

Predicting Perceived Gloss: Do Weak Labels Suffice?

<u>Julia Guerrero-Viu*</u>¹, <u>J. Daniel Subias*</u>¹, Ana Serrano¹, Katherine R. Storrs², Roland W. Fleming^{3,4}, Belen Masia¹, Diego Gutierrez¹

¹Universidad de Zaragoza, I3A ²University of Auckland ³Justus Liebig University Giessen ⁴Center for Mind, Brain and Behaviour, Universities of Marburg and Giessen

* Joint first authors

Instituto Universitario de Investigación de Ingeniería de Aragón Universidad Zaragoza

This is because our **perception of gloss** is guided by complex interactions between:

Same material and illumination Different **geometry**

Same material and illumination Different **geometry**

[Lagunas et al. 2021]

Same material and geometry Different **illumination**

[Lagunas et al. 2021]

Same material and geometry Different **illumination**

Can we predict perceived gloss?

[Lagunas et al. 2021]

[Wills et al. 09] Toward a perceptual space for gloss

[Fleming 12] The influence of Fresnel effects on gloss perception

[Adams et al. 18] Naturally glossy: Gloss perception, illumination statistics, and tone mapping

[Faul et al. 19] The influence of Fresnel effects on gloss perception

Since the publication of **Hunter et al. [1937]** it has been recognized that a single physical measurement is not sufficient to quantify perceived "gloss"

Since the publication of **Hunter et al. [1937]** it has been recognized that a single physical measurement is not sufficient to quantify perceived "gloss"

Multiple proposals have been made:

BRDF parameters (e.g., [Pellacini et al. 00])

Image statistics (e.g., [Motoyoshi et al. 07])

Industry standards (e.g., [Westlund and Meyer 01])

Related Work: Learning-based Methods

Related Work: Learning-based Methods

Learning-based methods require **data**

Learning-based methods require data

Datasets:

[Serrano et al. 21] 215 680 human annotations

Learning-based methods require data

<u>Datasets:</u>

[Serrano et al. 21] 215 680 human annotations

[Lagunas et al. 19] **114 840** human annotations [Shi et al. 21] **30 100** human annotations [Lavoué et al. 21] **84 138** human annotations [Delanoy et al. 22] **39 000** human annotations

Learning-based methods require data

<u>Datasets:</u>

We seek a **reduction** of the human annotation **costs**

[Lagunas et al. 19] **114 840** human annotations [Shi et al. 21] **30 100** human annotations [Lavoué et al. 21] **84 138** human annotations [Delanoy et al. 22] **39 000** human annotations

Traditional Approaches

Goal

Traditional Approaches

Our Work

Goal

Traditional Approaches

Goal

Traditional Approaches

Overview

Dataset and Weak Labels

Results

Overview

Dataset and Weak Labels

Results

15 Geometries

15 Geometries

17 Illuminations

15 Geometries

17 Illuminations

50 BSDF variations

15 Geometries

17 Illuminations

50 BSDF variations

3 Random colors and rotations

15 Geometries

17 Illuminations

50 BSDF variations

38 250 Total Images

3 Random colors and rotations

• Disney BSDF

Image Statistics

Industry Standards

• Disney BSDF

Image Statistics

Industry Standards

- Disney BSDF
 - Weighted combination f of roughness (r) and specular (s) parameters [Adams et al. 18]
- Image Statistics

Industry Standards

2 6

- Disney BSDF
 - Weighted combination f of roughness (r) and specular (s) parameters [Adams et al. 18]

•	Image Statistics	2	6	7
	 Skewness of the luminance histogram [Motoyoshi et al. 07] 			
	Inductry Standardo	3	4	7

- Disney BSDF
 - Weighted combination f of roughness (r) and specular (s) parameters [Adams et al. 18]
- Image Statistics
 - Skewness of the luminance histogram [Motoyoshi et al. 07]
- Industry Standards
 - Log ratio at 20° between the reflectances of black glass (r_g) and Disney BSDF (r_d) [Westlund and Meyer 01]

2	6	7
3	4	7
1	2	7
Our Dataset: Weak Labels

Overview

Gloss Predictor

Adapted **VGG16** architecture to a 20D **latent space** *z*

Linear regression

Gloss Predictor

Adapted **VGG16** architecture to a 20D **latent space** *z*

Linear regression

Minimize Mean Absolute Error (MAE)

Minimize Mean Absolute Error (MAE)

Minimize Mean Absolute Error (MAE)

Strong Label Manual annotation from humans [Serrano et al. 2021]

Strong Label Manual annotation from humans [Serrano et al. 2021]

Randomly **alternate** training steps:

Strong Label Manual annotation from humans [Serrano et al. 2021]

Randomly **alternate** training steps:

Strong Label Manual annotation from humans [Serrano et al. 2021]

Randomly **alternate** training steps:

Strong Label Manual annotation from humans [Serrano et al. 2021]

Randomly **alternate** training steps:

Strong Label Manual annotation from humans [Serrano et al. 2021]

Randomly **alternate** training steps:

Strong Label Manual annotation from humans [Serrano et al. 2021]

Randomly **alternate** training steps:

Strong Label Manual annotation from humans [Serrano et al. 2021]

- 310 images: Different geometries and five measured materials
- **Controlled** variations:
 - A) Rotations
 - B) Geometry complexity
 - C) Illumination frequency
 - D) Specularity
- Reliable annotations

- 310 images: Different geometries and five measured materials
- **Controlled** variations:
 - A) Rotations
 - B) Geometry complexity
 - C) Illumination frequency
 - D) Specularity
- Reliable annotations

- 310 images: Different geometries and five measured materials
- **Controlled** variations:
 - A) Rotations
 - B) Geometry complexity
 - C) Illumination frequency
 - D) Specularity
- Reliable annotations

- 310 images: Different geometries and five measured materials
- **Controlled** variations:
 - A) Rotations
 - B) Geometry complexity
 - C) Illumination frequency
 - D) Specularity
- Reliable annotations

- 310 images: Different geometries and five measured materials
- **Controlled** variations:
 - A) Rotations
 - B) Geometry complexity
 - C) Illumination frequency
 - D) Specularity
- Reliable annotations

- 310 images: Different geometries and five measured materials
- **Controlled** variations:
 - A) Rotations
 - B) Geometry complexity
 - C) Illumination frequency
 - D) Specularity
- Reliable annotations

- 310 images: Different geometries and five measured materials
- **Controlled** variations:
 - A) Rotations
 - B) Geometry complexity
 - C) Illumination frequency
 - D) Specularity
- Reliable annotations

- 310 images: Different geometries and five measured materials
- **Controlled** variations:
 - A) Rotations
 - B) Geometry complexity
 - C) Illumination frequency
 - D) Specularity
- Reliable annotations

- 310 images: Different geometries and five measured materials
- **Controlled** variations:
 - A) Rotations
 - B) Geometry complexity
 - C) Illumination frequency
 - D) Specularity
- Reliable annotations

- 310 images: Different geometries and five measured materials
- **Controlled** variations:
 - A) Rotations
 - B) Geometry complexity
 - C) Illumination frequency
 - D) Specularity
- Reliable annotations

- 310 images: Different geometries and five measured materials
- **Controlled** variations:
 - A) Rotations
 - B) Geometry complexity
 - C) Illumination frequency
 - D) Specularity
- Reliable annotations

- 310 images: Different geometries and five measured materials
- **Controlled** variations:
 - A) Rotations
 - B) Geometry complexity
 - C) Illumination frequency
 - D) Specularity
- Reliable annotations

- 310 images: Different geometries and five measured materials
- **Controlled** variations:
 - A) Rotations
 - B) Geometry complexity
 - C) Illumination frequency
 - D) Specularity
- Reliable annotations

- 310 images: Different geometries and five measured materials
- **Controlled** variations:
 - A) Rotations
 - B) Geometry complexity
 - C) Illumination frequency
 - D) Specularity
- Reliable annotations

- 310 images: Different geometries and five measured materials
- **Controlled** variations:
 - A) Rotations
 - B) Geometry complexity
 - C) Illumination frequency
 - D) Specularity
- Reliable annotations

- 310 images: Different geometries and five measured materials
- **Controlled** variations:
 - A) Rotations
 - B) Geometry complexity
 - C) Illumination frequency
 - D) Specularity
- Reliable annotations

- 310 images: Different geometries and five measured materials
- **Controlled** variations:
 - A) Rotations
 - B) Geometry complexity
 - C) Illumination frequency
 - D) Specularity
- Reliable annotations

- 310 images: Different geometries and five measured materials
- **Controlled** variations:
 - A) Rotations
 - B) Geometry complexity
 - C) Illumination frequency
 - D) Specularity
- Reliable annotations

- 310 images: Different geometries and five measured materials
- **Controlled** variations:
 - A) Rotations
 - B) Geometry complexity
 - C) Illumination frequency
 - D) Specularity
- Reliable annotations

- 310 images: Different geometries and five measured materials
- **Controlled** variations:
 - A) Rotations
 - B) Geometry complexity
 - C) Illumination frequency
 - D) Specularity
- Reliable annotations

- 310 images: Different geometries and five measured materials
- **Controlled** variations:
 - A) Rotations
 - B) Geometry complexity
 - C) Illumination frequency
 - D) Specularity
- Reliable annotations

- 310 images: Different geometries and five measured materials
- **Controlled** variations:
 - A) Rotations
 - B) Geometry complexity
 - C) Illumination frequency
 - D) Specularity
- Reliable annotations

- 310 images: Different geometries and five measured materials
- **Controlled** variations:
 - A) Rotations
 - B) Geometry complexity
 - C) Illumination frequency
 - D) Specularity
- Reliable annotations

Overview

$$L_{MAE} = rac{1}{N}\sum |y-\hat{y}|$$

Results

Results

Traditional Approaches

Our Work

Results

Traditional Approaches

Our Work

Results

Traditional Approaches

	$ \frac{0000000}{00000} $	000000 + Our weak 0000000 +		
	S.100%	S.100%+BSDF S.100%+Img.Stats. S.100%+Industry		
MAE	0.1510			

	$ \frac{0000000}{00000} $	000000 + Our weak 0000000 +		ur weak labels
	S.100%	S.100%+BSDF	S.100%+Img.Stats.	S.100%+Industry
MAE	0.1510	0.1207	0.1389	0.1484

	$ \frac{0000000}{00000} $	000000 + Our weak 0000000 +		ur weak labels
	S.100%	S.100%+BSDF	S.100%+Img.Stats.	S.100%+Industry
MAE	0.1510	0.1207	0.1389	0.1484

Results: Quantitative

Traditional Approaches

Results: Quantitative

Traditional Approaches

	$ \frac{0 0 0 0 0 0}{0 0 0 0} $ $ \frac{0 0 0 0 0 0}{0 0 0 0} $	Our weak labels		
	S.100%	S.20%+BSDF	S.20%+Img.Stats.	S.20%+Industry
∕IAE↓	0.1510	0.1538	0.1550	0.1797

Results: Qualitative

Results: Qualitative Matte 1 2 3 4 5 6 7 Glossy Glossy

GT	1.00	3.00	6.00
S.100%	2.00	3.87	7.00

GT	1.00	3.00	6.00
S.100%	2.00	3.87	7.00
S.100% + BSDF	1.00	2.90	7.00

Results: Qualitative Glossy Matte

GT	1.00	3.00	6.00
S.100%	2.00	3.87	7.00
S.100% + BSDF	1.00	2.90	7.00
S.20% + BSDF	2.04	2.84	7.00

Results: Qualitative Glossy Matte

GT	1.00	3.00	6.00
S.100%	2.00	3.87	7.00
S.100% + BSDF	1.00	2.90	7.00
S.20% + BSDF	2.04	2.84	7.00

Results: Qualitative

GT	1.00	5.00	7.00
S.100%	1.06	5.33	6.96
S.100% + BSDF	1.00	4.73	7.00
S.20% + BSDF	1.89	3.08	7.00

Results: Qualitative

GT	1.00	5.00	7.00
S.100%	1.06	5.33	6.96
S.100% + BSDF	1.00	4.73	7.00
S.20% + BSDF	1.89	3.08	7.00

- Rotations
- Geometry complexity
- Illumination frequency
- Specularity

Consistent gloss prediction, with respect to:

• Rotations

- Rotations
- Geometry complexity
- Illumination frequency
- Specularity

- Rotations
- Geometry complexity
- Illumination frequency
- Specularity

- Rotations
- Geometry complexity
- Illumination frequency
- Specularity

Gloss predictor		MAE \downarrow	Spearman ↑	Pearson ↑
Serrano et al.		inter of include as prescale leads of the residue	Wandon - John Alder Fridak for Labor (1997)	Vaulede 200 value 2000 biologie bare
Ours	S.100%+BSDF			
	S.20%+BSDF			

Gloss predictor		$MAE \downarrow$	Spearman ↑	Pearson ↑
Serrano et al.		0.3293		Minutes for the second in Advance States and a second second second second second second second second second s
Ours	S.100%+BSDF			
	S.20%+BSDF			

Gloss predictor		MAE ↓	Spearman ↑	Pearson ↑
2 	Serrano et al.	0.3293	0.5662	0.5358
Ours	S.100%+BSDF			
	S.20%+BSDF	And the second sec		

Gloss predictor		$MAE \downarrow$	Spearman ↑	Pearson ↑
a	Serrano et al.	0.3293	0.5662	0.5358
Ours	S.100%+BSDF	0.1207	0.8594	0.8788
	S.20%+BSDF	0.1538	0.8366	0.8228

Gloss predictor		MAE \downarrow	Spearman ↑	Pearson ↑
Serrano et al.		0.3293	0.5662	0.5358
Ours	S.100%+BSDF	0.1207	0.8594	0.8788
	S.20%+BSDF	0.1538	0.8366	0.8228

Gloss predictor		MAE↓	Spearman ↑	Pearson ↑
	Serrano et al.	0.3293	0.5662	0.5358
Ours	S.100%+BSDF	0.1207	0.8594	0.8788
	S.20%+BSDF	0.1538	0.8366	0.8228

Results: Generalization to Real Photographs

Results: Generalization to Real Photographs

Gloss predictor		MAE↓	Spearman ↑	Pearson ↑
	Serrano et al.	0.3327	0.4546	0.4266
Ours	S.100%+BSDF	0.2236	0.6625	0.6570
	S.20%+BSDF	0.2386	0.6208	0.6063

20 dimensional latent space Z

20 dimensional latent space Z

20 dimensional latent space Z

- Slight underestimation of gloss
- Challenging examples: patterned surfaces and sharp shadows

• Slight underestimation of gloss

• Slight underestimation of gloss

- Slight underestimation of gloss
- Challenging examples: patterned surfaces and sharp shadows

- Weak labels to reduce manual annotation cost for perceptual studies
- State-of-the-art performance in gloss prediction
- Consistency, generalization to real photos, and well organized latent space

- Weak labels to reduce manual annotation cost for perceptual studies
- State-of-the-art performance in gloss prediction
- Consistency, generalization to real photos, and well organized latent space

- Weak labels to reduce manual annotation cost for perceptual studies
- State-of-the-art performance in gloss prediction
- Consistency, generalization to real photos, and well organized latent space

- Weak labels to reduce manual annotation cost for perceptual studies
- State-of-the-art performance in gloss prediction
- Consistency, generalization to real photos, and well organized latent space

Predicting Perceived Gloss: Do Weak Labels Suffice?/

Julia Guerrero-Viu*, J. Daniel Subias*, Ana Serrano, Katherine R. Storrs, Roland W. Fleming, Belen Masia, Diego Gutierrez

- Weak labels to reduce manual annotation cost for perceptual studies
- State-of-the-art performance in gloss prediction
- Consistency, generalization to real photos, and perceptually meaningful latent space

Code and data:

Contact: juliagviu@unizar.es

Instituto Universitario de Investigación de Ingeniería de Aragón Universidad Zaragoza

