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This document covers additional details of the modeling of the
multiscale geometry in Sec. 1, the optimization of the sphere tracing
algorithm for visualization of the multiscale geometry in Sec. 2, and
the reconstruction of the multiscale geometry in Sec. 3.

1. Multiscale geometry modeling

This section covers additional details and analysis of multiscale
geometry modeling.

1.1. Tiling and Issues

Tiling introduces regularity artifacts between tiles, and continuous
spatial variations using the tiling approach also introduce artifacts
and breaks between the tiles. In addition, density variations using
tiling produce inconsistent shading. In Fig. 1 we illustrate the tiling
artifacts.

Figure 1: Tiling artifacts. Tiling introduces regularity artifacts and
generates errors between tiles, making it impossible to create con-
tinuous spatial variations.

1.2. Point Distribution

The following is a way we can generate the seed for the random num-
ber generator and add the random vector to the particle in the grid
cell qqq to create a random distribution in the eight neighbors (adding
(0,0,0), (1,0,0), (0,1,0), (1,1,0), (0,0,1), (1,0,1), (0,1,1), (1,1,1) to the
point ppp to get the grid cell qqq ) of the point qqq.

t = N
1

∑
i=0

1

∑
j=0

1

∑
k=0

ai jkqi
xq j

yqk
z (1)

(ξ1, . . . ,ξN) = rnd(t,N) (2)

[xxx,s] = [qqq+(ξ1,ξ2,ξ3),ξ4] , (3)

The pseudorandom number generator (PRNG), denoted as rnd,
produces N random numbers that are uniformly distributed within
the interval [0,1). The coefficients ai jk are chosen to remove regular-
ity artifacts in the distribution of particles that result in the process of
generating particle clouds. Choosing prime numbers as coefficients
eliminates the regularity artifacts in a better way.

1.3. Multi-phase Particle Cloud

We use spatial transformations of points to generate multiphase
particles within a volume. The following transformation generates
particles with various shapes, smoothly transitioning between each
type of shape in the volume, where each shape is considered a
different phase. This works as a frequency modulation of the signal,
and it almost generates the Phasor noise [TEZ∗19] effect. These
transformed points are used to generate the particle cloud.

Figure 2: Inspired by a photo of air bubbles in ice (right), we
used our multi-phase particle cloud approach to model a similar
material (left). Our model has ice as the host medium and contains
air particles that vary in size and shape with the spatial location in
the medium, transitioning from spherical to non-spherical.

We can create a particle cloud containing specific regions where
some regions are isotropic and others are anisotropic, with smooth
transitions between these regions, see Fig. 2. This concept is simi-
lar to positional encoding, where particular regions in the volume
behave in a specific manner. To achieve this, the transformed point

ppp′ = pppTTT , with TTT = AAADDD , (4)

is used as the input point for the particulate material generation. This
generates effects like phasor noise, where the signal’s frequency
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depends on spatial coordinates. The matrices

AAA =

A1 A2 A3
A4 A5 A6
A7 A8 A9

 , DDD =

sin(py) sin(pz) sin(px)
sin(pz) sin(px) sin(py)
sin(px) sin(py) sin(pz)

 ,

(5)
contribute to these phasor noise generation effects. The matrix AAA
acts as an amplitude matrix, typically with values between 0 and 1.
Essentially, we use the original point to generate a noise matrix or
turbulence [PH89] matrix (TTT ), which is a circulant-type matrix that
is symmetric and every row is a left circular shift of the previous
row.

1.4. Mesoscale Surface Patterns on the Macrosurface

The following distance approximations can be used to generate
mesoscale surface patterns on macroscopic objects with thickness
control.

d(ppp,w) =


dg(ppp,w), if ∃qqqk such that li < Pi(qqqk)< ri,

∀k = 0, . . . ,26,
w
2 , otherwise.

(6)

where,

dg(ppp,w) = f (ppp) +
26

min
k=0

∃qqqk , li<Pi(qqqk)<ri

dqqqk

(
1
w
(ppp+hhh(ppp))

)
, (7)

In this condition, the terms li and ri represent the minimum and
maximum bounds of the corresponding polynomial values Pi(qqqkkk)
when the i-th polynomial is evaluated with the point qqqkkk. The interval
length (li,ri) controls the width (or thickness) of the macroscopic
object. In some cases, it may be necessary to use R instead of P.
These polynomials can be used to create the macro-shape of the
object based on the roots of the polynomials; basically, the particle
jittering follows these polynomial functions. When the roots of
these polynomials are true, the microgeometry on the surface can
be generated using the distance bound dg(ppp,w).

For instance, the mesoscale geometry on the macrosurface is
shown in Fig. 3. The following polynomial can then be used to
generate the macrosurface with microstructure.

P(qqq) = 2qx +q2
y +q2

z −qxqy−qyqz−qzqx . (8)

1.5. Implicit Periodic Functions

Implicit periodic functions, such as sine and cosine, can avoid grid
discretizations and improve performance, as they do not require
geometry evaluation in neighboring grid cells. Many geometric
structures, such as fibers, can be represented by combinations of
these functions with varying frequencies and amplitudes following
the Fourier Series. In addition, periodic functions are more suitable
for continuous optimization.

The general formula which can be used to generate various struc-
tures with sine and cosine functions defined is

SC(ppp) =
u

∑
i=1

v

∏
j=1

Ti j(ppp)ki j +w , (9)

Figure 3: Mesoscale texture patterns on the macrosurface, where
mesoscale patterns follow the macrosurface geometry. The same
Implicit function can generate both the mesoscale geometry and the
second-order macro surface, with control over thickness through
particle agglomeration. As a result, we can see mesoscale geometry
at the surface level.

where w represents the width of the microstructure and ki j ≥ 0 are
the powers associated with each trigonometric term Ti j(ppp) defined
by

Ti j(ppp) ∈ {Ak · f (ωk pd +φk) | f ∈ {sin,cos}, pd ∈ {px, py, pz}} .

where Ak is the amplitude, ωk is the frequency, and φk is the phase
shift of the trigonometric function.

One collection of such functions that we use in our system is the
family of Triply Periodic Minimal Surfaces (TPMS); for instance,
the Gyroid, Diamond, and Primitive functions [HC18], see Sec. 3.1
for equations of these structures.

Many microstructures can be defined using these trigonometric
functions: Let us consider a 3×3 matrix TTT , which performs affine
transformations such as scaling, rotation, and translation. Some-
times, one or more of these operations are combined in the 3× 3
matrix using octaves. Each entry in this matrix is generated from
the summation of multiple sine and cosine waves with varying am-
plitudes and frequencies, and typically, each value is normalized
between −1 and 1, see Sec. 3.1.4.

1.6. Particle Piling

In this section, we report additional experiments for piling structures
with our framework. The implicit surfaces for the particle material
can be changed in the following manner for the generation of particle
piling:

dg(ppp,w) = f (ppp)+ min
i=0,...,26

dqqqi

(
1
w
((RRRθ ppp)+PPP(ppp)NNN(ppp))

)
, (10)

where f (p) is an arbitrary function for spatially varying surface
offsetting. The term RRRθ refers to the rotation matrix with angle
θ. The term PPP(ppp)NNN(ppp) generates the implicit surface deformation
using a product of the control polynomial function P(ppp) and the
noise function N(ppp). The term P(ppp) in the above equation controls
the degree of convexity to the concavity of the grains in the same
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Figure 4: Starting from a regular cubic lattice of spherical grains (first column), slowly adding different levels of sparse convolution
noise [FW07] as N(ppp) in the eq. 14 in the main document for the implicit surface deformation generates grains similar to rock piles with
contact points. Increasing the level of deformation generates more concave grains. Here, the rotation angle with respect to the y-axis used is
15◦. We can utilize any deformation function that deforms the implicit surface in a specific manner for targeted applications.

Figure 5: Our framework can generate multiscale granular media
with grains in settled positions. In the left image, the generated
rockpile shows smaller grains at the bottom and larger ones at the
top, with well-defined contact points even across scales. The right
image illustrates the same cloud, but with an additional polynomial
function applied to the rotation angle, θ = 15+ pz, as defined in Eq.
14 of the main document.

particle cloud, where the smooth transition between convexity and
concavity happens in the same cloud.

In Fig. 4, we show how different levels of deformation affect
an initial particle cloud of spheres. This approach is useful for
modeling granular media, such as rock piles, as can be seen in the
last column. Fig. 5 illustrates the versatility of our framework to
generate multiscale granular patterns on the fly without the need for
any pre-computation or collision detection methods.

2. Multiscale Geometry Rendering

In this section, we provide additional details about Lipschitz bounds
2.1 for the transformed objects and the multiscale sphere tracing
algorithm 2.2.

2.1. Lipschitz Bounds for the Transformed Objects

The Lipschitz constant of the sum of two functions is, at most,
the sum of their Lipschitz constants. The Lipschitz constant of the
composite function is the product of the Lipschitz constant of each
of the component function’s Lipschitz constants [Har96].

The transformations, rotations, translations, and reflections are
called isometries, and if the transformation TTT is an isometry, then the
distances for the implicit function need no adjustment, meaning the
distances are preserved when we perform these isometric transfor-
mations. For example, in our case, the warping function h(ppp) is an
isometry transformation, essentially a translation. Therefore, when

we use something for h(ppp) like Perlin noise in Eq. 3 in the main
document, we do not need to change the Lipschitz bounds [Har96].

Another important transformation we use is the scaling of the
point coordinates to achieve anisotropy in shape. Suppose we use
the following scaling operation on point coordinates [Har96]:

ppp′ = (c1 px,c2 py,c3 pz) . (11)

The value of the Lipschitz bound is then max(c1,c2,c3).

Linear deformation of shapes is achieved by multiplying the
transformation matrix TTT with the point ppp, resulting in spatially
varying shapes. In Sec. 1.3, the transformed point ppp′ is obtained
using this type of transformation. The value of the Lipschitz bound
for this case is the largest eigenvalue of the matrix TTT [Har96], and
we can find this using the power method [Ger04].

For example, we used the turbulence matrix TTT for the linear de-
formation in Sec. 1.3. This turbulence matrix is dependent on the
point ppp each time. For the Lipschitz bound, we need to calculate the
maximum eigenvalue of this matrix each time, which is computa-
tionally expensive. Instead of calculating it every time for matrices
that change, we can calculate it only once for the matrix with all
entries set to the maximum possible values. In this case, it is the
value one for all entries in the matrix. The maximum eigenvalue of
this matrix, using the power method, is 3. This value serves as the
Lipschitz bound for the transformation involving TTT .

2.2. Multiscale Sphere Tracing

In this paper, we present an optimized sphere-tracing algorithm
aimed at improving the performance of sphere tracing for multiscale
grid variations as illustrated in Alg. 1 and Fig. 6.
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Algorithm 1 Optimized sphere tracing with adaptive step factors
based on gradients of the implicit surface and the polynomial func-
tion D(ppp) for sparse sampling. IS denotes the implicit surface.

1: function COMPUTEGRIDSCALE(ppp)
2: ε← 0.01
3: d px← (ε,0,0)
4: d py← (0,ε,0)
5: d pz← (0,0,ε)
6: gpx← |IS(p+d px)− IS(p−d px)|
7: gpy← |IS(p+d py)− IS(p−d py)|
8: gpz← |IS(p+d pz)− IS(p−d pz)|
9: |∇d| ←

√
gp2

x +gp2
y +gp2

z

10: scale← clamp(|∇d| ·0.5,0.0,1.0)
11: return scale
12: end function
13: function MULTISCALE-SPHERE-TRACING(ro, rd, tmin, tmax)
14: t← tmin
15: d← IS(ro+ t · rd)
16: s← sign(d)
17: lastScale← ComputeGridScale(ro+ t · rd)
18: for i = 0 to n do
19: if |d|< precision · t or t > tmax then
20: break
21: end if
22: if D(ppp) = 1 then ▷ Evaluate gradient only when

polynomial checks D(ppp) is true
23: lastScale← ComputeGridScale(ro+ t · rd)
24: end if
25: stepFactor← LERP(δmin,1.0, lastScale)
26: t← t + s ·d · stepFactor
27: d← IS(ro+ t · rd)
28: end for
29: return t
30: end function

Larger Particle
(Larger Step Lengths)

Smaller Particle
(Smaller Step Lengths)

Medium Particle
(Medium Step Lengths)

Figure 6: We improve the efficiency of the sphere tracing algorithm
using adaptive step lengths controlled by the magnitude of the im-
plicit surface gradients. Polynomial checks allow sparse sampling
of gradients, reducing the number of expensive gradient evaluations
while still capturing grid-scale variations. This enables finer grids
to use shorter steps and coarser grids to use longer steps, improv-
ing overall performance. An example of a polynomial condition is
sin(px)cos(py)+ sin(py)cos(pz)+ sin(pz)cos(px) = 0.5.

In the above algorithm, on line 22, we can use any other condition

to reduce the gradient computations and improve performance dur-
ing sphere-tracing steps. For instance, we can check this using the
following condition, where we examine gradients to track variations
in grid scale for every m-step length.

If i mod m = 0, where m < n

For instance, we use something like the following functions (in Eqs.
12 and 13 ) for the D(ppp) in the above algorithm to track the gradient
changes. Essentially, we are sampling sparse points throughout the
volume to track the grid scale variations effectively. The polynomial
conditional check D(ppp) is a method to reduce the number of gradient
evaluations in sphere tracing iterations.

D(ppp) =


1, if |fmod(py,n1)|= 0.0
∨(|fmod(pz,n2)|= 0.0∧|fmod(px,n3)|= 0.0)

0, otherwise
(12)

Step Factor RTX 4090 RTX A2000
RT (ms) FPS RT (ms) FPS

Fixed global bound 9.3 105.7 50 20
Bisection based 9.0 108.5 45 22.1

Fully Adaptive (N = 1) 44.1 22.6 240 4
Adaptive (N = 10) 11.5 85.8 60.6 16.2
Adaptive (N = 100) 8.1 121.1 44 22.8
Adaptive (N = 500) 8.1 121.5 42.7 23.1

Adaptive (D(ppp) = 1) 7.8 124.5 42.2 23.5

Table 1: Performance comparison of different step-length strategies
for sphere tracing in multiscale particulate media made of Lamber-
tian particles. We evaluate fixed stepping (classical sphere tracing),
the bisection method, fully adaptive stepping (update every step),
adaptive stepping with gradient checks every N steps (10,100 and
500), and adaptive stepping with polynomial-based gradient checks
for 1500 steps. Longer steps are more effective for macroscopic
scales, shorter steps for microscopic scales, and intermediate steps
for mesoscopic scales. Adaptive stepping with polynomial checks
achieves the best performance, improving rendering efficiency by
16% over fixed and bisection methods..

D(ppp) =

1, if
sin(px)cos(py)+ sin(py)cos(pz)

+ sin(pz)cos(px) = 0.5
0, otherwise

(13)

These methods can improve performance, but using polynomial
checks to track variations in the grid scale is particularly effective.
It allows smaller step lengths in finer grid-scale regions and larger
ones in coarser grid scales. In Table 1, we report the performance
comparison of different sampling strategies for the step length across
multiple GPUs. Fig. 7 presents the renderings obtained with the
multiscale sphere tracing algorithm, demonstrating that the use of
polynomial checks yields a significant performance boost without
introducing noticeable visual differences.
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Figure 7: Visualization of the rendered multiscale grid variational geometry with different step length methods. The results are shown for
fixed step lengths, as well as for the two polynomial checks D(ppp) (as referenced in equations 12 and 13) used for adaptive step lengths,
respectively. The performance values for these three cases are as follows: for the fixed lengths case, the results are (RT - 8.6 ms, FPS - 112.3).
For the polynomial-based gradient checks with the equation in 12, where the values of n1,n2,n3 are 11, 5, and 7, the results are (RT - 7.0 ms,
FPS - 140.1). With the equation in 13, the results are (RT - 6.9 ms, FPS - 141.6). It clearly shows that polynomial-based gradient checks for
tracking grid scale variations within the sphere tracing algorithm improve performance.

3. Multiscale Geometry Reconstruction

Inverse procedural modeling promises to overcome some of the main
limitations of procedural modeling, such as parameter tweaking to
create a given real target exemplar. In this section, we focus on recon-
structing procedural microstructures generated by our framework.
We explore two modalities: implicit surfaces, potentially extracted
from noisy MicroCT scans, and RGB images, potentially obtained
from Transmission Electron Microscopy (TEM) or Scanning Elec-
tron Microscopy (SEM) samples. First, we create a synthetic dataset
of representative microstructures that serves as a proof of concept.
For the first modality, we apply direct parameter fitting to find the
parameters of our procedural microstructures with observed data.
For the second modality, we employ analysis-by-synthesis, itera-
tively refining reconstructions by comparing a simulated image with
a reference image. We also show that the reconstruction of synthetic
microstructures is not a trivial task by trying to reconstruct implicit
functions using popular network architectures to represent signals
such as NeRF [MST∗21] and SIREN [SMB∗20], and a physically-
based differentiable rendering algorithm for SDF [VSJ22].

3.1. Synthetic Dataset

For the proof of concept and more control over the experiments, we
evaluate our algorithms on representative synthetic examples that
resemble SEM/TEM images. The dataset consists of six microstruc-
tures, where each microstructure is defined by an implicit function f̂
with n parameters, denoted as φφφ. All ground-truth parameter values
presented in the dataset were selected for their convenience and to
ensure they fit in the defined domain range.

3.1.1. Gyroid Family

The first family of microstructures are the gyroid microstructures.
These consist of periodic fully deterministic patterns created using
trigonometric functions. Our dataset includes three such microstruc-
tures with 1, 3, and 5 degrees of freedom, respectively. The simplest
example is the Gyroid [1D]. The only parameter is a scalar variable
η ∈ R. We refer to η as the noise scale. The η variable controls
the density of the microgeometry. We create the ground-truth using

Figure 8: Instances of exemplar renders (top row) Gyroid [1D] 14,
Fibers [2D] 25, Gyroid [3D] 15 respectively. Rest of the renders
(bottom row) are Spheres [2D] 22, Gyroid [5D] 18, Porous [28D] 28
respectively. The number inside the parentheses corresponds to the
number of parameters, i.e., the dimensionality of the space search.

η = 100:

f̂ (x | η) =
3

∑
i

sin(xi ·η)/η. (14)

The second element from the set of gyroid functions, Gyroid [3D],
is guided by η ∈ R, and k = 2 ·π/a ∈ R, t ∈ R. The a represents
the cell size of the gyroid structure, t represents the wall thickness.
We create the ground-truth using the setting of η = 100.0, a = 7.0,
t = 1.2 as follows

f̂ (x | η,k, t) = g(x ·η | k, t)/η, (15)

g(x | k, t) = sin(kx0)cos(kx1)+ (16)

sin(kx1)cos(kx2)+ sin(kx2)cos(kx0)+ t. (17)

Finally, the last exemplar, the Gyroid [5D], closely resembles the Gy-
roid [3D] problem. The only difference is the division of the a ∈ R3

parameter into three variables ki = 2 ·π/ai, each controlling the cell
size of the gyroid in the x, y, and z directions respectively. We create
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the ground-truth using the setting η = 100.0, a = (7.0,10.0,15.0),
t = 1.2. The formulation ins this case is:

f̂ (x | η,k, t) = r(x ·η | k, t)/η, (18)

r(x | k, t) = sin(k1x0)cos(k2x1)+ (19)

sin(k2x1)cos(k3x2)+ sin(k3x2)cos(k1x0)+ t, (20)

3.1.2. Spherical Microstructure

Spherical microstructure consists of an implicit function for ran-
domly placed spheres. We generate a granular material microgeome-
try using a space-filling grid-based random variable of points. A grid
cell index, computed from its floored location, is used to generate a
seed t for the PRNG. A multilinear hash function defining the seed
looks as follows:

tl(x) = M
1

∑
i=0

1

∑
j=0

1

∑
k=0

ai jkql(x0)
iql(x1)

jql(x2)
k, (21)

where grid indices (ql(x0),ql(x1),ql(x2)) are computed in eight
directions using binary offsets and the floor operation. M and all
ai jk were selected such that regularity artifacts are avoided. A seed
tl is later used as an input to PRNG, generating a pseudo-random
number in the interval [0,1). We then add the randomly generated
number to the grid position to obtain the center of a random sphere
in the current grid. We repeat the described procedure a total of 8
times (once for each potential overlapping grid cell). Finally, the
implicit function is calculated by finding the minimum distance to
all spheres, taking into account their radius. The variables are the
density-controlling η ∈ R and the radius of the spheres r ∈ R. The
procedure can be mathematically described as follows:

f̂ (xxx | η,r) =
( 8

min
l=1
||cl(η ·x, tl(η ·x))−x||2− r

)
/η, (22)

cl(η ·x, tl(η ·x)) = ql(η ·x)+PRNG(tl(η ·x)), (23)

ql(η ·x) = ⌊η ·x⌋+Ul , (24)

where x, ti(x),c(x, ti(x)), Ul are a point of evaluation, a random seed,
the center of a random sphere, and the l-th element of the unit cube
vertices U = {(v1,v2,v3) | vi ∈ {0,1}}, respectively. The PRNG is
not differentiable, making f̂ a non-differentiable function. We use
the following setting to create the ground-truth η = 30.0, r = 0.08.

3.1.3. Fibrous Microstructure

Fibrous microstructures can be obtained by a union of two rotated
sets of fibers parallel to the y-axis arranged in layers. To achieve
this, we need a rotation transformation matrix Tϕ along the axis y by
an angle ϕ ∈ [0,2π], which is a parameter. Thanks to the symmetry
of the problem, we can constrain the ϕ ∈ [0,π]. We also need a
function u : R3→ R defining the fibers. The last parameter is the
η∈R controlling the density of the fibers. The microstructure Fibers
[2D] is then defined by:

f̂ (x|η,φ) = h(x ·η|φ)/η, (25)

h(x|φ) = min
(

u(x)+u((x1,x1,x1)),u(Tφ(x))+u(Tφ(x1,x1,x1))
)
,

(26)

u(x) = (sin(x0)cos(x1)+ sin(x1)cos(x2)+ sin(x2)cos(x0))
2.
(27)

To create the ground truth, we set η = 100,ϕ = π/4.

3.1.4. Porous Microstructure

Lastly, we present the function defining a porous microstructure
named Porous [28D]. The first parameter, η ∈ R, controls the den-
sity of the material. The implicit function is composed of the sum-
mation of several sine and cosine waves with different amplitudes
and frequencies, resulting in a complex material structure. Three-
parameter transformation matrices determine the frequencies, de-
noted as T ∈ R3 times3×3. The final distance is then computed by

f̂ (x|η,T) = min
(
ϵ,v(ηT1x)+w(ηT2x) · v(ηT3x)

)
/η, (28)

v(x) =
(

sin(x0)cos(x1)+ sin(x1)cos(x2)+ sin(x2)cos(x0)
)2

,

(29)

w(x) =
(

sin(x0)sin(x1)+ sin(x1)sin(x2)+ sin(x2)sin(x0)
)2

,

(30)

where ϵ is a small positive number. The ground truth is created with
a fixed η = 30 and the T ∈ [−4,7]3×3×3.

3.2. Parameter Fitting

This approach formulates microstructure reconstruction as a model-
fitting task, where the goal is to optimize the parameters of a pro-
cedural implicit surface to match the microstructure’s ground truth
accurately. Given a set of spatial coordinates Ω = {x | x ∈ R3}, a
ground-truth SDF Ŝ : R3→ R describing the surface at the point
x, a bounded parameter space Φ = [a1,b1]× [a2,b2]×·· ·× [an,bn]
with n parameters, and a loss function L : R×R→ R, the problem
is defined as minimizing the discrepancy between the fitted function
f and the ground truth Ŝ across the domain:

min
φφφ∈Φ

∫
Ω

L( f (x,φφφ), Ŝ(x))dx. (31)

Procedural implicit surfaces allow efficient extrapolation of the mi-
crostructure beyond the optimization domain without modifying the
fitted function. Additionally, our compact, parametrized microstruc-
tures are described using a relatively low number of parameters. We
propose a loss function to evaluate discrepancies in the frequency
domain using the discrete Fourier transform (DFT), which considers
the periodic behavior common in many microstructures. The loss
function compares the amplitude and phase spectra of the Fourier
coefficients, using the logarithm of the mean squared error (MSE) as
an error metric. This metric is closely related to the spectral density
function commonly used in microstructure analysis [BZL∗18].

3.3. Analysis by Synthesis

The analysis-by-synthesis approach optimizes the SDF by iteratively
rendering it using a non-differentiable pipeline and comparing the
results in image space. The process is illustrated in Fig. 9. Given a
camera intrinsics K ∈R3×3 taken from a set of intrinsic matricesK,
the camera extrinsics E= [R | t]∈R3×4 taken from a set of extrinsic
matrices E , a labeling function Ŝ : R3→ R, a bounded parameter
space Φ = [a1,b1]× [a2,b2]× ·· · × [an,bn] with n parameters, a
signed distance fitting function f : R3×Φ→ R, a loss function L :

© 2025 The Author(s).
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.



V. Bojja, Adam Bosak & J. Padrón-Griffe / EG LATEX Author Guidelines 7 of 13

RW×H×3×RW×H×3→ R, with W,H being width and the height
respectively, a set of functions A, and finally the rendering function
R : A×K×E → RW×H×3, we can express the optimization
problem as follows:

min
φφφ∈Φ

L
(
R( f (·,φφφ) ,K,E) ,R(Ŝ (·) ,K,E)

)
. (32)

R renders the microstructure bounded by a unit sphere from the
given view with the camera parameters using the sphere-tracing
algorithm [Har96] in the CUDA-based framework OptiX [PBD∗10].
For the loss function, we used the two-dimensional DFT to trans-
form the image signal into the frequency domain. By focusing on
the amplitudes of the Fourier coefficients, we capture the key peri-
odic features of the image, which are crucial for the effective global
optimization of microstructures. While a multi-view optimization is
possible, we opted for a single-view approach to minimize computa-
tional overhead.

Microstructure
(Prediction)

Model Parameters

Optimization
(Analysis)

Microstructure
(Target)

Rendering
(Synthesis)

Comparison
(Error)

Target Reconstruction FLIP Error

Figure 9: Analysis by synthesis schematic. Given a single target
image (such as from SEM or TEM), we perform iterative optimiza-
tion. At each step, we synthesize a microstructure using an implicit
function and render a corresponding synthetic image using our ren-
dering algorithm. We then compare this synthetic image to the target
image and adjust the parameters of the synthetic microstructure
to reduce the difference. This process continues until the synthetic
image closely resembles the target.

3.4. Optimization Algorithms

Selecting a suitable optimization algorithm is critical for solving
unconstrained global optimization problems. The loss function
used in parameter fitting is differentiable, allowing us to use
gradient-based optimization algorithms, as the operations involved
are differentiable, including the discrete Fourier transform (DFT).
In this paper, we consider two first-order methods that utilize
gradient information: Basin-Hopping (BH) [Wal03] and Simplicial
Homology Global Optimization (SHGO) [ESF18] algorithms. The
BH algorithm is particularly effective for problems with funnel-like

loss functions. Its key hyperparameters include the step size s
and the temperature T , which define the bounds of the uniformly
distributed random perturbations and the acceptance probability for
the candidate function, respectively. SHGO global optimization
algorithm approximates locally convex subdomains using homology
groups. The main hyperparameters for SHGO include the number
of iterations, l, and the number of samples, m, for building
the complex. The Fourier loss functions are differentiable, but
certain microstructures defined by procedural implicit surfaces
and the rendering function R are non-differentiable, leading to
non-differentiability of the final composite function. We consider
two gradient-free optimization algorithms: the Covariance Matrix
Adaptation Evolutionary Strategy (CMA-ES) algorithm [HAB19]
and the modified Powell method [PVTF88, Pow64]. The CMA-ES
algorithm is highly effective, particularly for problems that are
rugged, noisy, and non-differentiable. Its key hyperparameters are
the population size P and the initial σ0 of the covariance matrix,
typically chosen depending on the complexity and dimensionality
of the problem. The modified Powell method [PVTF88, Pow64] is a
local optimizer without hyperparameters that can be effective when
a reasonably close initialization is provided.

3.5. Neural networks

In this section, we describe how we use neural network to reconstruct
the synthetic microstructures from incomplete exemplars of surface
points and volumes.

Problem Formulation Given a set of point coordinates Ω = {x |
x ∈ R3}, a signed distance labeling function Ŝ : R3 → R that
provides the ground truth signed distance from the surface at a
point, a parameter space Θ with h parameters, a neural network
f : R3×Θ→ R, and finally a loss function L : R×R→ R, the
problem can be formulated as follows:

min
θθθ∈Θ

∫
Ω

L( f (x,θθθ), Ŝ(x))dx. (33)

In contrast to the parameter fitting and analysis by synthesis ap-
proaches, there is no need for a manual selection of a suitable fitting
function for the current problem. One drawback of the neural net-
work is its inability to extrapolate outside of the training domain,
which could be potentially solved in the future by tiling the fitted
volume. In this section, we assume the use of a truncated SDF within
a unit sphere, meaning that the SDF is only relevant inside the unit
sphere and is truncated beyond it.

Loss Function and Optimization We adopt the loss function for
optimizing 3D shapes from the SIREN paper [SMB∗20], which
evaluates ground truth distances and gradients only at zero-level set
points, while enforcing non-zero distances elsewhere. The loss also
includes the Eikonal constraint to ensure the gradient magnitude is
1, making the function behave like a true distance function. The loss
is formulated as follow:

Lsur = λ1

∫
Ω

|∥∇x f (x)∥−1|dx+λ2

∫
Ω0

| f (x)|dx+

λ3

∫
Ω0

(
1−∇x f (x)T∇xŜ(x

)
dx+λ4

∫
Ω\Ω0

ψ( f (x))dx, (34)
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where Ω0 denotes the surface points,∇x f (x) represents the gradient
of f with respect to x in x, and∇xŜ(x) here is the normal at a given
surface point. The function ψ(x) = exp(−100 · | f (x)|) encourages
off-surface points to maintain a non-zero distance. The first term
enforces the Eikonal constraint, constraining the gradient norm to
be 1. The second term forces zero-level set points to have a value
of zero. The third term aligns the normals of the function f with
the ground truth normals. We adopt the the hyperparameters from
the paper as follows: λ1 = 50,λ2 = 3000,λ3 = 100,λ4 = 100.
During training, for each point with a known ground truth signed
distance and normal from x ∈Ω0, an additional random off-surface
point x ∈Ω \ Ω0 is sampled.

In the second loss function, we use the fact that the signed distance
function is well-defined not only at the zero-level set points but also
available at the entire volume. Therefore, we propose a loss that
forces the network to learn the signed distances and gradients in the
entire domain:

Lvol = λ1

∫
Ω

|∥∇x f (x)∥−1|dx+λ2

∫
Ω

| f (x)− Ŝ(x)|dx

+λ3

∫
Ω

(
1−∇x f (x)T∇xŜ(x

)
dx. (35)

We use the same λ values as in the loss 34. Note that we do not
normalize the signed distances Ŝ(x). To find the minima of the loss
functions 34, 35, we use the ADAM optimizer [KB14] with the
α = 10−4 and β1 = 0.9, β2 = 0.999 for all our experiments.

Data Generation To generate the ground truth signed distances, we
use the same approach as the synthetic dataset. For the optimization
of neural networks, we also need to compute the gradients with
respect to the inputs. For the synthetic microstructures that are not
differentiable (e.g., spherical microstructures), we approximate the
gradients using the central differences scheme. We consider two
scenarios: surface-level points and volume-level points. Specifically,
a point x is considered to belong to the surface Ω0 if its signed
distance satisfies | f (x)|< ϵ, with ϵ= 10−3.

Network Architectures We consider two neural network architec-
tures. The first architecture is a standard MLP with ReLU as the
activation function, where we also use the positional encoding of the
input coordinates, adapted from NeRF [MST∗21]. This enables the
network to better represent higher frequency signals, such as sharp
details of the microstructure. We initialize the network using the He
initialization [HZRS15] and fix the number of hidden layers at five,
experimenting with 256 and 512 features per layer. The second net-
work architecture uses a periodic sine activation function instead of
the standard ReLU [SMB∗20]. We expect the periodic component,
similarly to positional encoding, would help the neural network to
encode the repetitive patterns of the microstructures. We use the
same initialization with omega = 30 as in the original SIREN pa-
per [SMB∗20]. To ensure a fair comparison with the MLP using
Positional Encoding, we also fixed the number of hidden layers at
five and experimented with 256 and 512 features per layer.

3.6. Reconstruction Results

In Fig. 10, we show the initial structures for the reconstruction
experiments. In Table 2, we report the performance of different

algorithms for different microstructures. In Table 3, we report
the initial parameters and the optimized parameters after the
reconstruction. In Fig. 11, we show the corresponding renders.
We set a maximum time limit of approximately 20 minutes for
optimization, as results typically do not improve significantly
beyond this point. The results show that no single optimization
algorithm consistently outperforms the others across all microstruc-
tures. SHGO-PF and BH-PF perform well for small-variable
problems but struggle with higher-dimensional cases (e.g., Gyroid
[5D], Porous [28D]) and cannot be applied to certain discrete
problems (e.g., Spheres [2D]). CMA-ES-PF demonstrates solid
performance across various microstructures, including discrete
ones such as spheres [2D]. As expected, parameter fitting methods
outperform analysis-by-synthesis in both accuracy and efficiency,
given the larger complexity of the latter. Interestingly, CMA-ES-AS
resembles Porous [28D] more than the other methods, highlighting
its potential for high-dimensional reconstructions.

In Table 4, we report the performance of different neural network
architectures. In Fig. 12 and Fig. 13, we include the corresponding
renders for the volume and surface reconstruction results, respec-
tively. Notice that all neural network architectures struggle to
recover the shapes given surface or volumetric points for the Fibers
[2D], Spheres[2D], and Porous [28D] microstructures. The discrete
nature of these microstructures and the non-differentiable search
spaces make the optimization with neural networks particularly
challenging. The results show that the SIREN architecture
outperforms the MLP with Positional Encoding architecture in most
microstructures, particularly in recovering thin structures. Hybrid
models combining the strengths of both classical optimization
methods and neural networks present an interesting venue for future
work.

Figure 10: Initial structures (top row) Gyroid [1D] 14, Fibers [2D]
25, Gyroid [3D] 15 respectively. Rest of the initial structures (bot-
tom row) are Spheres [2D] 22, Gyroid [5D] 18, Porous [28D] 28
respectively.
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Microstructure Metrics SHGO-PF BH-PF CMA-ES-PF CMA-ES-AS Powell-AS

Gyroid [1D]

Val. Error↓ 0.00 0.00 0.00 10−4 10−6

LPIPS↓ 0.00 0.00 0.00 0.02 0.00
FLIP ↓ 3×10−7 1×10−7 1×10−3 2×10−3 2×10−3

Time↓ 2.85s 16.67s 2.23s 20m 7m

Fibers [2D]

Val. Error↓ 0.34 1×10−3 0.65 1.00 1.00
LPIPS↓ 0.41 0.13 0.54 0.56 0.56

FLIP ↓ 0.3 0.14 0.42 0.40 0.43
Time↓ 13m 20m 6m 20m 5m

Gyroid [3D]

Val. Error↓ 1×10−3 6×10−3 1.02 0.15 2×10−3

LPIPS↓ 0.01 0.04 0.65 0.35 0.02
FLIP ↓ 0.01 0.05 0.61 0.42 0.03

Time↓ 22.7s 20m 7m 14m 20m

Spheres [2D]

Val. Error↓ N/A N/A 1×10−5 1.01 1.01
LPIPS↓ N/A N/A 0.00 0.53 0.53

FLIP ↓ N/A N/A 3×10−7 0.55 0.55
time↓ N/A N/A 4m 20m 5m

Gyroid [5D]

Val. Error↓ 0.66 0.65 3×10−4 0.03 0.44
LPIPS↓ 0.42 0.57 0.00 0.21 0.54

FLIP ↓ 0.42 0.62 6×10−3 0.28 0.60
Time↓ 2m 15m 11m 20m 15m

Porous [28D]

Val. Error↓ N/A 1.00 1.00 1.00 1.00
LPIPS↓ N/A 0.64 0.64 0.64 0.61

FLIP ↓ N/A 0.51 0.52 0.52 0.59
Time↓ N/A 4m 8m 20m 20m

Table 2: Reconstruction performance for different optimization al-
gorithms (columns) and synthetic procedural microstructures (rows).
We report for each microstructure the a) Validaton Error, b) LPIPS
Perceptual loss, c) FLIP error, d) Time of the optimization. We
consider a numerical 0 to be a number below 1× 10−7. The N/A
implies that the optimization method could not be applied for the
corresponding microstructure. The best results are highlighted in
orange, while the second-best results are marked in yellow.

Problem Ground Truth Init. SHGO-PF BH-PF CMA-ES-PF CMA-ES-AS Powell-AS
Gyroid [1D] η: 100.0 300.0 100.000 100.000 100.000 100.001 100.000

Fibers [2D]
η: 100.0 200.0 100.000 100.000 100.100 175.159 133.202
θ : π/4 π 0.142 0.785 2.825 3.126 0.831

Gyroid [3D]
η: 100.0 300.0 116.633 213.469 32.000 186.593 86.780
a : 7.0 6.0 8.164 14.942 11.010 12.958 6.075
t : 1.2 0.0 1.200 1.200 1.196 1.173 1.198

Spheres [2D]
η: 30.0 150.0 N/A N/A 29.999 291.739 300.964
r : 0.08 0.2 N/A N/A 0.079 0.093 0.086

Gyroid [5D]

η: 100.0 200.0 114.983 142.570 97.668 74.162 89.104
a : 7.0 6.0 8.051 9.979 6.836 5.180 6.319
t : 10.0 6.0 11.534 14.162 9.766 7.376 9.228
t : 15.0 6.0 14.961 14.778 14.650 11.062 13.125
t : 1.2 6.0 1.180 1.199 1.200 1.165 1.151

Porous [28D] η: 30.0 50.0 N/A 38.586 42.796 28.268 43.272

Table 3: Optimal function parameters φφφ Table. Optimal parameters
found by the specified global optimizers. These are the parameters
used to compute the error metrics in Table 2. The parameters were
rounded to 3 decimal points. We also specify the ground truth and
the initialization of the variables.

3.7. Differentiable SDF Rendering

We verify that the current state of the art for differentiable
physically-based SDF rendering [VSJ22] does not handle typical
features for multiscale material reconstruction, such as multi-object
reconstruction and porous structures. In Figure 14, we show
an example of failures in the reconstruction of a small set of
objects (two spheres in contact and three cubes) and a porous
sphere. In addition, it is not always possible to guarantee that the
microstructure mathematical formulation is always differentiable,
making differentiable optimization not possible in some scenarios.
Further investigation to extend the algorithm to support multi-object

optimization is an interesting opportunity for future work.
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Microstructure SIREN-SUR-256 SIREN-SUR-512 SIREN-VOL-256 SIREN-VOL-512 MLP-PE-SUR-256 MLP-PE-SUR-512 MLP-PE-VOL-256 MLP-PE-VOL-512

Gyroid [1D]

Val. Error↓ 0.03 0.03 0.02 0.01 0.04 0.15 0.13 0.36
LPIPS↓ 0.42 0.31 0.21 0.19 0.47 0.65 0.37 0.49

FLIP ↓ 0.28 0.22 0.18 0.16 0.32 0.46 0.19 0.25
max ||∇ f (x)|| ↕ 1 2.18 1.95 2.07 1.91 2.51 4.81 7.04 11.94

∆-loss↑ 130.31 149.31 289.02 387.23 17650.59 16391.40 23623.22 22462.19

Fibers [2D]

Val. Error↓ 1.00 1.00 1.00 1.00 1.07 0.60 0.39 0.43
LPIPS↓ 0.72 0.69 0.69 0.69 0.69 0.69 0.71 0.73

FLIP ↓ 0.95 0.51 0.49 0.54 0.51 0.51 0.38 0.37
max ||∇ f (x)|| ↕ 1 3.58 4.73 5.43 3.88 2.08 2.79 2.75 4.31

∆-loss↑ 66.99 88.40 208.28 274.95 20743.34 17657.37 20647.70 23504.41

Gyroid [3D]

Val. Error↓ 0.12 0.10 0.09 0.05 0.06 0.13 0.08 0.15
LPIPS↓ 0.41 0.34 0.61 0.59 0.47 0.52 0.65 0.72

FLIP ↓ 0.46 0.40 0.58 0.56 0.46 0.46 0.57 0.58
max ||∇ f (x)|| ↕ 1 3.41 2.86 2.83 3.42 1.99 2.77 2.90 3.69

∆-loss↑ 121.56 178.95 311.83 412.26 21315.19 19604.08 24535.98 20033.85

Spheres [2D]

Val. Error↓ 0.70 0.94 0.46 0.36 1.02 1.00 1.00 1.01
LPIPS↓ 0.66 0.64 0.61 0.59 0.66 0.66 0.64 0.64

FLIP ↓ 0.57 0.58 0.54 0.54 0.54 0.54 0.54 0.54
max ||∇ f (x)|| ↕ 1 4.61 4.98 2.67 4.55 4.7 10.59 15.45 19.13

ϵ-loss↑ 133.71 238.88 345.84 544.73 23633.08 21651.34 24528.74 25124.24

Gyroid [5D]

Val. Error↓ 0.11 0.08 0.03 0.04 1.02 1.04 0.46 0.30
LPIPS↓ 0.33 0.35 0.31 0.33 0.67 0.67 0.66 0.69

FLIP ↓ 0.38 0.41 0.36 0.38 0.61 0.61 0.60 0.57
max ||∇ f (x)|| ↕ 1 2.66 2.37 2.81 1.61 2.89 2.89 4.41 4.40

∆-loss↑ 138.95 167.09 244.68 383.13 21584.95 17986.02 20003.56 22752.97

Porous [28D]

Val. Error↓ 0.91 1.00 0.79 0.70 0.92 0.94 1.00 1.00
LPIPS↓ 0.63 0.63 0.6 0.6 0.77 0.71 0.79 0.8

FLIP ↓ 0.47 0.47 0.55 0.51 0.46 0.56 0.59 0.47
max ||∇ f (x)|| ↕ 1 3.77 3.92 4.23 4.18 2.75 3.19 3.57 3.92

∆-loss↑ 49.25 86.32 271.66 393.56 15319.12 17610.17 22234.11 22713.46

Table 4: Trained Networks. Table of comparison of the network architectures and the training domains used on our sythetic dataset 3.1. We
show for each problem the following: a) Validaton Error, b) LPIPS Perceptual loss, c) Image FLIP error, d) The maximum norm of the gradient
inside of the learning domain, e) The difference between the loss at the beginning and at the end of the optimization process denoted as ∆-loss.
The best results are highlighted in orange, while the second-best results are marked in yellow.
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Reference SHGO-PF BH-PF CMA-ES-PF CMA-ES-AS Powell-AS
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Figure 11: Reconstruction results for different optimization algo-
rithms (columns) and synthetic procedural microstructures (rows).
We show a comparison of rendered ground truth exemplars and
the rendered approximations (top row per microstructure) with the
measured FLIP (bottom row per microstructure).

Reference MLP-PE-VOL-256 MLP-PE-VOL-512 SIREN-VOL-256 SIREN-VOL-512
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Figure 12: Volume reconstruction results for different neural net-
work architectures (columns) and synthetic procedural microstruc-
tures (rows). We show a comparison of rendered ground truth exem-
plars and the rendered approximations (top row per microstructure)
with the measured FLIP (bottom row per microstructure).
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Reference MLP-PE-SUR-256 MLP-PE-SUR-512 SIREN-SUR-256 SIREN-SUR-512
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Figure 13: Surface reconstruction results for different neural net-
work architectures (columns) and synthetic procedural microstruc-
tures (rows). We show a comparison of rendered ground truth exem-
plars and the rendered approximations (top row per microstructure)
with the measured FLIP (bottom row per microstructure).

Reference Reconstruction

Figure 14: Results using a differentiable physically-based SDF ren-
dering algorithm [VSJ22] for microstructure reconstruction includ-
ing typical features such as multiple objects and porous structures.
The algorithm fails after 512 iterations to reconstruct all cases, in-
cluding empty solution for the first two rows and visible artifacts for
the last row. The initialization is the unit sphere.
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