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Fig. 1. Our proposed method allows fine-grained material selection in images on two di�erent levels of granularity, significantly outperforming previous work

(Materialistic [Sharma et al. 2023]) in selection accuracy and consistency. We show here results on challenging examples due to specular reflections (top le�)

and fine pa�erns outside the training data (top right, bo�om le�). Selection masks are shown as green image overlays. The bo�om right row shows material

editing results using our predicted two-level selection masks, with the masks shown as insets.

Selection is the �rst step in many image editing processes, enabling faster

and simpler modi�cations of all pixels sharing a common modality. In this

work, we present a method for material selection in images, robust to lighting

and re�ectance variations, which can be used for downstream editing tasks.

We rely on vision transformer (ViT) models and leverage their features for

selection, proposing a multi-resolution processing strategy that yields �ner

andmore stable selection results than prior methods. Furthermore, we enable

selection at two levels: texture and subtexture, leveraging a new two-level

material selection (DuMaS) dataset which includes dense annotations for

over 800,000 synthetic images, both on the texture and subtexture levels.

CCS Concepts: • Computing methodologies→ Image representations.

Additional Key Words and Phrases: Material Selection

1 INTRODUCTION

Selection in images is an ubiquitous operation, enabling numerous

downstream editing tasks. Given an image and a user input, such

as a clicked pixel, selection aims to identify other pixels in the

image that share a particular property with the user input. Various

modalities of selection exist, for example by color [Belongie et al.

1998], object [Ravi et al. 2024], or material [Sharma et al. 2023].
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The latter, in particular, facilitates selecting parts of an object or

multiple objects easily, allowing further editing of regions that share

the same material. Understanding which materials are the same in

images also provides key information for inverse rendering and

scene understanding tasks [Nimier-David et al. 2021].

Recent work [Sharma et al. 2023] has proposed to extract features

from a pre-trained vision transformer (ViT) [Caron et al. 2021] and

spatially process them for selection. However, the ViT’s tokeniza-

tion patch size and small operating resolution limit the selection

precision, especially around edges and thin structures. Moreover,

to �ne-tune the ViT for material selection, Sharma et al. used a

synthetic dataset which de�ned materials as textured surfaces (e.g.,

a wallpaper with a repeating pattern texture); this does not allow

selecting image elements sharing similar subtexture properties (e.g.,

a part of the repeating pattern with a similar appearance).

In this work, we tackle these limitations and propose a model for

more precise and robust selection, capable of selecting at both tex-

ture and individual subtexture levels. To extract more discriminative

features for material selection we leverage DINOv2 [Oquab et al.

2024]. Its re�ned architecture and use of larger patch sizes to extract

better contextual information outperforms other existing models

like DINOv1 [Caron et al. 2021] or Hiera [Ryali et al. 2023]. Unfor-

tunately, the ViT’s native resolution (518x518 for DINOv2) typically

requires downscaling the input images before extracting features.

This translates into poor performance when selecting boundaries or
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areas with �ne details. To mitigate this, we devise a multi-resolution

approach, splitting the original input image into tiles, and process-

ing both a downscaled version of the original image and the tiles at

the native ViT resolution, before concatenating them. This allows

our aggregated features to capture both the high-level context pro-

vided by the downscaled image and �ner-grained details from the

better-resolved individual tiles, signi�cantly enhancing selection

quality.

We also enhance the training process by sampling multiple pixels

from various materials in each training image, instead of a sin-

gle pixel, improving both training stability and material selection

consistency. Finally, we have designed a new synthetic dual-level

material selection (DuMaS) dataset which comprises 800,000+ im-

ages of indoor and outdoor scenes. It is over 16× larger than the

recent Materialistic dataset [Sharma et al. 2023] and includes anno-

tations at two selection levels: texture and subtexture. The texture

level is the same as in the Materialistic dataset and targets the selec-

tion of surfaces which belong to the same texture – e.g., on a chess

board, black and white squares would be selected together. Our new

subtexture level adds a �ner-grained option to enable the selection

of parts of textures with similar appearance, grouping together indi-

vidual texture components – in the chess board example, black and

white squares would be selected separately (see also Fig. 1). This

two-level approach also improves selection quality and consistency.

We evaluate the quality and consistency of our model both quali-

tatively and quantitatively, under di�erent scenarios: varying the

selected pixel, the image’s �eld of view, or its lighting. We ablate

our multi-resolution processing and training schemes as well as the

impact of our dataset on selection accuracy. Finally, we compare

our method to two state-of-the-art methods, namely Materialis-

tic [Sharma et al. 2023] and the Segment Anything Model 2 (SAM2)

�ne-tuned for materials [Fischer et al. 2024; Ravi et al. 2024], show-

ing signi�cant improvement over both.

In summary, we propose a material selection model with im-

proved accuracy and support for both texture- and subtexture-level

selection in images thanks to the following contributions:

• A material selection architecture that o�ers two-level con-

trol of the selection granularity;

• An improved training scheme for multi-pixel sampling and

multi-resolution processing;

• A large synthetic dataset comprising annotations on both

texture and subtexture levels.

We will release our model and test code, as well as a signi�cant

subset of our dataset1.

2 RELATED WORK

Object segmentation and selection. Recent research in object seg-

mentation and selection has signi�cantly advanced both 2D and

3D image understanding. In 2D images and videos, models such as

SAM and SAM2 [Kirillov et al. 2023; Ravi et al. 2024] enable selec-

tion/segmentation (and tracking) of objects. In 3D representations,

methods for radiance �elds [Bhalgat et al. 2023; Fu et al. 2022; Kim

et al. 2024], point clouds [Tchapmi et al. 2017] and inter-surface

1Project website: https://graphics.unizar.es/projects/MatSelection/

mappings [Morreale et al. 2024] leverage geometric or multi-view

cues to achieve segmentation and selection in a consistent manner.

These techniques, however, operate on an object level, targeting

the selection of distinct objects in an image. In contrast, we target

�ne-grained material selection, where our goal is to identify regions

sharing the clicked pixel’s material, irrespective of the object(s) onto

which the material is applied: a single object can contain multiple

materials and a single material can appear on multiple objects.

Material segmentation and selection. Material selection from 2D

images is a non-trivial problem, since a surface’s perceived appear-

ance can be in�uenced by numerous factors beyond its re�ectance

properties, such as its geometry [Boyaci et al. 2003], illumination

[Fleming et al. 2003], or the surrounding surfaces and object identity

[Sharan 2009; Sharan et al. 2014]. Early material selection algorithms

were built around low-level features such as color- and texture de-

scriptors [Belongie et al. 1998; Haralick et al. 1973] or hand-crafted

�lters and heuristics [Leung andMalik 2001; Malpica et al. 2003]. Ad-

ditionally, selection is simpli�ed when the image can be decomposed

into (potentially disjoint) regions of varying re�ectance properties,

as shown by Lensch et al. [2003] or, more recently for radiance

�elds, by Verbin et al. [2022]. However, this often requires addi-

tional information such as multi-view images or specialized capture

hardware [Xue et al. 2020], and single-image decomposition into

physical components remains challenging [Kocsis et al. 2024; Zeng

et al. 2024; Zhu et al. 2022].

Leveraging deep networks’ strong classi�cation capabilities, meth-

ods targeted material semantic classi�cation [Bell et al. 2015; Cimpoi

et al. 2014; Sumon et al. 2022]. Others proposed to train material per-

ceptual similarity metrics for classi�cation of complete photographs

containing materials [Lagunas et al. 2019; Sharan et al. 2013].

Closest to our method is Materialistic [Sharma et al. 2023], a mate-

rial selectionmethod leveraging large visionmodels’ features [Caron

et al. 2021]. While we also target material selection, we di�er from

this work in multiple ways: we improve feature processing through

a multi-resolution approach, preserving more signal throughout the

pipeline and hence improving selection accuracy and consistency.

Further, we extend their proposed de�nition of pixels with similar

materials (i.e., pixels belonging to the same texture) by adding a

�ner-grained selection level we call subtexture. This enables the

selection of texture sub-elements which share the same appearance.

Additionally, despite the existence of several datasets [Bell et al. 2013;

Deschaintre et al. 2018; Eppel et al. 2024; Murmann et al. 2019a; Sha-

ran et al. 2014; Upchurch and Niu 2022; Vecchio and Deschaintre

2024; Wang et al. 2016] for semantic material classi�cation or mate-

rial selection, they typically provide coarse semantic annotations.

For material selection, Sharma et al. [2023] used 50,000 synthetic

renderings with ground-truth annotations. However, their dataset

contains few, strongly textured materials with only texture-level

annotations. In contrast, we design a signi�cantly larger (800,000+

images) synthetic dataset containing many spatially varying tex-

tures with annotations both at the texture and subtexture levels.

Image encoders. Most modern object and material selection meth-

ods utilize the features of big vision models, ViTs or masked auto-

encoders (MAEs) pre-trained on large collections of natural images,

as backbones. ViTs like DINO and DINOv2 [Caron et al. 2021; Oquab

https://graphics.unizar.es/projects/MatSelection/
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Fig. 2. Model architecture. Our model extracts ViT features at di�erent resolutions, for the full image and for each separate tile, leading to a multi-resolution

feature encoding. The subsequent spatial processing layers upscale the features before the cross-similarity computes the a�ention with respect to the clicked

image pixel and patch. We exploit the information encoded at di�erent depths by repeating this process across four ViT levels, before fusing the output with a

residual CNN and feeding it to our two-level selection head, producing selections at both subtexture and texture level. The ViT is frozen, the red blocks are

trained. FC is short for fully-connected network.

et al. 2024] learn priors encoded in these images (e.g., the appearance

of shadows and re�ections), making them well-suited for generaliza-

tion to vision tasks such as object or material selection. A de�ning

feature of both ViTs and MAEs is the use of self-attention [Vaswani

2017], enabling global information sharing across the image.

However, attention is a memory-intensive operation, limiting

both architectures in terms of input patch size and resolution. The

recently introduced Hiera architecture [Bolya et al. 2023; Ryali et al.

2023] mitigates this via hierarchical feature extraction and smaller

kernels, leading to sharper feature boundaries. Scaling-on-scales (S2,

[Shi et al. 2024]), proposes to upscale the input to di�erent resolu-

tions and concatenate the resulting features, obtaining comparable

(and occasionally superior) performance to larger vision models.

In this work, we also leverage the features of big vision models,

evaluate various options [Caron et al. 2021; Oquab et al. 2024; Ryali

et al. 2023] and adjust the scaling proposed by S2 to �t our selection

context, signi�cantly improving selection quality and consistency

by preserving more of the input image’s available information.

3 METHOD

We design a new state-of-the-art model for material selection in

images that addresses the precision and robustness limitations of

prior approaches, and build a large synthetic dataset with material

annotations at both texture and subtexture levels.

Our model takes as input an image and a query pixel, and out-

puts per-pixel material similarity to this query at both texture and

subtexture levels, as demonstrated in Fig. 1. This similarity can then

be thresholded into a binary selection mask. We build our model

on the architecture of Materialistic [Sharma et al. 2023], to which

we make three key modi�cations, described in detail in Section 3.1:

(1) multi-resolution processing and feature aggregation to improve

precision, (2) two-level representation to allow for texture- and

subtexture-level selection, and (3) multiple query sampling during

training to improve robustness.

An overview of our pipeline is shown in Fig. 2. We �rst extract

features from the input image with a ViT encoder at di�erent res-

olutions. Our model can be used with di�erent encoders, and we

evaluate alternatives in Section 4; for convenience, unless explicitly

stated, our explanations and results in the rest of the paper use

DINOv2. The extracted features are then processed through our pro-

posed multi-resolution aggregation scheme, and fed into a material

selection head akin to that of Materialistic, modi�ed for two-level

selection. This head takes the aggregated features, and computes the

cross-similarity between the features and the image patch centered

around the user-provided query pixel, yielding query-conditioned

features. Both inMaterialistic and in our work, the feature extraction

by the encoder – and therefore the subsequent processing – is done

from four di�erent transformer blocks. After the cross-similarity

feature weighting layer, the query-conditioned features at di�erent

blocks are combined and bilinearly upsampled via convolutional

layers. Finally, a channel-wise sigmoid is applied to yield the �-

nal per-pixel similarity. The model is trained minimizing a binary

cross-entropy (BCE) loss on our DuMaS dataset (Section 3.2).

3.1 Two-Level Multi-Resolution Material Selection

We now describe here the three key components that enable our

model to perform �ne-grained, spatially varying material selection

(§3.1.2 to §3.1.4). Prior to that (§3.1.1), we discuss our feature extrac-

tor of choice and its advantages over previous alternatives.

3.1.1 Image encoder. Di�erent encoders can be used to extract fea-

tures from the input image. In this work, we rely on DINOv2 [Oquab

et al. 2024], a pre-trained self-supervised ViT that builds upon the

foundation of DINO [Caron et al. 2021], incorporating improve-

ments in architecture and training strategies. In particular, it utilizes

a larger and more diverse dataset, better augmentations, and a more

re�ned distillation process to enhance feature extraction capabilities

with richer representations. DINOv2 also adopts a larger patch size
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Fig. 3. Fine-grainedmaterial selection.Our multi-resolution aggregation

allows to recover thin structures, overcoming a limitation acknowledged in

previous work [Sharma et al. 2023].

(?B = 14, almost twice as large as DINO), which captures higher

contextual information but results in lower-resolution tensors at 1/14

of the input image resolution. In our experiments, using DINOv2

as an encoder yields more discriminative features, particularly for

disentangling appearance from lighting variations, and more con�-

dent selection predictions compared to using the original DINO. Its

bigger patch size slightly degrades performance on edges and small

details on cluttered scenes when using a single resolution approach.

However, this is mitigated by our multi-resolution approach, where

a bigger patch size does not hamper performance. In the following,

we refer to DINOv2 as the pre-trained embeddings from variant

ViT-B/14 with ?B = 14 and feature dimension 3 = 768, our best

performing con�guration. Following previous work [Sharma et al.

2023], we extract four intermediate features (both local and global

tokens) from transformer blocks at indices 2, 5, 8, and 11.

3.1.2 Multi-resolution processing and feature aggregation. Despite

the impressive performance of ViTs as feature extractors, their tok-

enization signi�cantly reduces the resolution of the input images,

degrading precision on edges and thin structures. Therefore, we pro-

pose to extract features from regions of the input image at multiple

resolutions, improving the sharpness and robustness of our material

selection results. Given an input image � , we construct a pyramid

of = resolutions {�1, �2}, where �1 represents the image at the input

resolution A × A of the image encoder (A = 518 for DINOv2), and

�8 represents 2
8−1 higher-resolution versions, ensuring that their

resolution remains divisible by the ViT patch size ?B (to maintain

alignment between the feature maps across resolutions). Each �8
is split into 2

8 non-overlapping tiles, each of them with the reso-

lution of �1, A × A . In practice, our 1024 × 1024 training images are

downsampled to the image encoder’s native resolution for �1, while

�2 makes use of the full image resolution, slightly resized and split

into four tiles. These tiles are fed into the image encoder, which, as

explained in §3.1.1, extracts features at four di�erent scales (from

four transformer blocks, 9 = 1, ..., 4). This yields feature maps �8 9 ,

extracted at image resolution 8 and block 9 . In our experiments, we

evaluated two and three resolution levels and found that three levels

did not provide tangible bene�ts given our training data resolution,

while requiring signi�cantly more compute for the additional tiles’

features. We therefore use two levels = = 2, e�ectively achieving

twice higher resolution than the single resolution approach.

We then introduce a feature aggregation module to integrate

information across resolutions (see Fig. 2). We �rst resample all

feature maps �8 9 to match the target resolution (with di�erent target

resolutions for each block 9 ) and concatenate the features along

the channel dimension, making sure to preserve the original image

layout when re-arranging the tiles:

�agg, 9 = Concat({Resample(�8 9 )}
=
8=1), (1)

where Resample(·) denotes bilinear upsampling and area down-

sampling to match the target resolution, and Concat(·) represents

concatenation along the channel axis.

Previous related work on multi-resolution aggregation [Shi et al.

2024] always downsamples the higher-resolution features before

concatenating them. In contrast, we adapt our up- or down- sam-

pling strategy to the various target feature resolutions per block,

where we make sure to preserve the highest-resolution spatial de-

tails (see supplemental document for resampling details). For aggre-

gation, concatenation outperforms averaging as it preserves more

information by retaining both �ne-grained and broader contextual

features that are later processed by the material selection head. We

illustrate the bene�ts of this module in Fig. 3, where our multi-

resolution processing allows to sharply select the thin structures of

the feather.

3.1.3 Two-level representation. Our model outputs material similar-

ity representations at two levels, texture-level and subtexture-level,

in the form of two di�erent similarity maps. To achieve this, we

modify the output per-pixel similarity score of our model to have

two output channels, each of them using a sigmoid activation func-

tion. We train both channels jointly, minimizing the BCE loss on

our DuMaS dataset.

3.1.4 Multi-query sampling during training. To improve training

stability and robustness, we sample multiple query pixels per im-

age during training, covering diverse materials, which has proven

helpful in the object selection context in previous work [Ravi et al.

2024]. This strategy is similar in spirit to using a higher e�ective

batch size, re-using the image encoder computation and making

the optimization more stable. We show in Section 4 and the sup-

plemental document how the multiple query sampling bene�ts the

robustness and accuracy of our material selection results.

3.2 DuMaS training dataset

Most existing material datasets with dense image-space annotations

[Bell et al. 2013; Murmann et al. 2019a; Upchurch and Niu 2022]

contain semantic annotations of material classes, such as “wood” or

“metal”, but lack �ne-grained annotations of variations within a class.

The dataset of Materialistic [Sharma et al. 2023] does contain �ne-

grained per-pixel material annotations for 50,000 synthetic images;

however, such annotations do not distinguish between di�erent

individual texture components within a single texture (e.g., black and

white squares on a checkered pattern). Such distinction is necessary

to enable our two-level material selection. Therefore, we render a

new large-scale synthetic dataset of over 800,000 images including

�ne-grained material annotations at both texture- and subtexture-

level, named DuMaS (Dual-level Material Selection) dataset.

We do so by rendering 132 di�erent synthetic scenes (119 indoor,

13 outdoor) from the Evermotion collection [eve 2024] with ran-

dom materials alongside texture and subtexture annotations. We



Fine-Grained Spatially Varying Material Selection in Images • 185:5

12 pa�erns 10,881 materials 800,000+ rendered images Subtexture annotations Texture annotations

Fig. 4. DuMaS training dataset creation. Starting from twelve base noise pa�erns from Substance Designer, we vary their parameters to create 1,571 binary

masks which we use to randomly combine 3,026 stationary reflectance maps to generate 10,881 materials (see text for more details). We assign these material

maps to objects of our 132 scenes under di�erent combinations, and render videos by varying camera viewpoints, resulting in 816,415 individual images. For

each image, our dataset includes dense annotations at both subtexture and texture level; annotation IDs are mapped to gray levels for visualization.

�rst create the material maps which will be applied to objects in

di�erent scenes. We select a set of 3,026 stationary2 source mate-

rials from the Adobe 3D Assets library, constituting our initial set

of re�ectance maps. We then create 1,571 di�erent binary masks

by randomly sampling generative parameters from twelve noise

patterns in Substance Designer. Combining a binary mask (used

as alpha channel) with a pair of re�ectance maps leads to a new

texture map (see Fig. 4, left). In particular, for each binary mask we

sample �ve pairs of re�ectance maps without repetition, for a total

of 7,855 di�erent texture maps. Together, the re�ectance and texture

maps yield 10,881 unique material maps. Each re�ectance and each

texture map are assigned a unique ID, which is then used for image

annotation at texture and subtexture levels.

For each scene, we create �ve di�erent material assignments by

randomly sampling from our set of material maps, for a total of 660

di�erent scene con�gurations. We maintain the original relation-

ships between objects, so that objects (or parts of them) with the

same material in the original scene will also share the same material

after our assignment. Transparent and emissive materials in the

original scenes are left unmodi�ed. The �nal annotations, in the

form of per-pixel material IDs at two levels, subtexture and texture,

are as follows: if an object is assigned a material from the initial

re�ectance set, both levels will share the same ID. If it is assigned

a material from the texture set, the texture-level annotation will

store its ID, and the subtexture level will store the ID of its assigned

constituent re�ectance map (see Fig. 4, right).

We render videos of up to one minute for every scene, following

a camera trajectory that mimics a �rst-person exploration of the

scene, at 30 fps. Each frame is rendered at 1024×1024 resolution

with 256 samples per pixel using Blender Cycles 4.2. Our full DuMaS

dataset contains 816,415 frames (around 250 days of GPU rendering

time). Including videos instead of independent images allows us to

use our dataset to �ne-tune video selection models like SAM2.

3.3 Implementation Details

We train our model on our DuMaS dataset for 10 epochs, using the

Adam optimizer with learning rate 1e-4 on four A100-40GB GPUs,

2A class of materials consisting of plain colors, or structures that (randomly) repeat
over the surface [Aittala et al. 2015].

using the DDPS distributed strategy and batch size 4 images per GPU.

During training, we sample random crops at ViT resolution and

apply random exposure, saturation, and brightness augmentations.

For our multi-query sampling, we uniformly sample 10 pixels within

the crop. See the supplemental document for implementation details.

4 RESULTS

In this sectionwe present qualitative and quantitative evaluations, as

well as a robustness analysis of ourmodel with respect to user inputs,

zoom levels, illumination, and sensitivity to the selection threshold.

Finally, we ablate several aspects of our architecture and show

application examples for material editing at texture and subtexture

levels. We will publicly release our evaluation framework’s code

and create a benchmark for both material selection quality and

robustness, to facilitate future work.

4.1 Real-World Test Datasets

We evaluate our method mainly on two test datasets that con-

tain in-the-wild, real-world images: (i) the Materialistic Test

dataset [Sharma et al. 2023], containing 50 images annotated at

texture level; and (ii) the Two-Level Test dataset, our new, man-

ually annotated test set containing 20 images with annotations at

both subtexture and texture levels. This new dataset contains chal-

lenging real-life scenarios with strong lighting variations, indoor

and outdoor instances, cluttered scenes with thin structures, and

high-frequency appearances. We show this new test set in the sup-

plemental document and will release it upon publication. In both

datasets, we sample 10 query pixels per image for evaluation, gen-

erating 500 test cases for the Materialistic Test dataset, and 200

test cases for our Two-Level Test dataset.

4.2 Evaluation

Qualitative results. Figure 5 presents the results of our two-level

selection method in challenging scenarios. These images contain

a diverse range of cases, demonstrating the robustness of our ap-

proach. Our method accurately selects textured areas and discrim-

inates subtextures, as shown in rows one to three. The third row

shows a highly cluttered scene, with several spatially-varying mate-

rials, in which our method successfully makes the right selection at
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Fig. 5. �alitative results. We show results of our method (two-level selection) for images in our real-world test datasets. For each example and level, we

show the predicted, binarized selection masks as green image overlays and the similarity score before thresholding in false color (blue low, red high). Our

method works well at both subtexture and texture levels even for clu�ered scenes and pa�erns very di�erent from the ones in the training set (third row,

wallpaper), and with challenging examples where objects in the scene share the same color (bo�om row). In non-spatially varying materials (bo�om row) our

model’s predictions for both levels are consistently the same.

both levels, despite the pattern being very di�erent from the train-

ing ones. The last row showcases a challenging, mostly-white scene

with varying re�ectances, where our method correctly identi�es

the table material at both texture and subtexture levels. We show

additional results in the supplemental document.

Comparisons. We compare our model with two recent state-of-

the-art methods: Materialistic [Sharma et al. 2023], and SAM2 [Ravi

et al. 2024]. Since SAM2 was originally trained for object selection,

we �ne-tune it with our DuMaS dataset to the material selection

task (see supplemental document for details on the �ne-tuning). For

completeness, we also report results of Materialistic trained on our

DuMaS dataset, as well as using DINOv2 as encoder. For the SAM2

model evaluations we duplicate the �rst frame and use the output of

the second frame [Fischer et al. 2024], which signi�cantly improves

its overall con�dence and accuracy. We also include results without

this frame duplication in the supplemental document.

Figure 6 presents qualitative results for texture-level selection on

real images, from a single query pixel, comparing our method with

Materialistic and SAM2 �ne-tuned with ourDuMaS dataset. Overall,

our method is more accurate and results in fewer false positives.

Compared to Materialistic, it consistently produces sharper and

cleaner predictions across all examples; this is probably due partly to

ourDuMaS dataset, but also to Materialistic’s reliance on features at

a single resolution, which constrains the precision of the output, and

results in blurry edges and a diminished capacity to accurately select

�ne details. In contrast, the �ne-tuned SAM2 model, using the Hiera

encoder (with a smaller patch size and twice the input resolution),

produces sharp edges and handles thin structures, but tends to over-

select areas of the image of relatively similar appearance. We also

show additional comparisons in the supplemental document.

Table 1 reports quantitative results for three di�erent metrics

on both test datasets. The L1 metric measures the pixel-wise dif-

ference between the predicted values and the ground truth mask;

lower values indicate better agreement, which can be interpreted

as higher prediction con�dence. The Intersection over Union (IoU)

measures the overlap between the ground truth mask and the pre-

dicted mask, and the F1 score is the harmonic mean of precision

and recall, providing a single metric that balances both aspects of

a model’s accuracy. IoU and F1 are computed by binarizing the

outputs with a threshold, which we �x to 0.5. Metrics for tasks

outside a method’s original training scope are shown in the table
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GTInput & Click Materialistic SAM2 + DuMaS Ours

Fig. 6. �alitative comparison. Texture-level selection results for Materialistic, SAM2 fine-tuned on our DuMaS dataset, and our method. The white squares

highlight areas where the methods struggle. Materialistic fails to select relevant areas, especially in the presence of small or thin structures (first and last rows),

or to produce sharp, clear selections (second and third rows). SAM2 has improved sharpness, but produces many false positives in areas of similar appearance.

for reference, but marked in gray (e.g., our subtexture level is not

supported by previous works). Table 1 supports our qualitative com-

parisons; when trained on DuMaS, Materialistic slightly improves

its performance, due to the larger and more diverse dataset. Still,

our method consistently achieves the best performance for both

subtexture and texture level selection. Interestingly, when changing

the image encoder of Materialistic to DINOv2 (second row), the over-

all quantitative performance of Materialistic is slightly degraded:

despite the stronger feature representation capabilities of DINOv2,

its larger patch size (14 vs. 8) yields lower resolution features, signi�-

cantly impacting performance on edges. This highlights the bene�ts

of our multi-resolution pipeline, compensating for this limitation.

4.3 Robustness Evaluation

To evaluate the robustness of our method, we assess prediction con-

sistency across query pixels, zoom levels, and di�erent illuminations.

Moreover, we evaluate how robust the predictions are to di�erent

thresholds, which we call prediction con�dence.

To test pixel consistency, we randomly sample up to three ma-

terials per image, and �ve query pixels per material: Ideally, the

selection predictions for all query pixels belonging to the same ma-

terial would be identical. With regard to zoom consistency, we create

�ve di�erent crops with increasingly large zoom levels centered on

each query pixel, and evaluate to what extent the same query pixel

results in the same selection in all cases. For illumination consistency,

we use the Multi-Illumination dataset [Murmann et al. 2019b],

Table 1. Mean results of various methods (rows) across di�erent metrics

(subcolumns) on two real-world test datasets (columns) . For single-level

methods trained on our DuMaS dataset (+DuMaS), we train two separate

models (one per level) and report the result of the relevant one per column.

Gray text indicates cases where the model is evaluated on a di�erent task

to the one it is trained for, and boldface marks the best results.

Materialistic Test Two-Level Test

Texture Level Subtexture Level Texture Level

L1 ↓ IoU ↑ F1 ↑ L1 ↓ IoU ↑ F1 ↑ L1 ↓ IoU ↑ F1 ↑

Materialistic 0.057 0.858 0.906 0.144 0.513 0.629 0.112 0.657 0.749

Materialistic +DINOv2 0.069 0.838 0.890 0.202 0.463 0.581 0.135 0.636 0.728

Materialistic +DuMaS 0.043 0.858 0.904 0.092 0.615 0.717 0.101 0.680 0.765

SAM2 *obj.sel. 0.086 0.633 0.708 0.121 0.426 0.539 0.118 0.558 0.632

SAM2 + DuMaS 0.060 0.784 0.847 0.103 0.576 0.681 0.071 0.730 0.799

Ours 0.030 0.896 0.935 0.071 0.673 0.766 0.069 0.750 0.823

which includes thirty in-the-wild scenes captured under twenty-�ve

di�erent illuminations. We sample up to three materials per scene

and measure consistency of the selections across illuminations.

For all consistency evaluations, we compute the average pairwise

Hamming distance (after binarizing the masks with a threshold of

0.5), with lower Hamming distances indicating higher consistency.

As shown in Table 2, our method demonstrates signi�cantly

higher consistency compared to Materialistic, achieving approxi-

mately 1.8× lower Hamming distance. When Materialistic is trained
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query pixel consistency illumination consistencyzoom consistency

Fig. 7. Robustness. Robustness evaluation of our method with respect to the clicked pixel (le� subset), the image crop with increasing zoom levels (middle

subset), and illumination changes (right subset). The images are challenging due to similar albedo (le�), strong shading variations on the cushions (middle)

and specular highlights on the toaster (right). For the false-color material similarity maps and comparisons against Materialistic and SAM2, please see the

supplemental document, Figs. 9-12.

Table 2. Consistency results of variousmethods (rows) across di�erent query

pixels, zoom levels, and illuminations (subcolumns) on three real-world test

datasets (columns). For single-level methods trained on our DuMaS dataset

(+DuMaS), we train two separate models (one per level) and report the result

of the relevant one per column. All are mean Hamming distances (lower

is be�er). Note that only consistency is measured here, without assessing

accuracy.

Materialistic Test Two-Level Test Multi-Illumination

Texture Level Subtexture Level Texture Level Texture Level

Pixel ↓ Zoom ↓ Pixel ↓ Zoom ↓ Pixel ↓Zoom ↓ Illumination ↓

Materialistic 0.041 0.121 0.082 0.200 0.082 0.200 0.071

Materialistic +DuMaS 0.028 0.087 0.077 0.222 0.059 0.161 0.065

SAM2+DuMaS 0.025 0.080 0.053 0.165 0.059 0.111 0.039

Ours 0.024 0.071 0.052 0.166 0.041 0.112 0.034

on our DuMaS dataset, its consistency improves substantially, par-

ticularly across query pixels. This improvement underscores the

bene�ts of our larger-scale dataset, which features a more diverse

range of materials. Our architecture and training method further

enhance consistency, especially noticeable on the more challenging

Two-Level Test and Multi-Illumination datasets. Comparing

to SAM2 �ne-tuned on our DuMaS dataset, our method shows a

slight improvement in consistency; moreover, as showed in Table 1,

our results are more accurate.

Fig. 7 shows qualitative examples for pixel, zoom and illumination

consistency. In di�cult scenarios, such as a sofa surrounded by

surfaces of similar color (left), or a cushion with sharp shadows

(middle), our predictions remain consistent and highly con�dent,

clearly outperforming previous work. Regarding illumination, our

predictions remain reasonably consistent even under very strong

changes, as shown in Fig. 7 (right). For qualitative comparisons to

Materialistic and SAM2, as well as a video showing the consistency

of our method, please refer to the supplemental material.

Finally, we evaluate the robustness of our method in terms of

prediction con�dence by measuring the sensitivity of the selection

result (the �nal binary mask) to the threshold over the similarity

score. Our approach outperforms prior works in this regard, with

full metrics provided in the supplemental material.

Table 3. Mean results of ablations of our method (rows) across di�erent

metrics (subcolumns) on the two test real-world evaluation datasets and a

challenging subset (columns). For the Single Level ablation, we train two

separate models (one per level) and report the result of the relevant one per

column.

Materialistic Test Two-Level Test Challenging Subset

Texture Subtexture Texture Subtexture Texture

L1 ↓ IoU ↑ L1 ↓ IoU ↑ L1 ↓ IoU ↑ L1 ↓ IoU ↑ L1 ↓ IoU ↑

Ours, DINO 0.045 0.850 0.094 0.616 0.097 0.698 0.107 0.591 0.104 0.644

Ours, Hiera 0.046 0.838 0.093 0.593 0.080 0.716 0.112 0.581 0.099 0.685

Ours, w/o Multi-Res. 0.033 0.889 0.081 0.637 0.075 0.740 0.130 0.512 0.122 0.585

Ours, w/o Multi-Sampl. 0.036 0.893 0.083 0.622 0.088 0.680 0.133 0.507 0.143 0.517

Ours, Single Level 0.037 0.888 0.077 0.643 0.081 0.750 0.106 0.581 0.099 0.685

Ours, Full 0.030 0.896 0.071 0.673 0.069 0.750 0.068 0.694 0.058 0.763

4.4 Ablations

We next analyze the impact of our most critical design decisions.

All variants have been trained the same number of epochs with

the full DuMaS dataset unless otherwise stated. Our full model

includes the DINOv2 image encoder, multi-resolution feature ag-

gregation (Multi-res., Section 3.1.2), and multiple query sampling

(Multi-sampl., Section 3.1.4).

We �rst explore the e�ect of the image encoder (Table 3, �rst two

rows). Replacing DINOv2 features with DINO or Hiera encoding

produces less accurate selections and with noticeably less con�-

dence (lower L1) in all datasets. Both DINO and Hiera seem to be

more biased towards color and lighting than DINOv2, as shown

qualitatively in the supplemental document. Then, we show results

removing our multi-resolution andmulti-sampling approaches, both

in Table 3 and in Fig. 8. Our multi-resolution feature aggregation

improves quality of the predictions (lower L1), which is particularly

visible in the qualitative results, as it drastically improves perfor-

mance when dealing with thin edges, like the basketball net. Our

multi-sampling strategy, on the other hand, improves overall preci-

sion, in particular for texture-level selection. This may stem from

computing gradients on the predicted selection for multiple materi-

als in an image at a time, in every optimization step. Additionally,

this multi-sampling signi�cantly improves con�dence by reducing

the sensitivity to the selection threshold, which minimizes the need

for manual adjustments (see results in the supplemental document).
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Ours fullw/o multi-sampl.w/o multi-res.Input & GT Ours fullw/o multi-sampl.w/o multi-res.Input & GT

Fig. 8. Ablations. We ablate parts of our method (multi-resolution and multi-sampling, respectively) on two challenging examples containing thin structures

(net and zebra stripes) and albedo entanglement (net has a similar albedo to the white parts of the basketball, in front of a pa�erned background).

We also assess in Table 3 the e�ect of jointly training both sub-

texture and texture levels in one model (Ours Full) compared to

training two separate models with a single output, one per level

(Ours, Single Level). Notably, training with all data concurrently

does not negatively impact performance, allowing to have a single

model for both selection levels, and supporting our hypothesis that

jointly estimating both outputs is bene�cial for accuracy.

Last, we further evaluate our ablations on a subset of 30 challeng-

ing test cases including �ne structures, albedo entanglement, and

strong light variations. We include this full challenging subset in the

supplemental document, Figure 3. The results (Table 3, right-most

columns) show the clear bene�ts of our multi-resolution component,

which signi�cantly improves performance on thin structures, as

well as our multi-sampling strategy, which improves robustness

overall and helps in scenarios with albedo entanglement and strong

light variations (50% lower L1 and 20% higher IoU in Table 3). We

hypothesize that by sampling multiple query pixels per image dur-

ing training, it is more likely that these challenging cases (e.g., two

pixels with same albedo from di�erent materials, or two pixels from

the same material in areas with strong lighting variation) appear in

the same training batch, improving the gradient.

4.5 Application: Material Editing

Selection of speci�c regions within an image is an exceedingly

common and highly useful tool for a number of applications, among

which editing is one of the most representative examples. We show

practical applications of our selection for material editing tasks in

image space, in Fig. 1 (bottom right) and Fig. 9. Our new level of

granularity at the subtexture level, as well as our improved precision

and accuracy, allow users to easily edit challenging scenarios that

would otherwise require signi�cant manual intervention, including

individual texture components such as the �owers of the dress

(Fig. 1), or the deer on the cushion and wallpaper (Fig. 9).

5 DISCUSSION

Several avenues of future work remain open. Clicking on a pixel in

an out-of-focus area of the image may lead to incorrect selections, as

shown in the top row of Fig. 10: as it can be seen, our model cannot

accurately distinguish the �ower petals and activates inaccurate

Input & Click Subtexture editing results

Fig. 9. Editing.We use our method’s selection masks at subtexture level to

perform fine-granular edits of the image’s materials in Photoshop.

regions in the background (left). The problem mostly goes away

when clicking on an in-focus area of such �owers (right). Images

with long horizon linesmay also be problematic, if the image exhibits

strongly varying frequencies due to perspective. In the middle row

of Fig. 10 the �rst ranks of �owers are selected but the more distant

ones are not (left), or viceversa (right). We believe these limitations

could be addressed by adding more training data with explicit depth

of �eld e�ects and outdoor large scenes, respectively. Another idea

to mitigate potential failure cases in practical scenarios could be to

combine multiple selection masks, where a user could optionally

select extra query pixels manually, combining the predictions and

producing improved masks. This strategy could help in cases where

the initial selection misses speci�c parts of the desired result (e.g.,

middle row in Fig. 10). Negative input queries, subtracting from

the selection, would also be possible in cases where our selection

overselects (e.g., top row, left in Fig. 10). Further, our de�nition of

subtexture may not easily translate to continuously varying surfaces

like the rainbowwall in the bottom row of Fig. 10. Future work could
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Input & Click Ours OursInput & Click

Subtexture Texture

Fig. 10. Limitations. Our method struggles with clicks on out-of-focus

regions (top) and long-horizon imagery with changing frequencies (middle).

Textures without individual components (bo�om) stretches our definition

of subtexture.

explore a more continuous similarity de�nition to enable a gradient

in the similarity score, following that of the color distance on the

wall. More generally, while we propose an additional selection level,

we do not claim to have decisively solved the inherent ambiguity of

material selection tasks, for which di�erent de�nitions of what “the

same material” means may be needed, depending on the intended

goal and downstream applications.

6 CONCLUSION

We present a novel method for �ne-grained material selection in

images, which works both at texture and subtexture levels, and is

more precise and robust than previous approaches. We evaluate

various ViT backbones and propose a new training scheme and a

large-scale dataset, signi�cantly improving selection quality for �ne

structures and challenging scenarios with albedo entanglement and

complex light variation.
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