by scaling the intensity of the high-frequency band to help
stylization. (Dataset courtesy of Luo et al. [140]).
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7.5.1 Low-Frequency Color

For low-frequency color information, we assign a color c to each vertex
of the proxy mesh by averaging color samples cj from the set of views V ,
weighted by their foreshortening angle ω j

c =
1

∑j∈V ω j ∑
j∈V

ω jcj, (7.1)

with
ω j = max(< n, vj >, 0),

cj = I j(Pjp),

where n is the normal and p is the position in world space of the vertex.
I j, vj and Pj are the low-frequency HSV image, view vector and projection
matrix of view j respectively. Equation 7.1 is applied to each HSV channel
separately. This approach effectively removes visible color seams and atten-
uates view-dependent color changes (Figure 7.6 (d)).

7.5.2 High-Frequency Color

As mentioned previously, the proxy geometry is only a coarse approxima-
tion of the hair volume, and averaging high-frequency color from multiple
views as described for the low-frequency components would lead to blurry
results and exhibit ghosting (Figure 7.6 (d)). We therefore sample the high-
frequency details only from the single-best view j∗, which we consider to be
the one with the highest foreshortening angle wj (Figure 7.6 (e)).

7.5.3 Contrast Equalization

Local contrast or dynamic range is directly related to incident light intensity.
When averaging the low-frequency color from multiple views, the resulting
intensity l might be very different from the low frequency intensity l j∗ in
the single-best view used to extract the high-frequency component hj∗ due
to view dependent effects; this results in a perceived loss of contrast when
frequencies are re-combined (Figure 7.6 (f)). To alleviate this problem, we
perceptually adjust the intensity value of the high frequency components h
as

h = ξhj∗ =
l

l j∗ hj∗ . (7.2)

In the case that the combined l is darker than l j∗ we use 1/ξ instead, since
the goal here is to increase the contrast.

Figure 7.6 (g) shows the effect of equalizing the contrast when compared
to Figure 7.6 (f). The impact is most apparent in areas around the seams,
where the averaged low-frequency intensity l differs substantially from the
intensity found in the single-best view l j∗ .

Finally, contrast may be boosted globally by uniformly scaling h to help
color stylization (Figure 7.6 (h)).
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7.6 color stylization

As motivated in the introduction, our intent is to create a representation of
the hair that can be miniaturized and printed. However, the level of detail
of real hair is overwhelmingly high, and we thus need to find a means to
reduce the complexity while preserving its defining features. We approach
this problem by employing a specialized stylization filter.

Recently, Kyprianidis and Kang [121] have proposed an anisotropic, feature-
preserving stylization filter for images, which exhibits interesting color styl-
ization effects in hair regions. Their 2D filter can successfully reduce hair
complexity, while still maintaining the overall appearance of a hair-style.
Unfortunately, their method is not immediately suited for stylizing hair in
3D, since (i) it requires a regular 2D-domain, while our hair proxy consti-
tutes an irregular manifold embedded in 3-space; and (ii) it is designed
for single-image processing, while we operate within a multi-view scenario,
where consistency between different views is essential. Nevertheless, the 2D
filter of Kypriandis and Kang contains several of the properties we desire
in our application of stylized hair capture, and thus we propose to employ
a similar mathematical foundation in a novel multi-view stylization algo-
rithm that operates on irregular manifolds in 3D. Our approach will be to
couple 2D and 3D stylization. Therefore, we will first provide an overview
of the foundations for feature-preserving stylization in 2D (as presented by
Kypriandis and Kang), and then proceed to describe the key extensions that
enable color stylization of hair in 3D.

7.6.1 Feature-Preserving 2D Filter

Feature-preserving or enhancing directional filters are based on three main
components [111, 110]: The estimation of the local structure, an integra-
tion/smoothing operation to reduce complexity, and a sharpening operator
to enhance the desired features. In the following, we describe how these
components are achieved, focusing first on a single image.

local structure estimation. Estimating the directionality of fea-
tures in a 2D image has been studied before, with some specific applications
to hair [166, 110, 140]. Given its fast computation and proven effectiveness in
stylization contexts, we first compute the structure tensor S(x) [36] at each
pixel x. To attenuate noise, we filter the structure tensor using an isotropic
2D Gaussian [121] with standard deviation σd = 4.

Based on the structure tensor we introduce the orientation tensor O(x) ∈
R2x2, which consists of the two eigenvectors of S scaled by their respective
eigenvalues. For our purposes O(x) is equivalent to S(x) but has some ad-
vantages when extending to multiple views, as we will see in Section 7.6.3.
For ease of notation, we will omit the pixel (x) in the orientation tensor and
refer simply to O in the rest of this discussion. The first row of the orien-
tation tensor Og, corresponds to the image gradient, while the second row
Ot coincides with the tangent. The gradients and tangents will be used for
directional smoothing and directional sharpening as described in the fol-
lowing. We will use ~Og,t to indicate the normalized gradient and tangent
directions, respectively.

directional smoothing/integration. Once we have a smooth ori-
entation field, stylization starts by performing directional smoothing fol-
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lowing the tangents ~Ot. This operation consists of a line integral convolu-
tion [38]. To obtain the resulting color I′(x0) of a given pixel x0, additional
color samples I(x±k ) are interpolated from both directions of the flow, and
then averaged using a 1D Gaussian function G(dk) of standard deviation σ̃t,
where dk represents the geodesic distance from the sampling point xk to x0.
We aim to filter with a standard deviation σt = 10, and account for local
anisotropy by computing σ̃t as

σ̃t =
1
4

σt

(
1 +
‖Og‖−‖Ot‖
‖Og‖+‖Ot‖

)2

. (7.3)

We then have:

I′(x0) =
1
w

[
G(0)I(x0) +

l

∑
k=1

G(dk)
[
I(x+

k ) + I(x−k )
]]

, (7.4)

where I(x) is the original color of a pixel x, w = ∑l
k=−l G(dk) is a normal-

ization factor, and l = d2σ̃te represents the cut-off of G(dk). Equation 7.4 is
applied to each HSV channel independently. Several ways to compute I(x±k )
have been proposed [111, 121]; we have found that a second-order Runge-
Kutta integration scheme provides the best results in our context. Figure 7.7
(center) shows the result after this step for an image patch of hair (left).

Figure 7.7: A schematic visualization of the smoothing and shocking operations. Left: Input
image. Center: Line integral convolution following the tangents (in blue). Or-
ange dots show integrated samples I(x±k ) for pixel x0 (green). Right: Application
of the shock operator in the direction of the gradients (shown in red).

directional sharpening . To further stylize certain features, a direc-
tional shock filter can be applied in the direction of the gradient ~Og [165,
110]. This filter consists of morphological operations of dilation and erosion,
which create ruptures between local maxima and minima, while enhancing
flow-like patterns in the image [205]. For efficiency, it can be approximated
by a min/max filter applied over a neighborhood of radius r, depending on
the sign of a luminance-based Laplacian of Gaussian (LoG) with standard
deviation σg [121]. In our case, we apply the LoG over the value channel in
HSV space. We use r = σg = 3 for the results shown. Figure 7.7 (right) shows
the final result, after both directional smoothing and sharpening.
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7.6.2 Extension to Irregular Manifolds in 3-Space

This section describes how the stylization filter defined on a regular 2D im-
age domain can be extended to operate on an irregular manifold embedded
in 3-space. Color processing over manifolds has been studied before for ap-
plications like de-noising [187]. Here we extend a different set of operators
that additionally deal with per-vertex information obtained from several in-
put images, which need to be processed in a coherent way.

A possible alternative would be to compute a UV-parameterization that
maps the manifold into 2-space, and then use the 2D stylization filter. How-
ever, we discarded such an approach for two reasons. First, the mesh proxy
is far from being a developable surface, which would cause distortions in the
mapping. These distortions would vary spatially and so the stylization op-
erators would have to take them into account. Second, the proxy may have
arbitrary genus, which can occur due to curls or ponytails (for example, see
Figure 7.13), which would cause a discontinuous parameterization and re-
quire cutting the mesh - a challenging problem on its own. Furthermore,
the stylization operators would have to be adapted to handle the disconti-
nuity caused by such cuts. While these approaches can be found in previous
work on texture synthesis [128, 203], we avoid these challenges by operating
directly in 3-space.

As described in Section 7.5, we compute and store color information di-
rectly on the mesh, and will do the same for orientation tensors. Operations
such as directional smoothing and shock filtering are then performed on
a per-vertex basis, using the geodesic distance on the mesh surface. To do
so, analogous to 2D directional smoothing, we require to look up the color
value along a direction t at a geodesic distance δ from the current vertex x
on the mesh. Since the mesh is not planar, the point x′k = x + δt might be off
surface and needs to be projected back on to get xk (Figure 7.8 (a)). If δ is
larger than the local tessellation of the mesh, then xk will not reside in the
one-ring neighborhood of x and the process is repeated recursively using
the closest point xe on the edge of the one-ring as new starting point and
subtracting ‖xe − x‖ from δt, effectively rolling down the original vector δt
onto the mesh. Figure 7.8, b shows this roll-down schematically. Once xk is
computed, the value is interpolated using barycentric coordinates.

The important parameter in this process is the step size δ, which should
be similar to the local vertex density to avoid sampling issues. Fortunately,
our meshes have very uniform vertex density allowing us to use a global δ
that corresponds to the average edge length of the mesh.

7.6.3 Extension to Multiple Views

As motivated in Section 7.5, information from different views will be nat-
urally misaligned since the proxy geometry is an approximation of the
hair volume and the appearance of hair may differ substantially in dif-
ferent views. Consequently we merge low-frequency color information by
averaging the contributions of the individual views to avoid color seams
(Section 7.5.1), but we must combine high-frequency components using
the single-best view to avoid blurring (Section 7.5.2). As a result, the high-
frequency color information on the mesh will contain seams, and this can
adversely impact orientation tensor computation if performed directly on
the mesh. This is demonstrated in Figure 7.9 on a synthetic mesh patch.
The high-frequency components are sampled from three different views
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a) b)

Figure 7.8: a) A point x′k in the direction of the tangent t at distance δ from x may be off
surface, and thus needs to be projected back on (xk) in order to sample interpo-
lated vertex information. b) If the sampling distance δ (blue) is larger than the
local tesselation, the sampling point xk will reside outside of the direct neighbour-
hood of x. In this case the process is repeated recursively using the closest point
xe on the edge of the one-ring as new starting point x (green) and adjusting δ

accordingly, effectively rolling down the original vector δt onto the mesh.

(color-coded for better visualization) using the single-best view per vertex
(Figure 7.9 (a)). The seams are clearly visible due to the change in orienta-
tion of the features. If we compute the orientation tensor on the mesh, it
will inevitably follow such seams and so will do the directional smoothing
(Figure 7.9 (b) and (f)). As a consequence, we will compute the orientation
tensors from the images and transfer them to the mesh vertices.

e f g h

b c da

Figure 7.9: Synthetic example with high-frequency values from different views (color-coded
for better visualization). a) Using only the single-best view will cause sharp tran-
sitions (blue-red, green-red). b) These transitions would adversely impact orien-
tation tensor computation (colors encode the dominant orientation). c) Comput-
ing and transferring the tensor from the single-best view avoids these artifacts,
but exhibits the same discontinuities. d) Using the proposed tensor combination
yields a smooth tensor field. f,g,h) Tensor fields (b,c,d) applied to (a). The orien-
tation is only continuous in (h) but the spatial frequencies are attenuated around
seams as the colors dont match the tensor anymore. e) The final gathering step
re-establishes this consistency and smoothly combines the structural elements
from the different views without degradation.

Since the orientation tensors capture the continuous style of the hair, their
spatial variation is essentially low-frequency, even though they are com-
puted from the high-frequency components of the images. Analogously to
vertex colorization discussed in Section 7.5, computing per-vertex orienta-
tion tensors from the single-best view would lead to strong seams (Figure 7.9
(c) and (g)), and thus we need to combine the tensors from multiple views
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using an averaging scheme instead (Figure 7.9 (d)). In the following section
we will explain how to combine them to produce a smooth tensor field on
the mesh.

orientation tensor backprojection. Similar to Paris et al. [167],
transferring an orientation tensor O j from a view j to a point x in space
happens via backprojection, although our proxy geometry makes the pro-
cess more straightforward. We project the normalized gradient direction ~Og

onto the tangent plane at x. The tangent direction ~Ot is computed as the
orthogonal vector in the tangent plane. Both vectors are re-scaled to their
original magnitudes ‖O j

g,t‖. Note that the sign of these vectors is arbitrary.
We thus ensure consistency of the direction vectors of all views by reversing
vectors that do not agree with the orientation of the single-best view. In the
following, O will denote this backprojected orientation tensor.

orientation tensor combination. Unlike structure tensors, which
are oriented absolutely with respect to each view, orientation tensors from
different views can be directly combined since they are oriented with the
gradients. The combined gradient direction ~Og is thus computed as

~Og =
1
w ∑

j∈V
ω jθ j ~O j

g, (7.5)

where V is the set of views and w = ∑j∈V ω jθ j is the normalization factor.
The contributions are weighted using foreshortening ω as defined in 7.5.1 as
well as the misalignment θ, which is computed as the discrepancy between
the orientation tensors of the view j and the single-best view j∗

θ j =
〈
~O j

g, ~O j∗
g

〉
. (7.6)

Given the gradient direction ~Og on the mesh, the tangent direction ~Ot can
again be derived since they are orthogonal.

Finally, the magnitudes of the vectors are computed as

‖Og,t‖=
1
w ∑

j∈V
ω jθ j‖O j

g,t‖, (7.7)

using the same weights and normalization as in Equation 7.5.

directional gathering and smoothing . In the previous section
we described how to combine the orientation tensors from the different
views to produce a continuous orientation tensor field on the mesh (Fig-
ure 7.9 (d)). Unfortunately, since the high-frequency color information has
been computed from the single-best view and the orientation tensors are
produced by averaging multiple views, the two will be inconsistent around
seams. This discrepancy will cause the directional smoothing to filter across
color boundaries in these areas and produces blurry results (Figure 7.9 (h)).
To overcome this problem, we propose an approach to update the color infor-
mation, using a measure of the discrepancy between the gradient computed
from the mesh colors ~O′g and the gradient from the combined multi-view
orientation tensor ~Og as

β = 1−
〈
~Og, ~O′g

〉
. (7.8)
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Figure 7.10: The proposed color stylization pipeline couples 2D image (bottom row) with 3D
mesh stylization (top row). The final output is the mesh-proxy with stylized per
vertex colors.

Given this measure, we introduce a gathering step, which ensures that
color is consistent with the combined orientation tensor field. For a vertex
with discrepancy β larger than a given threshold τ, we search along the tan-
gent field in both directions for color samples with low discrepancies, using
the same second-order Runge-Kutta scheme as for directional smoothing.
The vertex color c is then updated by linearly interpolating between those
color samples based on their geodesic distance from the current vertex. The
discrepancy β is then updated in the same way. Overall, discrepancy is usu-
ally lower than 0.1 in our examples, and we found a value of τ = 0.02 pro-
duces sufficient consistency. The updated discrepancy β is further used as
weighting factor to attenuate these samples during directional smoothing.

The final result is a smooth orientation tensor field with consistent color-
ing, the required basis for our stylizations (Figure 7.9 (e)) as it preserves the
important structural elements from the different viewpoints while combin-
ing them together in a continuous way.

7.6.4 Coupled Mesh-View Stylization

Now that we have explained all the components required for multi-view
hair stylization on a manifold in 3D, we present the complete stylization
pipeline, as shown conceptually in Figure 7.10. It is important to see that the
final result is based on coupled stylization of both the mesh and the input
views. This is required to keep the orientation tensor, which is computed
from the views, consistent with the colors on the mesh, which are stylized
using this tensor.

The degree of stylization is emphasized by iteratively re-applying the
method, which allows for direct artistic control. We use two to three iter-
ations for the results presented here. After stylization, an antialiasing step is
employed to refine the color transitions. The final output is the mesh-proxy
with stylized per vertex colors.

7.7 geometry stylization

Up to this point, we have stylized high-frequency information in HSV color
space over the mesh. We wish to also stylize the geometric details of the
hair, such that they are consistent with the color style. To this end, we will
compute spatially-varying surface offsets d(x), and displace the vertices of
the proxy geometry along the normal direction n(x) by d(x)n(x).
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a) Stylized Colors b) Box c) Sinusoidal d) Custom
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Figure 7.11: a) As a consequence of the shock filter, vertices along the gradient will have the
same color within the boundaries b1,2 of a wisp. This enables to compute the
relative position x of a vertex x within the cross-section and to apply different
wisp profile functions (b,c,d) to artistically alter the geometric appearance.

Most of the perceived high-frequency contrast is encoded in the value
channel while hue and saturation vary less substantially in general. This
contrast can be largely attributed to shading changes caused by hair geom-
etry, which is why we look to the stylized color intensity to determine the
structural offsets. This is the underlying motivation for operating in HSV
color space. Converting the high-frequency stylized intensity offsets v(x)
defined in the range of [−1, 1] to displacements d(x) is essentially a tone
mapping application

d(x) = ϕΦ(v(x)), (7.9)

where ϕ is an artistic parameter that controls the strength of the shape
stylization. For the results shown, ϕ varies between 3 and 6, and as tone
mapping operator Φ, we apply a simple gamma correction with γ ranging
between 0.5 and 0.7.

wisp profiles . The shock operation in color stylization has the property
of creating uniform intensities (and thus uniform displacement values) for
all the vertices within a shock, in the direction of the gradient (Figure 7.11,
a), producing wisps with a locally flat appearance (Figure 7.11, c). While this
is often sufficient to create successful hair stylizations, additional geometric
styles can be obtained by modulating the displacements artistically.

Our idea is to find the relative position of each vertex within the cross-
section of a wisp, and use this position to modulate displacement according
to a user-defined wisp profile. To this end, for each vertex we search for dis-
continuities in intensity following the direction of the gradient ~Og (as done
previously for the shock filter) by checking the relative change in intensity
with respect to the starting vertex. Discontinuities in each direction mark the
cross-sectional boundaries b1,2 of the wisp (Figure 7.11, a). We then apply
a 1D-window function to the geometry offsets to control its profile. In our
results, we employ three different wisp profile functions - box, sinusoidal
and custom - which produce different artistic looks (Figure 7.11, b-d). Defin-
ing additional profile functions is straightforward, providing a simple way
to artistically control the style of the hair. To reduce aliasing, the modulated
displacements can be smoothed in the direction of the tangents using the
same directional smoothing operator explained in Section 7.6.

all-frequency color and geometric information. After ap-
plying the stylized high-frequency displacements, low- and high-frequency
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Figure 7.12: Our approach is versatile, and can be used for stylized capture of more than
just human hair. Here we show additional examples of a stuffed toy dog (top)
and fur (bottom).

color information is combined and converted from HSV to RGB, obtaining
the final colored and sculpted result, which is suitable for miniaturization
and physical reproduction using traditional 3D printing processes.

7.8 results

We demonstrate the robustness and versatility of our method by capturing
several subjects with widely varying hair-styles, and show that the proposed
technique fits naturally in traditional pipelines for personalized figurine cre-
ation by physically reproducing several figurines with stylized hair.

A primary goal of our algorithm is to reconstruct an individual’s hair
in a way that captures the identifying characteristics of the hair-style. Not
only should the result be recognizable as a replica of a particular person,
but it should be clearly recognized as a reconstruction of that person with
their hair in a particular style. Our technique successfully achieves this goal,
which we demonstrate by capturing the same two subjects each with four
different hair-styles, as shown in Figures 7.13 and 7.14. Each hair-style is
clearly recognizable in both shape and color, even though it is captured in a
stylized and 3D-printable way.

We show the robustness of our approach in Figure 7.15, by capturing
several different subjects with a wide range of hair-styles and hair colors.
Our method can even stylize the reconstruction of facial hair, as seen for the
subjects in the bottom two rows.

In Figure 7.12 we further demonstrate the versatility of the proposed tech-
nique, by capturing stylized reconstructions of non-human hair. In these
examples, we capture a fur collar and a stuffed toy dog. Despite their com-
plexity, both reconstructions are stylized manifold surfaces, suitable for 3D
printing.

In our pipeline we describe a data acquisition step (Section 7.4) to build a
low-resolution proxy surface. However, our hair stylization method can be
applied to any proxy geometry with available camera views. This is demon-
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strated in Figure 7.16, where we apply stylization to a dataset provided by
Luo et al. [140]. As can be seen in the zoom regions, the benefit of our ap-
proach over Luo et al. [140] is that we capture the important structural and
color elements of the hair-style, even starting from a proxy that only coarsely
approximates the hair.

Different levels of stylization can be achieved by changing the shock filter
width, as shown in Figure 7.19 (a-c). These styles can even be combined in
any artistic way, which we show in Figure 7.19 (d). As mentioned, our tech-
nique can be applied naturally in physical reproduction pipelines for manu-
facturing personalized figurines. We miniaturized and 3D-printed several of
our results, as shown in Figure 7.2 (right), Figure 7.3 (rightmost), Figure 7.20

and Figure 7.21. Physical printouts were created using a ZCorp printer. Our
method can produce smaller figurines or handle lower-resolution printers
by creating coarser hair wisps, as seen in Figure 7.19 (c). Figure 7.17 shows
a comparison against a different high quality approach for the creation of
personalized figurines.
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Figure 7.13: Here we show four different captured hair-styles for one person. For each style
we show the final result with both color and geometry stylization, as well as
the result without color in order to best visualize the geometry stylization. Our
method is able to faithfully capture the essence and identifying characteristics
of each hair-style, even when the subject is the same.
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Figure 7.14: Here we show four different captured hair-styles for one person. For each style
we show the final result with both color and geometry stylization, as well as
the result without color in order to best visualize the geometry stylization. Our
method is able to faithfully capture the essence and identifying characteristics
of each hair-style, even when the subject is the same.
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Figure 7.15: Our stylized hair capture technique can reconstruct a wide range of hair-styles,
including the facial hair on the subjects in the bottom two rows. Here we show
one of the input images (left), the stylized geometry without color (center), and
the final result with stylized shape and color (right).
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Figure 7.16: Although we do not share the same final goal, we show our method applied over
a dataset from Luo et al. [140]. From left to right: one of the input views. Initial
coarse reconstruction. Reconstructed results by Luo et al. Our stylized results
starting from the same low-resolution proxy. In addition to sculpted geometry,
our method generates also stylized color information. Our detailed stylization
improvements over Luo et al. are clearly visible in the zoomed regions.

Figure 7.17: Since our method is reconstructing the actual hairstyle instead of approximat-
ing it with a limited set of templates, it does a better job capturing the identity of
the subject, no matter how intricate his hairstyle is. Left: Reference input image.
Center: Our reconstruction. Right: Result using Tena et al. approach [194].
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Figure 7.18: We illustrate the intermediate steps of our pipeline on two different datasets.
From left to right: the input proxy geometry, color initialization on the proxy,
color stylization alone, geometry stylization alone, and the final result with
color and geometry stylization.

For a better assessment of our contribution to capturing and stylizing hair,
we illustrate the intermediate steps of our pipeline in Figure 7.18, for a sub-
set of our datasets. This figure shows the proxy mesh generated by Beeler et
al. [23], the proxy with initialized colors, both our color and geometry styl-
ization results on their own, and the final combined result of our algorithm.
Our method increases the color and structural elements of the hair-style
substantially compared to the initial proxy reconstruction.

We computed our results on a desktop PC with a six-core Intel 3930K CPU.
It took our prototype implementation 4-7 hours to process meshes between
300K and 600K hair vertices; however, we believe this could be substantially
improved using optimized data structures and by exploiting the extremely
parallelizable nature of the problem on the GPU (following Kyprianidis et
al. [121]). The parameters given in Subsection 7.6.1 were determined for
input images of 2592 x 1728 pixels and transferred to the mesh domain for
the 3D filter via re-projection onto the proxy geometry.

discussion. In our implementation, the total processing time and the
overall quality of the results depend on the mesh discretization. It is prefer-
able to operate on uniform triangulations with reasonable resolution. In
particular, we found that between 300K and 600K hair vertices are sufficient
to obtain sharp color and geometry details. Most multi-view capture tech-
niques require many viewpoints when reconstructing complex objects with
strong self-occlusions, which is why we used 40 viewpoints for the initial
proxy reconstruction. For stylization, however, we found that a subset of
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a) b) c) d)

Figure 7.19: Here we show different levels of stylization (a-c) and a combination of styles (d)
computed as 0.3(a) + 0.4(b) + 0.4(c).

Figure 7.20: Our method fits naturally in the physical reproduction pipeline for personalized
figurines. A stylized capture result was printed with and without color.

about 8 views is sufficient. We expect the global shape of the hair to be pro-
vided by the proxy geometry, which might fail to reproduce some of the
finer structures such as individual curls. Identifying and addressing such
structures would be an interesting area for future research.

In conclusion, we present the first method for stylized hair capture, a tech-
nique to reconstruct an individual’s actual hair-style in a manner suitable
for physical reproduction. Our method generates hair as a closed-manifold
surface, yet contains the structural and color elements stylized in a way that
captures the defining characteristics of the hair-style.
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8C O N C L U S I O N S A N D F U T U R E W O R K

In this Thesis we have presented a variety of practical solutions to problems
related with the capture and manipulation of data, and the simulation of
processes from the real world. Most of them feature novel combinations of
traditionally separated fields: fluids simulation and image processing, im-
age stylization and 3D reconstruction, or computational photography. They
also share their relation with visual arts, creativity and human perception.
Some of them are inspired by processes followed by artists in the real world,
others became direct tools for content creation, while others take into ac-
count how people perceive the world in 2D and 3D.

In the following we summarize the conclusions for each of the three main
parts of this thesis.

creative manipulation of digital photographs In Chapter 2

we presented a novel framework for digital image manipulations based on
alternative analog photographic processes from the real world. We show-
cased different prototypes, which provide new engaging ways of manipu-
lating digital images with a physical meaning, bringing a newfound sense of
craftsmanship and serendipity to the process. Using the fluids solver from
our framework, we can simulate other artistic processes as well, as shown in
Chapter 3. There, a liquid layer is deposited on top of a virtual lens, which
refracts the light coming from the (virtual) scene, obtaining very apealing
distortions. We demonstrated the potential of this process as an interactive
tool, with results that resemble the ones artists create in real world.

With this work, we introduced a novel exploratory approach to digital
photography, something we believe was missing when compared with other
artistic disciplines that have digital counterparts, like drawing or painting.
We believe this ability to create engaging digital experiences by coupling
physically-based simulations with natural user interfaces can appeal all kind
of users, with potential uses for entertainment, educational or artistic pur-
poses.

perceptual reconstruction of 2d images Chapter 4 introduced
SMAA, an anti aliasing post process filter for real time, that produces nat-
ural results taking into account how humans perceive aliasing and sharp-
ness. It performs a comprehensive morphological analysis of the image to
analytically compute pixel coverage, to produce smooth or sharp results
where required. Our method is extended to deal with additional samples
coming from spatial and temporal multi/supersampling, converging to the
supersampled references, and achieving better temporal stability in subpixel
features and shading. Our solution is modular, allowing the creation of dif-
ferent presets that can target different scenarios and power budgets. This
work also showcases how taking into account the human visual system can
help producing feasible and pleasing reconstructions in the absence of addi-
tional data. SMAA is currently a well known and well regarded anti aliasing
solution, featured in lots of video games for consoles and PC. It still can be
considered the state of the art in anti aliasing filters for real time, with more
recent solutions based on similar concepts and approaches [161, 162].

137



138 conclusions and future work

In Chapter 5, we made use of the Nokia N900 smartphone, the first
commercially available platform for mobile computational photography, to
demonstrate practical pipelines for mobile HDR imaging. Our approach
captures a standard bracketed sequence of low dynamic range exposures,
to compose an extended dynamic range image based on perceptual cues,
with everything being happening on-device. By the time the paper was pub-
lished, cameras found in mobile devices were not as evolved as today, mostly
because of the software support. Nowadays, HDR imaging is a standard fea-
ture in smart phones and tablets following the same principles exposed here,
camera APIs are more capable and computing power is increasing at an im-
pressive pace. Coupled with additional movement and positioning sensors,
this makes them great platforms for practical mobile computational photog-
raphy beyond HDR.

3d reconstruction and stylization In another example of (mo-
bile) computational photography, in Chapter 6 we presented a new and ef-
ficient algorithm to estimate depth maps from a small focal stack of images.
We base our approach on the assumption that pixel blur measures, while
spatially inconsistent for a single focal distance, can behave in a consistent
way for each single pixel through a focal stack. This allows the fitting of an
analytical model of the defocus blur to recover an estimation of the distance
of each point in the scene to the camera. We believe our method presents
an interesting tradeoff between accuracy and speed when compared with
previous works. The modularity of our approach makes it straightforward
to study alternatives to the chosen algorithms at each step, so it can greatly
benefit from separate advances that occur in the future. In our opinion, mo-
bile computational photography is posed to have an increasingly critical
role over the years. Having the ability to control the capture process in a
way that complimentary information about the scene can be easily acquired,
can have a big impact on existing image processing algorithms that currently
have to estimate such information from a single image (often the illest-posed
scenario) [137, 153], or use specialized hardware [20].

Finally, in Chapter 7 we presented the first method for stylized hair cap-
ture, a technique to reconstruct an individual’s actual hair-style in a manner
suitable for physical reproduction. Our method generates hair as a closed-
manifold surface, yet contains the structural and color elements stylized in
a way that captures the defining characteristics of the hair-style. Our results
show a pleasing hand-crafted look and feel, in some cases very similar to
what artists sculpt for commercial figurines and fine arts. Since its publi-
cation, more recent methods also reconstruct printable hairstyles [42] pro-
ducing impressive results from a single input image. However, they aim
for different applications and it is not clear how it would extend to full
3D models, or scale for different print sizes. Apart from creative purposes,
we believe abstraction and stylization algorithms can also become powerful
tools to deal with noisy data or to hallucinate details in pleasing ways to the
human visual system.

future work Apart from the future work described for each of the pre-
vious projects in their corresponding Chapters, in the following we describe
briefly ongoing related projects.
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Related with the manipulation of digital images, we are currently explor-
ing novel ways of using 4D light fields [132] for creative purposes. In con-
trast to traditional 2D photos, 4D light fields store additional angular infor-
mation by not integrating (or disintegrating) the light rays hitting the sensor.
While commercial light field cameras have been available already for a few
years, there is still a small number of editing tools for them trying to effi-
ciently extend concepts from 2D to 4D [103, 30, 31, 13, 216, 32, 69], or find-
ing the preferred user interfaces for point-based editions in 4D [102, 144].
However, we believe that this additional angular information should allow
editing capabilities and tools beyond what is possible with 2D images. Early
examples like refocusing of perspective shift have been demonstrated in the
past [96], but (un)fortunately, they can also be simulated to some extent by
using combinations of color images and/or depth information [21, 16, 209].

We think about 4D light fields as a collection of 3D light rays capturing
the radiance of the original scene, which naturally resonates with ray trac-
ing. In our work, we are focusing on the simulation of what we call light
field rephotography, that is, obtaining a new 2D photo of a scene through a
different optical arrangement. While this concept has been timidly demon-
strated in the past [92], the focus has been on the simulation of the optical
systems themselves, and not dealing with the singularities of working with
structured 4D light fields and the limited amount of ray samples they store.
In contrast, our work focuses on a more general interaction of light fields
with arbitrary optical arrangements, from traditional lens designs to more
creative ones involving a variety of refractive objects and atypical config-
urations that expose the sensor directly. The core of our approach is the
extension of ray differentials [94] to 4D light fields, namely light field dif-
ferentials, which provide two main benefits: i) the cost of tracing bundles
of nearby rays is greatly reduced; ii) the analytical description of the light
transport provided by the ray differentials enables more sophisticated access
and interpolation of the original samples.

We believe this framework has the potential to enable novel tools and
uses like the illusion of interactively re-photographing a previously cap-
tured scene, or the simulation of optical setups different from the fixed one
used during the capture to either correct optical distortions or to obtain
them.

Following our work on 3D reconstruction, we are currently developing
a new solution to the more general problem of 3D surface reconstruction
from point clouds [26]. One of the most popular approaches for that mat-
ter is posing the problem as a Poisson Equation, where an oriented point
cloud is converted into a vector field, so an implicit indicator function can
be reconstructed elegantly [114]. Then, such implicit function is converted
into a mesh [52]. Although current solutions are quite robust to noise while
producing very detailed results, they also aim for watertight solutions that
have lots of advantages, but also critical limitations. One of the most impor-
tant ones is related with the ability to model non-manifold arrangements
with very thin structures, like the ones usually found in clothes and other
thin objects like sheets of paper. In such cases, a watertight solution implies
a binary partitioning of the space around such features (inside/outside), im-
possible to model them properly. To overcome this limitation, we are solving
the same Poisson Equation, but using a regional level set [219, 115]. Regional
level sets can represent explicitly an arbitrary number of regions, providing
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a more comprehensive partitioning of the space around the point cloud. The
challenge here is to use this very limited mathematical element to solve such
equation. Once done, we can apply a number of PDE-based manipulations
to post process the initial solution, obtaining a non-manifold implicit func-
tion, which requires also extensions to current polygonization algorithms.

We expect our solution to improve the robustness of 3D scanning pipelines
that fail to produce proper reconstructions in those cases, specially when the
point cloud is already capturing such thin features and arrangements.

personal conclusions During the development of this thesis I have
been able to work on a variety of projects, on different topics and fields.
This has allowed me to expand my knowledge, and to explore novel solu-
tions that arose from unusual intersections between fields like fluids simula-
tion, image processing, image stylization or 3D reconstruction. I think that
is one of the most interesting aspects of the work I have done: instead of
becoming an expert in one single field, I have ended up being knowledge-
able in several different ones. This is something that was not planned from
the beginning, and I am very thankful for it. Be it because of our multidis-
ciplinary lab, or the different internships that I have done, working on so
different problems teaches you to become better at evaluating the contribu-
tions of previous works, and putting them into perspective with respect to
their own field and others. Over time, I have found this open-mindedness
very useful when trying to find the "right" approach for each specific prob-
lem, specially with some recurring ones where traditional approaches leave
small room for improvement, or when assessing the work of others.

Through these years, I have had the chance to work with people from dif-
ferent parts of the world, and from different backgrounds. Working in such
diverse teams has been very enlightening: although all of us are researchers
in the end, each field has its own subtleties, and I feel very lucky to have
been able to learn from all of them to broaden my vision about research as
a whole. Something similar has happened with the internships I have done.
Apart from the different company cultures that I was able to experience,
doing research inside the industry is something very valuable that I believe
complements greatly the academic side. It is amazing being surrounded by
experts around you from very different backgrounds, which paves the way
for very powerful synergies. I was also lucky to work in projects whose re-
sults can be appreciated by all kinds of people, which makes everything
more rewarding for me.

Related with this last point, during this thesis I have realized the impor-
tance of dissemination of results to make knowledge advance. From aca-
demic publications and oral presentations, to high level educational talks
for everyone, it is very important to hone your communication skills to actu-
ally connect with your audience, so they can receive your message to build
on top of it, expand their knowledge about the technologies that surround
them or the work we researchers actually do, or inspire the following gener-
ations of researchers.

All in all, during these years I have acquired a very valuable set of skills
not only useful for research, but also for my personal life, helping to shape
the person I am today. It was not easy, but it was fun!
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