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This is because our perception of gloss is guided by complex interactions 
between: 
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Can we predict perceived gloss?



Related Work: Gloss Perception

[Wills et al. 09] Toward a perceptual space for gloss

[Adams et al. 18] Naturally glossy: Gloss perception, illumination statistics, 
and tone mapping

[Fleming 12] The influence of Fresnel effects on gloss perception

[Faul et al. 19] The influence of Fresnel effects on gloss perception
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Related Work: Objective Measurements

Since the publication of Hunter et al. [1937] it has been recognized that a 
single physical measurement is not sufficient to quantify perceived “gloss”

Multiple proposals have been made:

BRDF parameters (e.g., [Pellacini et al. 00])

Image statistics (e.g., [Motoyoshi et al. 07])

Industry standards (e.g., [Westlund and Meyer 01])
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Datasets: 

[Serrano et al. 21] 215 680 human annotations

[Lagunas et al. 19]  114 840 human annotations
[Shi et al. 21] 30 100 human annotations

[Lavoué et al. 21]  84 138 human annotations
[Delanoy et al. 22] 39 000 human annotations

Learning-based methods require data

We seek a reduction of the human annotation costs
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3 Random colors and 
rotations

15 Geometries 17 Illuminations 50 BSDF variations

38 250 Total Images
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• Weighted combination f of 

roughness (r) and specular (s) 
parameters [Adams et al. 18]

• Image Statistics
• Skewness of the luminance 

histogram [Motoyoshi et al. 07]

• Industry Standards
• Log ratio at 20º between the 

reflectances of black glass (rg) 
and Disney BSDF (rd) [Westlund 
and Meyer 01]
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Predicting Perceived Gloss: Do Weak Labels Suffice?
Julia Guerrero-Viu*, J. Daniel Subias*, Ana Serrano, Katherine R. Storrs, 
Roland W. Fleming, Belen Masia, Diego Gutierrez

Code and data:

Contact: juliagviu@unizar.es

● Weak labels to reduce manual annotation 
cost for perceptual studies

● State-of-the-art performance in gloss 
prediction

● Consistency, generalization to real photos, 
and perceptually meaningful latent space

https://graphics.unizar.es/projects/p
erceived_gloss_2024/


