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Zero-Phase Phasor Fields for Non-Line-of-Sight
Imaging

Pablo Luesia-Lahoz, Talha Sultan, Forrest B. Peterson, Andreas Velten, Diego Gutierrez, and
Adolfo Muñoz

Abstract—Non-line-of-sight imaging employs ultra-fast illumination and sensing devices to reconstruct scenes outside their line of
sight by analyzing the temporal profile of indirect scattered illumination on a secondary relay surface. Commonly, the NLOS methods
transform the temporal domain into the frequency domain and operate on it, and then identify surface locations by locating the maxima
in amplitude along the reconstruction volume. Phase information, however, is very often discarded or ignored. We incorporate phase
information into our novel Zero-Phase Phasor Fields imaging technique. We show how, at positions that belong to the hidden geometry,
we can ensure the phase is zero, so we can locate the hidden geometry with great precision by locating the zero crossings in the
phase. This allows us to reconstruct at widely spaced locations and still achieve up to 125 micrometer depth precision, as our
experimental validation with both synthetic and captured data shows. Moreover, the phase is robust to noise, as we demonstrate with
decreasing signal-to-noise ratio captures of the same scene.

Index Terms—Computational Photography, Non-line-of-sight imaging, looking around corners, virtual wave optics.
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1 INTRODUCTION

R ECENT advances in ultra-fast illumination and sensing
devices make it possible to capture the propagation of

light as a function of time, obtaining its time of flight (ToF)
at an effective frame rate of up to trillions per second [1],
[2], [3]. One of their multiple applications is non-line-of-
sight (NLOS) imaging [4], [5], [6], [7], [8], [9], [10], [11],
which aims to recover the geometry from partially or fully
occluded scenes based on the indirect light that reaches a
secondary surface or relay wall.

NLOS imaging algorithms usually reconstruct a pre-
defined three-dimensional volume to search for hidden ge-
ometry. This volume is often expressed as a 3D point grid,
which is equivalent to a regular set of 2D planes parallel
to the relay wall. The reconstructed points with the highest
values mark the approximate location of a scattering surface
(hidden scene geometry). Higher precision is achieved by
increasing resolution, either within all planes (horizontal
and vertical resolution) or with the number of planes (depth
resolution), at the cost of prohibitively increasing both mem-
ory usage and execution time.

A milestone in NLOS imaging methods is Phasor Fields
(PF) [10], which poses NLOS reconstruction as a virtual
wavefront propagation problem by virtually illuminating
the hidden scene. This is done by transforming the time
of flight to the frequency domain, which is more resistant
to noise and increases the reconstruction speed due to the
use of the Fast Fourier Transform. The reconstruction value
at each point comes from the amplitude of the virtually-
propagated waves, while phase information is usually dis-
carded.

We introduce a novel method that leverages the phase
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information of PF to interpolate between different recon-
struction points. Thanks to the virtual wavefront propa-
gation analogy (PF), we can utilize insights from imaging
interferometry [12], [13], [14]. The key insight is that the
phase of a propagated wavefront gives precise cues about
the hidden surface position, even if computed at some
distance from the true surface. This allows us to do coarser
reconstructions, with a lower resolution in depth by using
fewer planes, and then leverage phase information to correct
the hidden surface positions according to it.

We make the key observation that we can control the
phase of the reconstructions at the hidden scene positions,
which we set to zero, enabling us to perform the correction
of the hidden surface locations by finding the nearest zero
crossing in the phase information. For this reason, we name
our method Zero-Phase Phasor Fields (ZPPF). In a first
step, we apply standard PF with a low depth resolution.
Then we correct the depth with the phase, obtaining a
precision comparable to PF with a very dense depth reso-
lution, which is orders of magnitude slower. In particular,
our approach is sensitive to variations in depth as small
as 150 micrometers, with the same execution times and
complexity that previous methods employ for centimeter-
scale results. Moreover, it outperforms previous methods in
execution time and memory usage, while being extremely
robust to noise in poor signal-to-noise (SNR) scenarios. We
show results with real-world and synthetic data, captured
in confocal configurations [7].

We believe that our approach represents a significant
step forward in NLOS imaging techniques. Real-world ap-
plications where precise depth matters, such as medical
imaging or exploration, can benefit from it. Furthermore,
its efficiency makes it suitable for larger-scale applications,
such as car safety, by making the problem more manageable
for embedded computing systems.
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2 RELATED WORK

2.1 Non-Line-of-Sight Imaging

Transient Non-Line-of-Sight imaging, or just NLOS in this
manuscript, employs ultrafast capture and illumination de-
vices to leverage the time-of-flight of the indirect light to
image hidden scenes [15]. The achievable depth resolution
is fundamentally limited by the system’s overall timing
resolution [7]. In their work, Velten et al. demonstrated
millimeter-scale depth of tracking of hidden objects over
time, using picosecond-resolution systems [4]. In contrast,
high-resolution depth imaging demands a dense depth map
of an entire hidden scene, which presents greater challenges.
By exploiting the first-returning photon geometry, previous
approaches have achieved approximately 10 micrometer
precision, at the cost of using femtosecond timing resolu-
tion and a computationally expensive optimization algo-
rithm [16]. By limiting the capture to a confocal capture,
i.e., the laser and capture are co-located, the Light Cone
Transform [7] casts NLOS imaging as a deconvolution prob-
lem, getting approximately 2.5 millimeters depth precision
via direct inversion. Another direct inversion is the fk-
migration [9], which solves the problem efficiently in the fre-
quency domain, using Stolt’s interpolation, reaching 1.2 mil-
limeter precision. Yet both approaches require a dense grid
of reconstruction points and manipulating large Fourier-
domain representations, making inversion impractical due
to prohibitive memory demands. In this work, we present
a linear inverse method with complexity comparable to
LCT and fk-migration, achieving up to 125 micrometer scale
precision, without incurring significant memory overhead.
For that purpose, we build upon the Phasor fields frame-
work [10], which poses the NLOS imaging problem as a
wavefront propagation problem.

2.2 Phasor Field Framework

The Phasor Field (PF) framework [10] is a promising tech-
nique in NLOS imaging, effectively posing the relay wall
as a virtual camera. The key observation is that by posing
virtual wavefronts to represent the light propagation within
the NLOS imaging scope, they can use well-known diffrac-
tion integrals from wave optics [17], [18], [19], [20], [21],
[22], [23]. Hidden scene geometry is reconstructed via com-
putational backpropagation of these virtual waves [10], [11].
This formalism allows line-of-sight imaging concepts (e.g.,
from Fourier optics, cameras, phased arrays) to be employed
for analyzing NLOS resolution [20], sampling criteria [24],
extracting complex light transport phenomena [25] and find-
ing mirror images of objects hidden around two corners [26].
Implementations include frequency-domain methods to im-
prove computational speed [11], [27], [28] and adaptations
for non-planar surfaces [29], [30] or memory-constrained
scenarios [31], [32]. Notably, these PF reconstruction algo-
rithms have primarily concentrated on estimating inten-
sity distributions while ignoring phase information. We
show that this information is pertinent for achieving high-
precision depth recovery with fewer reconstructed samples.

3 BACKGROUND: THE PHASOR FIELDS FRAME-
WORK

To understand our work, first, it is key to understand the
Phasor Fields (PF) framework [10]. The original authors
present dual domains in the PF framework: the real and
the virtual.

The real domain is equivalent for all transient NLOS
imaging methods [4], [7], [9], [33], [34]. An ultra-fast illu-
mination device, i.e., a laser, emits a short light pulse to
a set of illumination positions xl ∈ L on the visible relay
wall. The light scatters from those xl positions to the hidden
scene, which scatters part of the illumination back onto the
relay wall. An ultra-fast capture device focused on a set of
positions xs ∈ S captures the incoming light, decoupled by
its time-of-flight (ToF).

The distribution of xl ∈ L and xs ∈ S defines the
capture configuration. In this work, we employ a regular
grid of sensing points S and L on the relay wall in all cases.

The illumination device is assumed to emit a delta illu-
mination pulse in time δ(t), thus, it is possible to capture the
impulse response of the scene as H(xl,xs, t). For simplicity,
we omit the light ToF from the devices to the relay wall,
which is known since the relay wall is in the line of sight
of the physical devices. It is possible to shift H(xl,xs, t) in
time to account for these ToFs.

The original authors define a virtual illumination pulse
P(t) as a phasor such

P(xl,xs, t) = P(t) ∗H(xl,xs, t), (1)

where ∗ is a convolution in time. This computation shifts the
system from the real domain to the virtual domain, since the
phasor P(xl,xs, t) is equivalent to virtually illuminating the
scene with the phasor P(t).

In this virtual domain, the authors define the virtual
illumination pulse P(t) as a Gaussian wave packet with a
central wavelength of λg = 2πc/ωg , c being the speed of
light, and ρ being a scale factor, as

P(t) = ρe−
t2

2σ2 eiωgt, (2)

where σ controls the width of the Gaussian.
With this framework, the NLOS problem can be posed

as a virtual wavefront propagating at the relay wall, which
enables imaging using a lens focusing operator Φ:

I(xv) = Φ[P(xl,xs, t),xv]. (3)

The authors propose a focusing for monochromatic
sources based on the Rayleigh Sommerfeld Diffraction
(RSD) integral as a forward operator as

Φ
[
P̂(xl,xs, ω),xv

]
=

∫
L

eiω
rl
c

rl

∫
S

eiω
rs
c

rs
P̂(xl,xs, ω)dxsdxl,

rs = |xv − xs|
rl = |xv − xl|

(4)

for a reconstruction point xv , where P̂(xl,xs, ω) is a single
ω frequency of the phasor P(xl,xs, t). The authors named
Equation (4) as a confocal camera model (do not confuse
this with confocal capture [7], [9]), and it brings the hidden
geometries into focus.
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PF takes all frequencies focused on xv , and, with a
Fast Fourier Transform, yields the temporal image. When
evaluated at t = 0, this results in the hidden geometry acting
as an emitter of a scaled phasor. Finally, to segment the
empty space, PF relies on the amplitude value of those xv ,
assuming higher values correspond to a hidden geometry.

4 OUR METHOD

As we describe in Section 3, the Phasor Fields framework
virtually illuminates the scene with a Gaussian wave packet,
which allows the original authors to pose a NLOS problem
as a virtual wavefront propagation. Therefore, they image
a single reconstruction point with a wavefront focus oper-
ator, as described by Equation (4). PF employs a grid of
reconstruction points to image the complete hidden scene,
assuming a high value in the amplitude denotes a nearby
geometry, discarding its phase. Consequently, increasing
the precision is costly since it involves incrementing the
resolution (the number of computed reconstruction points).

Inspired by interferometry and especially the usage of
phase for achieving nanometer-scale [12], [13], [14], we
reconsider using the phase obtained by PF for a novel
reconstruction technique which refines the position of the
reconstruction point to nearby geometry. For that purpose,
we make a key observation: by ensuring certain properties
of the virtual Gaussian wave packet, as we analyze in
Section 4.1, we can assert zero phase at the hidden geometry
positions. We obtain increased accuracy by searching for
those zero-phase positions, which gives our novel approach
the name of Zero-Phase Phasor Fields (ZPPF).

Our ZPPF is a two-step algorithm that uses PF maxima
to select candidate points near the hidden geometry, and
then refines their position using phase information to match
those zero phase values (see Section 4.2). We leverage PF
efficient implementations for reconstruction points grouped
by parallel planes to the relay wall [11], which we refer
to as reconstruction planes. Figure 1 shows a summary
of PF (left) and our ZPPF (right). In both cases, the dis-
tance between the reconstruction planes is in the range of
centimeters, which we name sparse planes. We also term
dense PF as a case of PF that achieves high precision in
placing reconstruction planes on a micrometer scale. We
show that our ZPPF computational cost is the same as
PF for sparse reconstruction time, achieving an accuracy
comparable to dense PF (micrometer-scale depth precision),
as proven by our experiments in Section 5.1. On top of that,
phase propagation is very robust to noise, as we later show
in our experimental validation (see Section 5.2).

4.1 Analyzing phase

In this section, we analyze the phase behavior on a recon-
struction point when it matches a hidden scene geometry,
imaged with the virtual wavefront of PF framework. Later,
we prove we can ensure zero phase at those points, control-
ling the virtual Gaussian wave packet.

We start by the frequency domain version of Equa-
tion (1), for a particular frequency ω:

P̂(xl,xs, ω) = P̂(ω)Ĥ(xl,xs, ω), (5)

The virtual illumination pulse P̂(ω) now has the form

P̂(ω) = A(ω)eiϕ(ω) (6)

where A(ω) represents amplitude and ϕ(ω) phase, obtained
from the Gaussian wave packet in the Fourier domain,
described in Equation (2). In a confocal camera model
(Equation (4)), the propagation of the waves is given by

Φ
[
P̂(xl,xs, ω),xv

]
=

∫
L

e
iωrl

c

rl

∫
S

e
iωrs

c

rs
A(ω)eiϕ(ω)Ĥ(xl,xs, ω)dxsdxl

= A(ω)eiϕ(ω)Φ
[
Ĥ(xl,xs, ω),xv

]
,

rs = |xv − xs|,
rl = |xv − xl|.

(7)

which means that the RSD-based propagation of PF is
independent of the virtual illumination pulse. Usually, a
straightforward optimization discards the propagation of
frequencies whose amplitude A(ω), due to the Gaussian
wave packet, is close to zero.

Let’s now analyze what happens to the phase at points
xt on the surface of the hidden geometry. Without loss
of generality, let’s assume a hidden scene consisting of a
single point xt. Note that its impulse response would be
a δ function in time, and therefore its frequency-domain
impulse response is

Ĥ(xl,xs, ω) = ϵh e
−iω

|xt−xl|+|xt−xs|
c . (8)

where ϵh is a scale factor for each xl and xs of Ĥ(·) that
accounts for the attenuation of light.

Plugging Equation (8) into Equation (7), we get

Φ
[
P̂(xl,xs, ω),xv

]
=∫

L

e
iωrl

c

rl

∫
S

e
iωrs

c

rs
A(ω)eiϕ(ω)ϵh e

−iω
|xt−xl|+|xt−xs|

c dxsdxl.(9)

When imaging point xt = xv , the phase shifts in Equa-
tion (9) (the exponents of e) from the impulse response
cancel the phase shifts due to the RSD propagation, yielding

Φ
[
P̂(xl,xs, ω),xv

]
= A(ω)eiϕ(ω)

∫
L

1

rl

∫
S

1

rs
ϵh dxsdxl.

(10)
Therefore, the only phase shift corresponds to the virtual

illumination pulse ϕ(ω), the Gaussian wave packet.
As we control the Gaussian wave packet, we can define

such a pulse that ensures phase zero at the reconstruction
point xv = xt. Considering that PF ultimately applies an
inverse Fourier transform for a reconstruction point xv ,
Equation (10) results in a scaled version of the original
Gaussian wave packet in the time domain. Intuitively, this
is equivalent to having the geometry of the hidden scene
as an emitter of our virtual illumination pulse. Therefore,
by ensuring that the virtual Gaussian wave packet has zero
phase (ϕ(ω) = 0) at t = 0, we can assert that the imaged
phase at xt is also zero. We show an example of this in with
a dense PF reconstruction in Figure 2, establishing a zero
phase for the reconstruction surface.
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Relay wall Relay wall Relay wall

Laser
Camera

Laser
Camera

Laser
Camera

Dense planesSparse planes Sparse planes

Correction to
zero phase

PF Dense PF ZPPF

Fig. 1: Summary of our novel ZPPF (right) compared to previous PF (left). Efficient PF implementations optimized for
parallel planes achieve centimeter scale using sparse reconstruction planes, i.e., spacing the planes by centimeters. To
increase the PF depth precision, we establish the reconstruction planes to a dense configuration so the distance between
them is in terms of micrometers. We name that configuration dense PF (center), and it is prohibitively costly compared with
standard PF. In contrast, we present our ZPPF, which, in the same complexity as PF, achieves the same precision as in dense
PF. To do so, ZPPF employs the phase information to refine the hidden geometry position given the reconstruction on the
sparse planes.
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Fig. 2: Dense PF reconstruction of a plane at 1.2 meters
from the relay wall. In (a), we illustrate the amplitude as a
heatmap and the phase as a blue-white-brown. (b) plots the
same values from the dashed line of (a), with the real ground
truth position of the geometry (purple dashed). We used a
Gaussian wave packet for the virtual illumination pulse of
PF that has zero phase at t = 0. Hence, the reconstruction
also has zero phase at the ground truth hidden geometry
location, as Section 4.1 proves.

4.2 Zero-Phase Phasor Fields

Conventionally, amplitude-based PF needs to rely on very
dense reconstruction planes to yield precise reconstructions;
this in turn imposes very large computational costs. Our
Zero-Phase Phasor Fields (ZPPF) method works with a reg-
ular, small number of reconstruction planes. Once we have

obtained an approximate solution from amplitude values
(as in conventional PF methods) we refine it by looking for
nearby zeroes on the phase of the virtual wavefront. Figure 1
shows a summary comparing our ZPPF with PF.

Virtual Gaussian wave packet definition. To ensure the
geometry in the hidden scene is imaged with zero values,
we set our virtual Gaussian wave packet with zero phase
at t = 0 (see Section 4.1). To represent the 99.73% of the
Gaussian wave packet, we use the 3σ rule from Gaussian
distributions. We therefore set n, a number of cycles of the
wavelength, such n = 6λg , where λg is the central wave-
length of the packet, to represent the width of the pulse.
Setting n as a natural odd number is a straightforward
solution for setting zero phase at t = 0.

Sparse reconstruction planes. To make sure that for
every reconstructed plane there is only one nearby zero
crossing in phase, we need to make sure that there is
less than one wave period between planes. We thus set a
maximum distance between sampled planes of λg/2. This
is still a sparse reconstruction, as λg is usually defined in a
range of centimeters.

Phase correction. We then identify the maxima in ampli-
tude in the sparse reconstruction. Note that, as we leverage
efficient PF by planes, our maxima xv correspond to the
maximum amplitude along the depth. For an imaged recon-
struction point xv one of those maxima in amplitude, the
phase ϕ(xv) ∈ (−π, π] is the phase of the reconstruction
Φ
[
P̂(xl,xs, ω),xv

]
. In order to find the closest zero cross-

ing in phase (ϕ(xt) = 0), we apply Netwon’s method for a
scalar function with a vector value, starting from ϕ(xv):

x0 = xv

xk+1 = xk − ϕ(xk)

||∇ϕ(xk)||2
∇ϕ(xk),

(11)

where xt ≈ xn is obtained after n of iterations. In our
experiments we have only needed a single iteration (n = 1).
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To solve Equation (11) we need to calculate the gradient
of the phase ∇ϕ(xv), which is related to the wave vector. In
the general case, calculating ∇ϕ(xv) involves differentiating
the propagation of Equation (4). In our captures, we use a
confocal setup, in which illumination and capture occurs
on the same positions (xl = xs). For confocal capture
setups, the propagation is perpendicular to the relay wall
(z direction), and so the whole integral is simplified to the
product of two planar waves that follow the same direction,
so that ∇ϕ(xv) = −2ωgz/c. We can therefore correct the
phase from a single iteration of Equation (11) as

xt = xv +
ϕ(xv)c

2

4ω2
g

2ωgz

c
= xv + ϕ(xv)z

c

2ωg

= xv + ϕ(xv)z
λg

4π
,

(12)

which we use to propagate per-plane maxima at xv towards
the closest zero-crossing in phase.

5 RESULTS AND VALIDATION

We next show results illustrating two key characteristics
of our approach: increased depth precision and increased
robustness in low signal-to-noise (SNR) conditions. The
virtual illumination employed in all reconstructions consists
of a Gaussian wave packet with a central wavelength of
λc = 0.08 m, and a width of n = 5 cycles (see Section 4.2).
For this parametrization, we set a distance between recon-
struction planes as 0.03 cm (smaller than λc/2) for the sparse
reconstruction planes of ZPPF. We use the same sparse
planes to reconstruct with PF for same-time comparison
purposes. We also define a dense PF, with a reconstruction
plane every 100 µm, that we use as a baseline and as a same-
precision comparison to our ZPPF.

Scene Dense PF
(Baseline)

1.28

1.32

1.36

1.40

Depth (m)

0.95

1.00

1.10

1.05

1.15

2’ 01” 2’ 10” 0.000

0.004

0.016

0.012

0.008

2’ 04” 2’ 10” 0.000

Diff (m)

0.004

0.016

0.012

0.008

PF diff. ZPPF diff.

9h 28’ 54”

13h 54’ 55”

Fig. 3: From left to right: picture of the hidden scene,
dense PF depth used as baseline, PF depth difference to the
baseline, and ZPPF depth difference to the baseline. From
top to bottom, the statue and the dragon scenes. ZPPF reports
subtle depth variations in sparse reconstruction planes,
achieving similar results to the dense PF in a much faster
execution time (almost 15 hours vs 2 minutes). In contrast,
the previous PF employs the same time for much coarser
depth estimations.

Ground truthZPPF PF

0.996

z

1.000

x
0.0-1.0 1.0

1 m + 250 µm

0.0-1.0 1.0
x

1 m +125 µm

0.996

z

1.000

x
0.0-1.0 1.0

x
0.0-1.0 1.0

1 m + 500 µm1 m

Fig. 4: Width (x) and depth (z) coordinates of the PF and
our ZPPF depth estimation of a 0.5 m-sized squared plane
at varying distances in the micrometer scale compared to
the ground truth. Ours achieves better depth approxima-
tions, using the sparse planes, with a small constant error,
maintaining a coherent estimation when compared between
experiments. Horizontal and vertical axes are not on the
same scale for visualization purposes.

5.1 Depth precision analyisis

To analyze depth precision, we employ publicly available
captured data [9] of two different scenes. These scenes are
the statue, and the dragon, which both consist of a 2x2 m relay
wall with a regular grid of 512x512 capture and illumination
points in a confocal capture configuration.

We compare our ZPPF depth estimation with the PF
on this dataset in Figure 3, using the dense PF as a base-
line. ZPPF outperforms the previous PF, with a noticeably
smaller error in the depth estimation (columns three and
four), and with the same execution time.

In addition, our ZPPF method yields comparable results
to the dense PF we used as baseline (depth estimation in
the second column), using 300 times fewer reconstruction
points, and being almost 400 times faster (a bit over two
minutes vs almost fourteen hours).

We further analyze the sensitivity of our method to
small variations in depth, on the order of micrometers.
We use a baseline synthetic scene [35] consisting of a 0.5
x 0.5 m plane, placed parallel to the relay wall at 1 m.
We progressively offset variations of 500, 250, and 125 µm
in depth between experiments. Figure 4 shows the result-
ing estimated depths for ZPPF (green), PF (orange), and
the ground truth (purple). PF does not capture such fine-
grained variations in depth due to sticking to the sparse
reconstruction planes. Leveraging phase information allows
ZPPF to capture such subtle variations, with the exact same
number of reconstruction planes as PF, while requiring the
same 2.7-second reconstruction time for the same 2d slide.

As Table 1 shows, our ZPPF estimates the relative depth
variations between experiments with precision, even if a
small error appears between our ZPPF estimation and the
ground truth due to near-field diffraction affecting small
phase shifts near the hidden geometry.

We next analyze local depth variations in the plane. We
employ the same scene as the previous experiment, but
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Depth offset (µm) Estimation diff. (µm)

500 492.60
250 246.21
125 123.23

TABLE 1: Mean estimated difference of our ZPPF between
a 0.5 m plane located at 1 m of the relay wall, and the same
plane offset 500, 250, and 125 µm in depth.

Ground truthZPPF PF

0.996

z

1.000

x
0.0-1.0 1.0

250 µm

0.0-1.0 1.0
x

125 µm

0.996

z

1.000

x
0.0-1.0 1.0

x
0.0-1.0 1.0

500 µmNo offset

Fig. 5: Width (x) and depth (z) coordinates of the PF and our
ZPPF depth estimation of two 0.25 m squared planes, main-
taining one fixed at 1 m, and applying a distance offset to
the second one. Our ZPPF can detect the slope between the
planes using sparse reconstruction planes, where previous
PF cannot, even in the extreme case of 125 µm. Horizontal
and vertical axes are not on the same scale for visualization
purposes.

splitting the plane in two equal parts and displacing one
halfway along the z-axis 500, 250, and 125 µm, respectively.
As Figure 5 shows, our method is robust at detecting the
slope that appears between both planes even in the extreme
case of a 125 µm offset, while PF estimations do not detect
such small changes.

5.2 Robustness to noise

We next evaluate the robustness of our ZPPF estimations
in challenging scenarios with low SNR. We use the dragon
scene, which has been captured under decreasing exposure
times of 180, 30, 10, and one minute. For baseline compari-
son, we employed the dense PF on a high SNR capture (180
minutes exposure), providing a reference for evaluating the
differences. As Figure 6 shows, our method achieves consis-
tent and reliable depth estimations in all cases. Even for the
challenging case of 1-minute exposure time, where reduced
SNR leads to localized error at the geometry borders due to
a decreased lateral resolution.

6 DISCUSSION

We have proposed a novel NLOS imaging technique, named
Zero-Phase Phasor Fields, which can leverage the phase
information usually discarded in previous NLOS imaging
methods. Our approach consists of a first coarse recon-
struction (similar to conventional Phasor Fields), which we
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(b) 30 mins of exposure time
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(c) 10 mins of exposure time
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(d) 1 min of exposure time

Fig. 6: Depth estimation of our ZPPF for different captures
of the dragon scene of decreasing exposure times. Our
ZPPF depth estimation is coherent and reliable in all cases,
showing some errors in the geometry borders of the 1-
minute exposure. We used the dense PF reconstruction for
the difference baseline.

then refine by finding zero-crossings in phase. In contrast
to previous NLOS imaging methods, including standard
Phasor Fields, our method yields accurate depth reconstruc-
tions without increasing the voxel resolution of the hidden
scene region, and therefore without imposing prohibitive
computational constraints. As our experimental validation
shows, ZPPF is sensitive to depth variations as small as
100 µm. While standard PF requires dense reconstruction
planes and hours of computation to achieve the same pre-
cision, ours runs in a little over two minutes. Furthermore,
ZPPF is robust to noise, as we showed in our experiments
with low SNR scenarios. This enhances the applicability of
NLOS imaging into real-world scenarios, where noise, time,
and memory constraints are challenges to overcome. We
focus on the micrometer-scale, practical for exploration or
medical imaging. Yet, future endeavors on longer virtual
wavelengths would make the problem suitable for larger-
scale applications, such as car safety or topography.
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Since our method involves a first standard PF recon-
struction, our technique naturally benefits from all opti-
mizations already implemented for PF, which have reached
reconstructions as fast as five frames per second [27],
[28]. Additionally, our technique could be adapted to other,
more sophisticated PF-based techniques, including imaging
beyond the third bounce [26].

Our method does not require a dense sampling of the
reconstruction volume, which makes it suitable for large
scenes, thus overcoming a common limitation in the size
of the hidden scene for most NLOS imaging methods. The
only limit to resolution comes from the wavelength of the
virtual illumination; an iterative version of our approach
could be used, starting from very large wavelengths, finding
the candidate locations of the hidden geometry and progres-
sively increasing resolution near such candidate locations
until a certain precision is achieved. We have developed a
prototype of this iterative technique, and our preliminary
results show that hidden scenes with sparse geometry can
be reconstructed up to 2.5 times faster than our standard
ZPPF implementation.

Our results show very small variations with respect to
the ground truth in the simulated data, which we believe
are due to near-field virtual diffraction effects. Although
such variations are negligible, it would be interesting to ex-
plore them further in future work. Other frequency-domain
techniques, such as fk-migration [9], might also benefit from
explicitly incorporating phase information. In this sense,
we hope that our work inspires future research on more
sophisticated NLOS imaging methods.
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