
Supplementary Material:

A Framework for Transient Rendering
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A Background

Here we introduce our notation and review the classic (steady state) path integral formulation, as well as the photon mapping
algorithms and its progressive variant. The former will serve as the basis for the definition of transient path integral (Section 3),
while the second closely relates with the path reuse technique described in Section 4, which as we will see, its crucial for
transient rendering.

A.1 Path Integral

In the path integral formulation [Veach 1997; Pauly et al. 2000], the image pixel intensity I is computed as an integral over the
space of light transport paths Ω:

I =

∫
Ω

f(x) dµ(x), (S.1)

where x = x0 . . .xk represents the spatial coordinates of the k + 1 vertices of a length-k path with k ≥ 1 segments. Vertex
x0 lies on a light source, xk lies on the camera sensor, and x1 . . .xk−1 are intermediate scattering vertices. The differential
measure dµ(x) denotes area integration for surfaces vertices and volume integration for media vertices. The path contribution
function f(x) is the product of the emitted radiance Le, path throughput T, and sensor importance We:

f(x) = Le(x0→x1)T(x)We(xk−1→xk). (S.2)

The path throughput is itself the product of the scattering function ρ for the inner path vertices and the geometryG and visibility
V terms for path segments:

T(x)=

[
k−1∏
i=1

ρ(xi)

][
k−1∏
i=0

G(xi,xi+1)V (xi,xi+1)

]
. (S.3)

For a path segment xy, we haveG(x,y)= D(x→y)D(y→x)
‖x−y‖2 , whereD(x→y) = |nx·ωxy| if x is on a surface andD(x→y) = 1

if x is in a medium, and likewise for D(y→x). Here nx is the surface normal at x and ωxy is a unit-length vector from x to y.
We assume that V is a fractional visibility function accounting for transmittance within media in addition to binary visibility
for opaque objects. For path segment xy, it is given by V (x,y) = exp

(
−
∫ ‖x−y‖

0
σt(x + tωxy) dt

)
where σt is the extinction
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Figure S.1: Schematic description of bidirectional path tracing (BPT, top) and photon mapping (PM, bottom). In both al-
gorithms, an eye and a light subpath are traced from the eye and the light source respectively; these two subpaths are then
connected to form a full path, via deterministic shadow connection in the case of bidirectional path tracing, and via an addi-
tional random segment and density estimation in photon mapping (Figure after Georgiev et al. [2012]).

coefficient of the medium or a delta function at the boundary of opaque objects. The scattering kernel at each vertex is defined
as:

ρ(xi) =

{
ρs(xi−1→xi→xi+1) xi on surface,
ρp(xi−1→xi→xi+1)σs(xi) xi in medium,

(S.4)

where σs is the scattering coefficient in the medium, and ρs and ρp are the surface BSDF and phase function respectively.

Monte Carlo solutions approximate the path integral as a Monte Carlo estimator:

〈I〉 =
1

n

n∑
j=1

f(xj)

p(xj)
, (S.5)

that averages the contribution of n random paths xj , sampled with a probability distribution function (pdf) p(xj), which is
given by the combined probability density of each of the vertex locations p(x) = p(x0...xk). The probability density of the
path is determined by the sampling technique used to obtain the path: for example, bidirectional path tracing (BPT) [Lafortune
and Willems 1993; Veach and Guibas 1994] independently generates a subpath xw from the eye with pdf p(xw) and a subpath
xl from the light with pdf p(xl). These are then (optionally) connected using a shadow ray to build the full path x with pdf
p(x) = p(xl)p(xw) (see Figure S.1, top).

A.2 Photon Mapping

Photon mapping (PM) [Jensen 2001] is an efficient and robust two-pass global illumination algorithm. In the first pass (photon
tracing), light subpaths are traced from the light sources, and their vertices hitting a diffuse surface are stored in a data structure
called the photon map, which represents incoming flux.

In the second pass (radiance estimation, see Figure S.1,bottom), PM estimates the reflected radiance at a point x in direction
ωo using density estimation from the M nearest photons as:

L̂o(x, ωo) =
1

M

M∑
j=1

KR(‖x− xj‖)γj (S.6)

where KR is the spatial smoothing kernel with bandwidth R, and xj and γj are the position and contribution of photon j. Note
that γj is a function of the light subpath of the photon xl,j , and is computed as: γj = ρ(ωj→x→ωo)Le(x0,j→x1,j)T(xl,j)/p(xl,j),
with ωj the incoming direction of the photon j. PM successfully handles difficult light paths, at the price of introducing bias.
This means that the estimated radiance in Equation S.6 can be written as L̂o = Lo + ε, where Lo is the actual radiance and ε
represents the error introduced by the density estimation. An important property of PM is that, although biased, it is consistent,



meaning that the bias vanishes in the limit using an infinite number of photons M and a kernel KR with differential bandwidth
dR. This is obviously not a practical solution, so several improvements have been proposed over the last few years [Hachisuka
et al. 2013].

Progressive Photon Mapping Progressive photon mapping (PPM) [Hachisuka et al. 2008; Hachisuka and Jensen 2009;
Knaus and Zwicker 2011] is a multipass variant of photon mapping that allows handling difficult light paths without having to
store an infinite number of photons in the photon map to eliminate bias. The method progressively traces photons, estimates
radiance and discards photons, updating the results at each step while ensuring convergence in the limit. Since a new photon map
is computed at each iteration, this is equivalent to performing different independent samples on the radiance. The approximated
pixel measure 〈In〉 in pass n is computed as:

〈In〉 =
1

n

n∑
j=1

ΨjL̂o(xj , ωo,j) (S.7)

where Ψj = T(xw,j)/p(xw,j)We(xk,j→xk−1,j) is the eye subpath contribution to x.

Knaus and Zwicker [Knaus and Zwicker 2011] showed that this estimation is consistent if both the variance Var[εn] and
expected value E[εn] of the error εn vanish as n→∞:

Var[εn]→0 =⇒ Var[〈In〉]→0 (S.8)
E[εn]→0 =⇒ E[〈In〉]→I. (S.9)

To accomplish this, the bias E[εj ] is reduced in each iteration j by progressively reducing the bandwidth R of KR, while
allowing the Var[εj ] at each iteration to increase as:

Var[εj+1]

Var[εj ]
=

R2
j

R2
j+1

=
j + 1

j + α
(S.10)

Note that this radius redution is valid for surfaces, for volumetric density estimation of photon points in media it is a function
of R3. The user parameter α ∈ (0, 1) controls how much the variance is allowed to increase in each iteration. This value
determines the trade-off between the reduction of bias and radiance [Knaus and Zwicker 2011], and its choice has a dramatic
effect on the convergence rate of the algorithm, as shown by Kaplanyan and Dachsbacher [2013].

B Progressive Temporal Density Estimation

In this section we analyze the behavior and convergence of the error of the kernel-based temporal density estimation described
in Section 4. We first analyze the variance and expected error introduced by using the density estimation kernel with a fixed
bandwidth (Section B.1). Based on these results, we then analyze the error and convergence rate of the progressive density
estimation scheme, which allows to obtain a consistent estimation in the limit (Section B.2). Finally, we derive the parameters
yielding optimal convergence with respect to the AMSE for the progressive approach (Section B.3).

B.1 Variance and expected error of density estimation

Following the recent probabilistic framework for the progressive photon mapping algorithm [Knaus and Zwicker 2011], here we
analyze the variance and expected value of the error introduced by the temporal kernel-based density estimate at each iteration.
This error ε is defined as the difference between the estimated pixel value 〈I〉 and the actual value I , at sensor point x and time
t. Using the temporal kernel KT , with bandwidth T , we have:

ε =
1

n

n∑
j=1

KT (‖t− t−j ‖)Îj − I. (S.11)

Variance In order to compute the variance of the error Var[ε] we need to make a set of assumptions: First, we assume that
the samples’ probability density is constant within the kernel KT in the temporal domain. We denote this probability as pT (t).
We also assume that the samples’ time tj and pixel measurement Îj are independent samples of the random variables T and



Î , respectively, where T has probability density pT (t). Finally, we assume that the random variables T and Î are mutually
independent. We thus model Var[ε] as:

Var[ε] = Var[
1

n

n∑
j=1

KT (‖t− T‖)Î − I]

=
1

n
(Var[KT ] + E[KT ]2)

(Var[Î] + E[Î]2)− 1

M
E[KT ]2E[Î]2. (S.12)

Here E[KT ] = pT (t), while the variance introduced by the temporal kernel Var[KT ] has the form:

Var[KT ] =

∫
ΩT

KT (‖t− T‖)2pT (T ) dT − pT (t)2 (S.13)

where ΩT is the area where KT is compactly supported, with constant density of samples pT (t). We express KT as a canonical
kernel kT with unit integral such that KT (ξ) = kT (ξ/T )T −1, and perform the change of variable ψ = (ξ − t)/T and
dξ = T dψ: ∫

ΩT

KT (‖ξ − t‖)2 dξ =

∫
R

1

T
kT (ψ)2 dψ, (S.14)

which substituted in (S.13) allows us to define Var[KT ] as:

Var[KT ] =
pT (t)

T

∫
R
kT (ψ)2 dψ − pT (t)2. (S.15)

These transformations allow us to express (S.12) as:

Var[ε] =
1

M
(Var[Î] + E[Î]2)

(
pT (t)

T

∫
R
kT (ψ)2 dψ − pT (t)2 + pT (t)2)

− 1

M
pT (t)2E[Î]2

=
1

M
(Var[Î] + E[Î]2)(

pT (t)

T
CT ) (S.16)

where CT is a kernel-dependent constant. The last term can be neglected by assuming that the kernels cover small areas in their
respective domains, which effectively means that CT � pT (t). Equation (S.16) shows that in transient density estimation, the
variance Var[ε] is inversely proportional to T .

Bias Bias at each iteration j is defined as the expected value of the error E[εj ]:

E[εj ] = E[
1

M

M∑
i=1

KT (‖t− T‖)Î − I]

= E[KT (‖t− T‖)]E[Î]− I. (S.17)

As with the variance, we need to assume that the samples time and contribution can be interpreted as independent identically
distributed random samples from the random variables T (with probability density pT (t)) and Î respectively.

The expected value of KT (‖t− T‖) is described as:

E[KT ] =

∫
ΩT

KT (‖t− T‖)pT (T ) dT

=

∫
R

1

T
kT (‖t− T‖/T )pT (T ) dT. (S.18)



The second form of the equation is obtained by transformingKT into a unit canonical form of the kernel kT such thatKT (ξ) =
kT (ξ/T )1/T . Assuming a locally uniform distribution pT (ξ) (similar to modeling Var[ε]) is too restrictive to model the
expected error accurately, since it leads to zero bias in the limit. Therefore, following previous work [Knaus and Zwicker
2011], we use a Taylor expansion of pT (ξ):

pT (ξ) = pT (t) + (ξ − t)5pT (t) +O(‖ξ − t‖2). (S.19)

We plug this expression into (S.18), and apply the changes of variable ψ = (T − t)/T and dT = T dψ, to get:

E[KT ] =
1

T

∫
R
kT (ψ)(pT (t) + T ψ5pT (t) +O(‖T ψ‖2))T dψ

= pT (t)

∫
R
kT (ψ) dψ + T 5pT (t)

∫
R
kT (ψ)ψ dψ

+T 2

∫
R
kT (ψ)O(‖ψ‖2) dψ

≈ pT (t) + T 2

∫
R
kT (ψ)O(‖ψ‖2) dψ

= pT (t) + T 2CiiT . (S.20)

This means that bias due to radiance estimation in the temporal domain is inversely proportional to T 2 and a constant CiiT
dependent on the high-order derivatives of the probability densities. We apply the last approximation by observing that in most
common scenarios

∫
R kT (ψ)ψ dψ ≈ 0. Given this approximation, and using I = pT (t)E[Î], we can formulate the expected

value E[KT ] as:

E[εj ] ≈ (pT (t) + T 2CiiT )E[Î]− pT (t)E[Î]

= E[Î]T 2CiiT . (S.21)

B.2 Variance and expected error of the pixel estimate

Here we derive the variance and expected error of the pixel estimate 〈In〉 after the n-th pass of the progressive algorithm, as
modeled in Equation (7). The sampled variable is the time instant tj where the estimation is being computed. As previously,
we assume that they are independent identically distributed random samples.

Variance Assuming the random variable εj , we model the variance of the estimator Var[〈In〉] as [Knaus and Zwicker 2011]:

Var[〈In〉] =
1

n
Var[I] +

1

n2

n∑
j=1

Var[εj ]. (S.22)

The first term is the usual Monte Carlo estimator, which vanishes with O(n−1). The other three terms, however, are functions
of the error εj . Var[εn] is the variance of the average error, modeled as:

Var[εn] =

n∑
j=1

1

n
Var[εj ] =

1

n2

n∑
j=1

Var[εj ]. (S.23)

In oder to achieve consistency, we allow the variance of the expected error to increase at each iteration by a factor (S.10):

Var[εj+1]

Var[εj ]
=

(
j + 1

j + α

)
. (S.24)

We can model Var[εn] as a function of the variance at the first iteration Var[ε1] as:

Var[εn] =
Var[ε1]

n2
(1 +

n∑
j=2

jαB(α, j)), (S.25)



where B(x, y) = Γ(x)Γ(y)
Γ(x+y) is the Beta function, and Γ(n) = (n−1)! is the Gamma function. Using the approximation proposed

by Kaplanyan and Dachsbacher [2013], we get:

Var[εn] ≈ Var[ε1]

(2− α)nα
= O(n−α). (S.26)

Finally, using this formulation of the variance of the average error Var[εn] and asypmtotic simplifications, we can formulate
Var[〈In〉] (S.22) as:

Var[〈In〉] ≈
1

n
Var[I] + Var[εn]

≈ 1

n
Var[I] +

Var[ε1]

(2− α)nα

= O(n−1) +O(n−α) = O(n−α). (S.27)

Expected error The expected value of of the estimator E[〈In〉] is modeled as:

E[〈In〉] = E[
1

n

n∑
j=1

(Ij + εj)]

=
1

n

n∑
j=1

E[Ij ] +
1

n

n∑
j=1

E[εj ]

= I + E[εn] (S.28)

where E[εn] is the bias of the estimator after n steps:

E[εn] =
1

n

n∑
j=1

E[εj ], (S.29)

and E[εj ] is the expected value of the error at each pass, described in Equation (S.21).

Following Equation (S.10) we compute Tj as a function of its initial value T1 as:

Tj = T1

j−1∏
k=1

(
k + α

k + 1

)
= T1

(
(α+ 1)j−1

Γ(j − 1)

)
= T1

(
Γ(α+ j)

Γ(α+ 1)Γ(j + 1)

)
= T1

(
Γ(α+ j)

j · α · Γ(α)Γ(j)

)
= T1(j · α · B(α, j))−1 (S.30)

where Γ(n) is the Gamma function, B(x, y) is the Beta function, and (x)n is the Pochhammer symbol (x)n = x(x − 1)(x −
2)..(x− n+ 1).

Using (S.30) we can express E[εj ] (S.21) as a function of the initial kernel bandwidths:

E[εj ] = T 2
1 (j · α · B(α, j))−2CiiT (S.31)

As noted by Knaus and Zwicker [2011], we can use Stirling’s formula to get the asymptotic approximation of Tj , which allows
us to express E[εj ] in asymptotic notation:

E[εj ] = CiiT T 2
1 Θ(j1−α)−2 (S.32)



Finally, we use
∑n
j=1 Θ(jx) = nO(nx) to plug Equation (S.32) into Equation (S.29) to get the asymptotic behavior of E[εn]:

E[εn] =
1

n
CiiT T 2

1 nO(n1−α)−2

= O(n1−α)−2, (S.33)

Inserting this last equality into Equation (S.28) allows us to compute the asymptotic form of E[〈In〉] as:

E[〈In〉] = O(n1−α)−2. (S.34)

B.3 Minimizing the Asymptotic Mean Squared Error

As shown above, the convergence rates of both the variance Var[〈In〉] and the expected error E[〈In〉] depend on the value
assigned to the parameter α. Ideally, we want to obtain the parameter that allows reducing faster the total error. We measure
the total error using the asymptotic mean squared error (AMSE), defined in Equation (8); using the obtained values for variance
Var[〈In〉] and bias E[〈In〉], it becomes:

AMSE(〈In〉) = O(n−α) +O(n1−α)−4. (S.35)

By finding the derivate of Equation (S.35) and equating to zero we get the optimal parameter α = 4/5, which leads to the
optimal convergence rate of the AMSE of our transient density estimate:

AMSE(〈In〉) = O(n−
4
5 ) +O(n1− 4

5 )−4 = O(n−
4
5 ) (S.36)

C Transient Progressive Photon Mapping

Here we describe our transient formulation of progressive photon mapping (PPM) [Hachisuka et al. 2008; Hachisuka and
Jensen 2009]. We first give an overview of the algorithm, describing the spatio-temporal smoothing kernel used, the progressive
approach followed to vanish error in the limit, and the behaviour of the algorithm (Section C.1). Then, we analyze the variance
and expected error introduced by the spatio-temporal density estimation for a given iteration j (Section C.2), and use these
results to derive the asymptotic convergence rate after n iterations (Section C.3). Finally, we detail the derivation of the optimal
parameters for higher asymptotic convergence with respect to the AMSE (Section C.4).

C.1 Algorithm

To include the temporal domain in a photon mapping framework, we need to take into account the time delays described in
Equation (4), while adding a temporal smoothing kernelKT in the density estimation, similar to Cammarano and Jensen [2002].
This results in an approximation of the radiance L̂o(x, t) as:

L̂o(x, t) =
1

M

M∑
i=1

K(‖x− xi‖, ‖t− t−i ‖)γi, (S.37)

where K(x, t) = KR(x) · KT (t) and KR is the spatial smoothing kernels with bandwidth R. We decompose K into KR

and KT since they operate in separate domains, which might result into different kernel types; this is a typical approach in
multivariate density estimation [Scott 1992].

In our transient framework, Equation (S.7) now becomes:

〈In〉 =
1

n

n∑
j=1

ΨjL̂o(xj , tj). (S.38)

where Ψj = T(xw,j)/p(xw,j)We(xk,j→xk−1,j) is the importance of the measurement, which is the contribution of the eye
subpath xw,j . Unfortunately, although variance is reduced, using this estimator introduces bias in the final solution due to the
expected error εj in each iteration, which depends on the size of the kernel estimation (as seen in Section A). This means that
the estimate of the pixel 〈In〉 is the sum of the actual value of the pixel I and the expected error E[εn]:

E[〈In〉] = I + E[εn] = ΨjLo +
1

n

n∑
j=1

ΨjE[εj ]. (S.39)

Section C.2 derives the expression for the expected error E[εj ] for the case of transient rendering.



Eliminating bias. To eliminate bias, a transient progressive approach can be used. As discussed in Section A, progressive
photon mapping uses a number of photon tracing passes, each providing an increasingly accurate solution. It can be shown
(see Section C.2 for the full derivation) that the variance of the density estimation in transient PPM is inversely proportional to
R2T :

Var[εj+1]

Var[εj ]
=

R2
jTj

R2
j+1Tj+1

=
j + 1

j + α
. (S.40)

Equation (S.40) shows that transient PPM involves progressively reducing two parameters, R and T , referring to the spatial
and temporal domains. We thus split the variance scaling factor (j + 1)/(j + α) into two, one for each kernel bandwidth. This
yields:

Tj+1

Tj
=

(
j + α

j + 1

)βT
,

R2
j+1

R2
j

=

(
j + α

j + 1

)βR
(S.41)

where βT and βR are scalars in the range [0, 1] which control how much each term is to be scaled separately, with βT +βR = 1.

Error analysis. For our analysis on the error of the estimate, we use the AMSE metric (8) again. The progressive approach
described above ensures that error tends to zero when n→∞. However, the two terms of the AMSE metric have different
convergence rates, dependent on the parameters α, βT and βR. We model the variance of the estimate Var[〈In〉] as [Knaus and
Zwicker 2011]:

Var[〈In〉] =
1

n
Var[ΨLo] +

1

n2

n∑
j=1

Var[Ψεj ]. (S.42)

The first term is a Monte Carlo estimator, with known convergence rateO(n−1), while the second is the variance of the average
error Var[εn], which converges with O(n−α). The detailed derivation of this result appears in Appendix C.3:

Var[〈In〉] = O(n−1) +O(n−α) = O(n−α). (S.43)

Therefore, variance for transient PPM converges at the same rate as standard PPM, which for α = 1 converges at the same rate
as a Monte Carlo estimator. The parameters βT and βR have no influence on the convergence rate.

On the other hand, the expected average error in transient PPM E[εn] is (see Section C.3):

E[〈In〉] = E[
1

n

n∑
j=1

Ψj(Lo,j + εj)] = I + E[
1

n

n∑
j=1

Ψjεj ]. (S.44)

while its convergence rate is:

E[〈In〉] = O(n1−α)−2βT +O(n1−α)βT−1 +O(n1−α)−(1+βT ). (S.45)

In this case, the choice of βT (and in consequence βR) has a crucial effect on the asymptotic bias reduction. By observing the
behavior in the limit, we find that the optimal parameter is βT = 1/3, which means that E[〈In〉] converges with O(n−

2(1−α)
3 ).

Given these convergence rates, and using the AMSE metric given by Equation (8), we can now obtain the optimal parameter α
for progressive transient radiance estimation, α = 4/7 (see Section C.4). This means that the AMSE vanishes asymptotically
with orderAMSE = O(n−

4
7 ). This shows that including the temporal domain leads to a slower convergence rate than standard

PPM (O(n−2/3) [Kaplanyan and Dachsbacher 2013]); since the additional temporal kernel effectively increases bias, reducing
it requires increasing the variance more at each step. However, note that in order to use standard PPM we would need to
combine it with e.g. the histogram; this leads to a much slower convergence of standard PPM in transient rendering.

C.2 Variance and Expected Error of Transient Radiance Estimation

Following again the recent probabilistic framework for the progressive photon mapping algorithm [Knaus and Zwicker 2011],
we first analyze the variance and expected value of the error introduced by the radiance estimate at each iteration. This error
ε is defined as the difference between the estimated radiance L̂o and the actual radiance Lo, at point x and time t. Using the
spatial and temporal kernels KR and KT , with bandwidths R and T respectively, we have:

ε(x, R, t, T ) =
1

M

M∑
i=1

KR(‖x− xi‖)KT (‖t− t−i ‖)γi − Lo(x, t). (S.46)



Variance In order to compute the variance of the error Var[ε] we need to make a set of assumptions: First, we assume that
the photons’ probability density is constant within the kernel KR in the spatial domain [Knaus and Zwicker 2011], and within
KT in the temporal domain. We denote these probabilities as pR(x) and pT (t) respectively. We also assume that the photons’
position xi, time ti and energy contribution γi are independent samples of the random variablesX , T and γ, respectively, where
X and T have probability densities pR(x) and pT (t). Finally, we assume that the random variables X , T and γ are mutually
independent. We thus model Var[ε] as:

Var[ε] = Var[
1

M

M∑
i=1

KR(‖x−X‖)KT (‖t− T‖)γ − Lo(x, t)]

=
1

M
(Var[KR] + E[KR]2)(Var[KT ] + E[KT ]2)

(Var[γ] + E[γ]2)− 1

M
E[KR]2E[KT ]2E[γ]2. (S.47)

Here E[KR] = pR(x) and E[KT ] = pT (t), the variance introduced by the temporal kernel Var[KT ] is modeled by Equa-
tion (S.13), and Var[KR] is derived analogously to Equation (S.13) (see Section B.1) as:

Var[KR] =
pR(x)

R2

∫
R2

kR(ψ)2 dψ − pR(x)2. (S.48)

These transformations allow us to express (S.47) as:

Var[ε] =
1

M
(Var[γ] + E[γ]2)

(
pR(x)

R2

∫
R2

kR(ψ)2 dψ − pR(x)2 + pR(x)2)

(
pT (t)

T

∫
R
kT (ψ)2 dψ − pT (t)2 + pT (t)2)

− 1

M
pR(x)2pT (t)2E[γ]2

≈ 1

M
(Var[γ] + E[γ]2)(

pR(x)

R2
CR)(

pT (t)

T
CT ) (S.49)

where CR and CT are kernel-dependent constants. The last term can be neglected by assuming that the kernels cover small
areas in their respective domains, which effectively means that CR � pR(x) and CT � pT (t). Equation (S.49) shows that for
transient density estimation, the variance Var[ε] is inversely proportional to R2T . We show in Section C.3 how this fact affects
the shrinking formulation for progressive estimation.

Bias Bias at each iteration j is defined as the expected value of the error E[εj ]:

E[εj ] = E[
1

M

M∑
i=1

KR(‖x−X‖)KT (‖t− T‖)γ − Lo(x, t)]

= E[KR(‖x−X‖)]E[KT (‖t− T‖)]E[γ]− Lo(x, t). (S.50)

As with the variance, we need to assume that the photons’ position, time and energy contribution can be interpreted as indepen-
dent identically distributed random samples from the random variables X (with probability density pR(x)), T (with probability
density pR(x)) and γ respectively.

The expected value of KT (‖t− T‖) is described in Section B.1, and modeled using Equation (S.20), while the expected value
of the spatial kernel E[KR] is derived in [Knaus and Zwicker 2011] as:

E[KR] ≈ pR(x) +R2

∫
R2

kR(ψ)O(‖ψ‖2) dψ = pR(x) +R2CiiR. (S.51)

Using Equations (S.20) and (S.51), and Lo(x, t) = pR(x)pT (t)E[γ] we get the expected value of the error E[εj ] for iteration j:

E[εj ] ≈ (pR(x) +R2CiiR)(pT (t) + T 2CiiT )E[γ]

−pR(x)pT (t)E[γ] (S.52)
= E[γ](pR(x)T 2CiiT + pT (t)R2CiiR + T 2CiiT R2CiiR)



C.3 Variance and expected error of the pixel estimate

Here we derive the variance and expected error of the pixel estimate 〈In〉 after n steps of the progressive algorithm, as modeled
in Equation (S.39). The samples are the hit position xj and time instant tj where the radiance estimation is being computed.
As previously, we assume that they are independent identically distributed random samples.

Variance Assuming that the random variables Ψ and εj are independent, we model the variance of the estimator Var[〈In〉]
as [Knaus and Zwicker 2011]:

Var[〈In〉] =
1

n
Var[ΨLo] +

1

n2

n∑
j=1

Var[Ψεj ]

=
1

n
Var[ΨLo] + Var[Ψ]

1

n2

n∑
j=1

Var[εj ] (S.53)

+E[Ψ]2
1

n2

n∑
j=1

Var[εj ] + Var[Ψ]
1

n2

n∑
j=1

E[εj ]
2.

The first term is the usual Monte Carlo estimator, which vanishes with O(n−1). The other three terms, however, are functions
of the error εj . Var[εn] is the variance of the average error, modeled as:

Var[εn] =

n∑
j=1

1

n
Var[εj ] =

1

n2

n∑
j=1

Var[εj ]. (S.54)

As described before, we allow the variance of the expected error to increase at each iteration by a factor:

Var[εj+1]

Var[εj ]
=

(
j + 1

j + α

)βT
·
(
j + 1

j + α

)βR
=
j + 1

j + α
. (S.55)

Following [Knaus and Zwicker 2011], we can model Var[εn] as a function of the variance at the first iteration Var[ε1] as:

Var[εn] =
Var[ε1]

n2
(1 +

n∑
j=2

jαB(α, j)), (S.56)

where B(x, y) is the Beta function. This value can be approximated as [Kaplanyan and Dachsbacher 2013]:

Var[εn] ≈ Var[ε1]

(2− α)nα
= O(n−α). (S.57)

Finally, using this formulation of the variance of the average error Var[εn] and asypmtotic simplifications, we can formulate
Var[〈In〉] (S.54) as:

Var[〈In〉] ≈
1

n
Var[ΨLo] + E[Ψ]2Var[εn]

≈ 1

n
Var[ΨLo] +

Var[ε1]

(2− α)nα

= O(n−1) +O(n−α) = O(n−α). (S.58)

Expected error The expected value of of the estimator E[〈In〉] is modeled as:

E[〈In〉] = E[
1

n

n∑
j=1

Ψj(Lo,j + εj)]

=
1

n

n∑
j=1

E[ΨjLo,j ] +
1

n

n∑
j=1

E[Ψj ]E[εj ]

= In + E[Ψ]E[εn] (S.59)



where E[εn] is the bias of the estimator after n iterations (S.29), and E[εj ] is the expected value of the error at each pass (S.53).

Following Equation (S.41) and (S.30) we compute Tj as a function of its initial value T1 as:

Tj = T1(jαB(α, j))−βT (S.60)

where B(x, y) is the Beta function. Analogously, we compute R2
j as a function of its initial value R2

1:

R2
j = R2

1(jαB(α, j))−βR . (S.61)

Using (S.60) and (S.61) we can express E[εj ] as a function of the initial kernel bandwidths:

E[εj ] = E[γ]pR(x)T 2
1 (jαB(α, j))−2βT CiiT

+E[γ]pT (t)R2
1(jαB(α, j))−βRCiiR (S.62)

+E[γ]T 2
1 R

2
1(jαB(α, j))−(2βT +βR)CiiT CiiR,

which using Stirling’s formula to approximate T j and Rj allows us to express E[εj ] as:

E[εj ] = E[γ]pR(x)CiiT T 2
1 Θ(j1−α)−2βT

+E[γ]pT (t)CiiRR2
1Θ(j1−α)−βR

+E[γ]CiiT CiiRT 2
1 R

2
1Θ(j1−α)−(2βT +βR). (S.63)

Finally, we use
∑n
j=1 Θ(jx) = nO(nx) to plug Equation (S.63) into Equation (S.29) to get the asymptotic behavior of E[εn]

in transient progressive photon mapping:

E[εn] =
E[γ]

n
pR(x)CiiT T 2

1 nO(n1−α)−2βT

+
E[γ]

n
pT (t)CiiRR2

1nO(n1−α)−βR

+
E[γ]

n
CiiT CiiRT 2

1 R
2
1nO(n1−α)−(2βT +βR) (S.64)

= O(n1−α)−2βT +O(n1−α)−βR +O(n1−α)−(2βT +βR),

which, by using the equality βR = 1− βT , becomes:

E[εn] = O(n1−α)−2βT +O(n1−α)βT −1 +O(n1−α)−(1+βT ). (S.65)

Inserting this last equality into Equation (S.59) allows us to compute the asymptotic form of E[〈In〉] as:

E[〈In〉] = O(n1−α)−2βT +O(n1−α)βT −1 +O(n1−α)−(1+βT ). (S.66)

where the error vanishes in the limit since we impose that E[εj ] > E[εj ]. This consistency has a convergence rate dependent on
both α (the common PPM parameter), and βT , which balances the shrinking rate of the spatial and temporal kernels.

C.4 Minimizing the Mean Squared Error

Here we obtain the parameters α and βT that allows optimal consistency in terms of ASME (8) in transient progressive photon
mapping. Using the expressions obtained for the variance Var[〈In〉] and expected error Var[〈In〉], we model AMSE as:

AMSE(〈In〉) = O(n−α) + (O(n1−α)−2βT

+O(n1−α)βT−1 +O(n1−α)−(1+βT ))2. (S.67)

which is a function of the parameters α and βT . Given that the variance is independent of βT , we first obtain the optimal
value for this parameter that yields the highest convergence rate of the bias E[εn]. After differenciating Equation (S.65),
applying asymptotic simplifications and equating to zero, we obtain the optimal value βT = 1/3. By plugging this value in
Equation (S.65), we can express the AMSE as:

AMSE(〈In〉) = O(n−α) +O(n−
4
3 (1−α)). (S.68)

Differentiating Equation (S.68) and equating to zero we get the optimal parameterα = 4/7, which results in the optimal
convergence rate of the AMSE of our transient progressive photon mapping formulation:

AMSE(〈In〉) = O(n−
4
7 ) +O(n−

4
3 (1− 4

7 )) = O(n−
4
7 ). (S.69)



D Derivations for time sampling

Here we derive the different pdf shown in Section 5 and illustrate how each of those pdf lead to a uniform distribution of path
samples along the temporal domain.

D.1 Sampling scattering distance in eye/light subpaths

This section describes the derivation for the pdf chosen in Section 5.1 of the paper. We aim to find a pdf p(r) for a single
segment of the light subpath, such as the distribution of subpath vertices along the temporal domain is uniform. We define
p (∪∞i=1ti) based on the per-vertex temporal location probability distribution p(ti) for all subpath vertices:

p (∪∞i=1ti) =

∞∑
i=1

p(ti), (S.70)

where p(ti) is defined based as the addition on ti = t(xi ↔ xi−1) + ti−1 (propagation time plus temporal location of the
previous sample). The probability distribution of an addition is the convolution of the probability distribution of the addends,
so therefore

p(ti) =

∫ ti

0

p
(
t(xi−1↔xi)

)
p(ti−1)dti−1, (S.71)

p(t1) = p
(
t(x0↔x1)

)
. (S.72)

The probability distribution of the propagation time p (t(xi↔xi−1)) is related to the scattering distance pdf p(r) by the change
of variable r = c

η t(xi−1↔xi).

This temporal distribution p (∪∞i=1ti) should be uniform in time. We are obviously not letting the system to cast paths of infinite
number of interactions. As stated in the paper, we reject samples when they get out of the sensor temporal window.

For this derivation we will move our calculations to Laplace space. We note the Laplace transform of a function f as L{f},
and we are interested in the following properties of the Laplace transform:

L{af(t)} = aL{f}(s) (S.73)
L{f(t) + g(t)} = L{f}(s) + L{g}(s) (S.74)

L{f(at)} =
1

|a|
L{f}( s

a
) (S.75)

L{
∫ t

0

f(τ)g(t− τ)dτ} = L{f}(s) · L{g}(s) (S.76)

L{u(t)} =
1

s
(S.77)

L{e−αt · u(t)} =
1

s+ α
(S.78)

where u(t) is the unit step function:

u(t) =

{
0 t < 0

1 t ≥ 0
(S.79)

and s is the variable in the Laplace frequency domain.

Lets prove that the exponential distribution p(r) = u(r)λe−λr leads to a uniform distribution of samples in time p (∪∞i=1ti).
We start by applying the Laplace transform to p(r) based on the Laplace properties defined in (S.73) and (S.78):

L{λe−λr} =
λ

s(r) + λ
(S.80)

where s(r) is the Laplace frequency domain representation of r. For any propagation time t(xi↔xi−1) we always apply the
same scattering distance pdf p(r) so we apply the change of variable:

L{p(t(xi↔xi−1))} =
c

η

η

c
L{p}(η

c
s(↔)) =

λ
η
c s

(↔) + λ
(S.81)



where t(xi↔xi−1) represents propagation time in this case as a change of variable from distance r, and s(↔) is the Laplace
domain representation of t(xi↔xi−1). This is applied for the first interaction,

L{p(t1)} =
c

η

η

c
L{p}(η

c
si) =

λ
η
c s

(t)
1 + λ

, (S.82)

where s(t)
i is the Laplace domain representation of ti. The subsequent interactions are obtained by applying the convolution

property (S.76) to (S.71):
L{p(ti)} = L{p}(s(↔)) · L{p}(s(t)

i−1). (S.83)

We then apply recursively (S.83) so L{p(ti)} actually becomes a simple power:

L{p(ti)} =
(
L{p}(s(↔))

)i
=

(
λ

η
c s

(↔) + λ

)i
(S.84)

We then apply the Laplace transform to (S.70) using the property (S.74):

L{p (∪∞i=1ti)} =
∞∑
i=1

(
λ

η
c s

(↔) + λ

)i
(S.85)

which is in fact an infinite geometric series, which has the following analytical solution:

L{p (∪∞i=1ti)} =
1

1− λ
η
c s

(↔)+λ

− 1 =
c

η

λ

s(↔)
(S.86)

If we then apply the anti-transform by properties (S.73) and (S.77) we get:

p (∪∞i=1ti) =
c

η
λu(t) (S.87)

which is uniform in time. We reject all paths with total duration tk out of the rendered time window (0, te) so p (∪∞i=1ti) never
reaches infinite time nor infinite number of bounces. Notice that this derivation is analogous for the eye subpath.

D.2 Sampling line-to-point shadow connections

This section describes the derivation of the line-to-point shadow connection pdf described in Section 5.2 of the paper.

Any sampling strategy is usually based on a pdf that can be analytically integrated to get an invertible cdf. In the case of
steady-state strategies, the pdf reduces variance by approximating the integrand (in this case path contribution, radiance) as
close as possible. This approach, however, cannot be directly applied to transient rendering, where the uniformity of samples
along the temporal dimension becomes quite relevant for the accuracy of the result.

The inverse cdfselects a sample according to a uniformly distributed random number ξ ∈ [0, 1). The key idea of this sampling
strategy is to preserve the uniformity of such random number when changing to the temporal domain. The time to be uniformly
sampled is the propagation time {xi,xi+1,xi+2}. We name the distance from xi to xi+1 as ri+1, and ri+2 is the distance from
xi+1 to xi+2. Therefore, the total propagation time for this connection is

t =
η

c
(ri+2 + ri+1) . (S.88)

We start by expressing the total propagation time as a function of ri+2:

t−i+2(ri+2) =
η

c

ri+2+
√
r2
i+2− 2ri+2(l · ω) + l · l︸ ︷︷ ︸

ri+1

+ ti + ∆ti+1, (S.89)



where l = xi − xi+2. Inverting this allows us to sample path locations for a specified temporal duration:

ri+2(t−i+2) =
(t−i+2 − ti −∆ti+1)2 − η2

c2 (l · l)
2ηc (t−i+2 − ti −∆ti+1)− 2η

2

c2 (l · ω)
. (S.90)

To obtain shadow connections uniformly distributed in a time range (ta, tb), we use Equation (S.90) as the inverse cdf

cdf−1(ξ) = ri+2(ξ(tb − ta) + ta), (S.91)

The normalized derivative of (S.89) is then the sampling pdf:

p(ri+2) =
η

c(tb−ta)

1+
ri+2 − (l · ω)√

r2
i+2 − 2ri+2(l · ω) + (l · l)

, (S.92)

Assuming that animation lies within the time range (0, te), we set the connection time limits (ta, tb) to the temporal range left
by the rest of the path for that connection:

ta = ti + t(xi↔xi+2) (S.93)

tb = te −∆tk −

 k−1∑
j=i+2

t(xj↔xj+1) + ∆tj

 (S.94)

D.3 Angular sampling

This section describes the derivation of the angular time sampling strategy discussed on Section 5.3 of the paper.

For the angular sampling pdf we follow a similar strategy than for a line-to-point shadow connection: we also aim to preserve
the uniformity of the random number ξ when moving to the temporal domain. The propagation time between the vertices
{xi,xi+1,xi+1} is

t =
η

c
(rk + ri+1) , (S.95)

where ri+1 is the distance from xi to xi+1 and rk is the distance from xi+1 to xk. We express this propagation time as a
function of θ

t(θ) =
η

c

ri+1 +

√
(ri+1 sin θ)

2
+ (|l| − ri+1 cos θ)

2︸ ︷︷ ︸
rk

 , (S.96)

where l = xk − xi. This can be simplified to:

t(θ) =
η

c

(
ri+1 +

√
r2
i+1 + |l|2 − 2ri+1|l| cos θ

)
. (S.97)

Inverting (S.97) allows us to choose an angle for a specified temporal duration:

θ(t) = arccos

 |l|2 + 2t cη −
(
t cη

)2

2|l|ri+1

 (S.98)

We use (S.98) as the base for the inverse cdf

cdf−1(ξ) = θ(ξ(t(π)− t(0)) + t(0)), (S.99)



a

Standard9Sampling91M9
Standard9Sampling91K9
Time9Sampling91K

Time-resolved9Log9Radiance9at9(a)

g
9=

90
.8

0.2

t

0.9

t

1.5

t
0.2

t

0.9

t

1.5

t

g
9=

9-
0.

8

Figure S.2: Comparison of our three time sampling strategies combined, against the standard techniques used in steady state,
in the dragon scene accounting for multiple scattering (top). Each graph shows the time-resolved radiance (bottom) at pixel
(a), for three different scattering coefficients σs = {0.2, 0.9, 1.5}, and absorption σa = 0.1, for anisotropic media with
g = 0.8 and g = −.08. For 1K samples per pixel and frame, our combined techniques (red) feature a similar quality as
standard steady state techniques with 1000 times more samples (green), while with the same number of samples, our techniques
significantly outperform standard sampling (blue), especially in highly scattering media. Additionally, note that in backward
scattering media our technique outperforms standard-techniques withe three orders of magnitude more samples. To emphasize
the differences between sampling techniques, here we use the histogram path reuse (see Section 4). For results with isotropic
media we refer to Figure 7 in the main text.

which can be expanded into

cdf−1(ξ) = arccos

( |l| − 2r2
i+1ξ

2 − 2ξri+1 (|l| − 1)

ri+1|l|

)
(S.100)

The normalized derivative of (S.97) is therefore our angular pdf:

p(θ) =
ri+1 sin θ

2
√
r2
i+1 + |l|2 − 2ri+1|l| cos θ

(S.101)

E Additional Results

Here we include additional results showcasing the improvements of our techniques. Figure S.2 ilustrates the performance of our
time-sampling techniques on non-isotropic media: our techniques significantly outperform classical radiance-based sampling
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Figure S.3: Light propagation in the absence of participating media, in the two scenes depicted in the leftmost column. In
the bunny scene (top) we can see the curved shape of the indirect wavefronts, and how the irregular shape of the bunny model
makes several different indirect wavefronts (a). In contrast the spheres scene we can observe the different delays due to longer
optical paths in the mirror (c) and glass (e) spheres, and the primary (d) and secondary caustics (f). At longer times, when light
has been reflected several times, the directionality is lost, and light is fundamentally diffuse (b).

g
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Figure S.4: Selected frames from animations of transient light propagation in two scenes with scattering media (the steady
state rendering for both is in the leftmost column) computed using transient photon beams. In both scenes we can see the delay
produced in the caustics by the higher index-of-refraction of the crystal media (g,h), and how the different geometries generate
different caustic patterns (g,i). We can also observe how the caustics are scattered and suffer extinction as they advance through
the medium.

over the full simulation domain for turbid media, while still gives comparable results for thin media. While in some cases our
technique is worse for initial times, because radiance-based techniques allocates more samples at these instants, using multiple
importance sampling (MIS) [Veach and Guibas 1995] to combine radiance- and our time-based sampling techniques would
improve reconstruction over the full temporal domain.

We also include detailed explanations on complex time-resolved phenomena simulated with our framework, showing that by
moving to transient-state several non-trivial effects appear. Note that here we place only a set of selected key-frames of the full
animations; we refer to the supplementary video to visualize the full animations.



Glass

Diffuse Floor

Diffuse Wall

Diffuse reflection 
710 ps50 ps

280 ps 420 ps 560 ps

140 ps

Figure S.5: An orthogonal view of a scene with a white light pulse traversing perpendicularly a cube made of glass with index
of refraction that varies linearly with the wavelength, in the range of [1.5,1.65], and hitting a wall after traversing the cube,
transforming the interaction point into a virtual light source which illuminates a ground floor (b). Due to different speeds, the
different wavelengths of the pulse are decomposed along the trajectory, even after the interaction. White light, as would be seen
in steady state (a), therefore becomes a rainbow in the temporal domain.
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Figure S.6: Light propagation in a piece of glass placed in front of a display with continuous emission in time; the left half of
the image an isotropic crystal (with transmission governed by Snell’s law) and the right half an uniaxial birefringent crystal.
In both cases, the ordinary index of refraction is 1.5, and the extraordinary ηe in the birefringent is 1.65. First, direct light from
the display arrives the camera (a); then, the refracted image begins to form (b). The extraordinary image appears instants later
than the ordinary (c), due to higher index of refraction. Also note that ordinary refraction in the uniaxial crystal has lower
energy than in the isotropic. Finally, internal reflections with longer optical paths are formed (d,e).

Figure S.3 shows transient light propagation in scenes without and with participating media, where the different wavefronts due
to surface inter-reflections can be seen. Additionally, the depicted caustics show how traversing a medium with a higher index
of refraction leads to a temporal delay of the wavefront, more visible with participating media (Figure S.4).

The temporal delay due to refraction becomes particularly interesting simulating real-world glass (Figure S.5): This scene,
computed using the transient progressive photon mapping described in Section 4.1 that allows us to robustly render complex
paths such as caustics, shows how as light traverses the glass, its wavelength-dependent index of refraction causes chromatic
dispersion even when light incomes perpendicular to the surface normal. This could be used to obtain the wavelength-dependent
index of refraction of different crystals, or the power spectra of a light source by using a perpendicular incident beam. Moreover,
this refraction delay is different between ordinary and extraordinary rays in birefringent crystals [Weidlich and Wilkie 2008]
(Figure S.6). Figure S.7 shows an example of the effect of the delay produced at scattering events ρs(xi−1→xi→xi+1,∆ti),
for the particular case of fluorescence. The object’s material is chlorophyll, which re-emits energy at 680 nm after absorp-
tion [Gutierrez et al. 2008].
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