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Abstract

In this paper we present a method to obtain a depth map from a single image of a scene by exploiting both
image content and user interaction. Assuming that regions with low gradients will have similar depth values, we
formulate the problem as an optimization process across a graph, where pixels are considered as nodes and edges
between neighbouring pixels are assigned weights based on the image gradient. Starting from a number of user-
defined constraints, depth values are propagated between highly connected nodes i.e. with small gradients. Such
constraints include, for example, depth equalities and inequalities between pairs of pixels, and may include some
information about perspective. This framework provides a depth map of the scene, which is useful for a number of
applications.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Viewing algorithms, I.4.8 [Image Processing and Computer Vision]: Scene Analysis—Depth cues

1. Introduction

Stereoscopic cinema has received growing interest in the
last decade. While its production for animated CG movies
is straightforward because all the scene content is known
in advance, it presents a real challenge for 2D films where
3D structure is coupled into the image pixels. Recent ad-
vances in 3D image capture with stereo cameras, multiple
views [SCD∗06] or light fields [KZP∗13] aim to ease this
task, although its use is limited to new cuts and increase costs
and direction difficulty. Currently, most of the work to con-
vert a 2D movie into 3D is done frame by frame by skilled
artists.

Obtaining the depth map of the scene is the first step of
this task and, due to the inherent ambiguity of single images,
making this process fully automatic becomes an ill-posed
problem. Learning-based methods [SSN09, HEH11, HB13]
are a plausible solution for common scenarios such as
landscapes or urban environments, although they are un-
able to generalize to more complex or unseen scenes i.e.
scenarios which are not part of the training data. Other
methods directly model the 3D geometry of the scenes
[OCDD01, GIZ09] but they usually require too much in-
teraction and skill from the user. A few recent methods
[WLF∗11,YSHSH13] try to exploit user knowledge through
a less demanding interaction to obtain relative depth values

instead of a 3D model. Our method belongs to this latter
group where the goal is to obtain an approximated depth
map relying on a sparse set of user strokes whose values are
propagated through the scene. Contrarily to these works, our
method can handle perspective constraints given by the user.

In particular, we aim to infer depth values from hints given
by the user in two ways: via equality/inequality constraints
or via the perspective tool. The first one consists on a set
of points with similar/different depth, distributed through-
out the scene. The latter consists on locating in the image
the horizon line and the ground plane. We incorporate these
cues into a flexible optimization framework, which propa-
gates this information through the scene leveraging gradient
information.

2. Related work

There are an increasing number of works that try to obtain
the depth of a scene from a single image. We can classify
them as automatic and semiautomatic methods.

Automatic methods. Methods that try to automatically
obtain depth from a single image can be classified into two
broad families [CC13]: learning-based and Gestalt-based ap-
proaches.
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Learning-based approaches usually infer 3D values for
a number of small regions obtained from image over-
segmentation through supervised learning. Most of the ap-
proaches in this family rely on the quality of the detec-
tion stages (i.e. image segmentation). Saxena et al. [SSN09]
use a Markov Random Field (MRF) to infer 3D position
and orientation for a number of small homogeneous patches
in the image. Hoiem et al. [HEH11] remove weak bound-
aries between regions, according to an occlusion confidence,
whose strength is inferred from the ground truth data us-
ing a Conditional Random Field (CRF). Liu et al. [LGK10]
first perform a semantic segmentation of the scene (through
a learned multi-class image labeling MRF), and then they
use the predicted semantic class labels to guide the 3D re-
construction, by enforcing class-related depth and geome-
try priors. Instead of semantic information, Haines and Cal-
way [HC12] use texture and color information for detecting
planes. They train a classifier to estimate plane orientation at
each pixel, which is segmented into distinct regions in order
to derive final planes. There are also example-based meth-
ods, like [HB13], which need a database of example 3D ge-
ometries. They search the database for those examples that
look similar to a given patch, such that overlapping patches
provide several depth estimates, which are combined to esti-
mate each pixel’s depth.

In general, learning-based approaches depend on the
availability of ground truth data and their use is limited to
the trained/collected image types. In addition, they rely on
the results of a segmentation/labelling algorithms and most
of these algorithms provide a partition of the image that ig-
nores depth cues.

The second family, Gestalt-based approaches, pioneered
by Nitzberg and Mumford [NM90], try to model depth per-
ception mechanisms to estimate occlusion-based monocu-
lar depth. These methods are influenced by phycho-visual
studies that describe T-junctions as fundamental atoms of
monocular depth perception, and whose benefits at early
stages were demonstrated by Caselles et al [CCM96]. A
number of these approaches formulate depth estimation as a
layer image representation problem. In general, T-junctions
are extracted from an image partition, and analyzed to obtain
a global depth ordering [ART10, GWZS07].

To overcome the hard decisions that may require to pro-
vide the partition that guides depth estimation, some works
jointly perform image segmentation and depth estimation
[Mai10, PS13]. Maire [Mai10] encodes affinity and order-
ing preferences in a common image representation, and pro-
poses an algorithm that provides both image segmentation
and a global figure/ground ordering on regions. Palou and
Salembier [PS13] use a region-based hierarchical represen-
tation jointly with detection of special points, such as T-
junctions and highly convex contours, to recover depth or-
dering.

In general, these methods provide a set of ordered lay-

ers, which are regions assumed to form planes parallel to the
image plane. Combining segmentation and depth cues incre-
ments the computational burden, as segmentation is a diffi-
cult problem by itself. The work by Calderero and Caselles
[CC13], however, avoids integrating segmentation into the
framework: they first extract multi-scale low-level depth fea-
tures to estimate depth order between neighbouring pixels,
and then, integrate the local features to create a consistent
depth order of the scene by applying a bilateral filter. Our
method also avoids integrating segmentation into the frame-
work, but we exploit user interaction, instead of low-level
image features, which in turn, could be integrated in our
framework in a future extension.

Semiautomatic methods. These methods exploit hu-
mans’ ability to interpret 2D images, by requiring some
input information from the user. Some methods face this
problem by extending traditional photo editing tools to 3D
[OCDD01]. Although this is the most straightforward solu-
tion, and allows to provide high accuracy and robustness to
the 3D structure, it requires a high effort from the user –a lot
of user interaction is needed– as well as certain level of skill,
or at least some practice.

Other works exploit geometric information (lines, planes)
in the scene. If the image contains enough perspective in-
formation, it is possible to obtain a 3D model of the ob-
jects from both user input and features like straight edges
[LCZ99, CRZ00]. In these methods, the user must provide
information about segments and points in different planes
to compute homologies between planes, and consequently,
the 3D structure. There are a few attempts to make this
process fully automatic, for indoor [LHK09] and outdoor
scenes [RB13], but they are limited to scenes that contain a
great amount of straight lines to be able to infer 3D structure.
There are also attempts to automatically reconstruct curved
surfaces from a single view, like [PZF06], that can construct
a 3D model of simple object shapes and views, using a-priori
object class information.

In general, these methods are limited to simple objects or
scenes with enough perspective information (like architec-
tural scenes). We seek to obtain a simple 2.5D structure of
the scene, that is, the depth corresponding to each pixel in the
image, which is enough for a number of applications. The
importance of applying human knowledge to computational
problems that involve cognitive tasks is revealed in the work
of Gingold et al [GSCO12], whose approach utilizes humans
for finding depths, among other visual tasks. They apply hu-
man computation by decomposing the problem into micro-
tasks, which are based on perception and solved via crowd-
sourcing, and whose solutions are combined afterwards to
solve the proposed problem. Our approach is very different
from this, and more similar to other methods that obtain a
2.5D structure of the scene guided by the user. The more
relevant ones are described below.

Some of these methods have been developed to obtain
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depth from drawings or cartoons [GIZ09, SSJ∗10]. In this
case, the problem becomes slightly simpler, as the input
image is a line drawing with visible contours. Most ap-
proaches provide sketch-based 3D modelling tools to obtain
free-form surfaces from 2D sketches like [GIZ09]. Sýkora et
al [SSJ∗10] formulate an optimization framework that tries
to mimic the way a human reconstructs depth information
from a single image. Our problem formulation is very similar
to the initial formulation in [SSJ∗10], which was previously
used for image segmentation [Gra06]. Instead of propagat-
ing labels (or colors), Sýkora et al propagate depth values.
However, they propose an approximation to lower compu-
tational overhead by decomposing the optimization problem
into two separate steps: first, a multi-label segmentation tai-
lored to cartoon images, and second, depth assignment via
topological sorting, plus depth smoothing. Our method prop-
agates depth values through image pixels without requiring
a previous segmentation.

Another work that infers the 2.5D structure from user in-
teraction on real images, uses image content to propagate
the depths painted by the user [WLF∗11]. They integrate a
discontinuous warping technique into the framework to si-
multaneously fill disoccluded regions to obtain a valid stereo
pair of images from a single view. The user marks abso-
lute depth values, as sparse scribbles, and these are prop-
agated to unknown parts using content-aware weights. The
user can incrementally add scribbles to refine the results. Our
approach is similar, but we expect the user to give hints in-
stead of painting absolute depth values.

Transfusive image manipulation (TIM) [YJHS12] was
used in this context by Yücer et al. [YSHSH13] to obtain
a depth map from a single image. They require the user to
specify pairs of scribbles that represent relative depth in-
equality constraints. Our algorithm is similar to theirs in
that sense, however, we allow for additional constraints that
leverage perspective cues.

3. Our method

We formulate the problem of estimating depth as a graph-
based optimization problem with a given set of constraints.
We require the user to assign at least one point in the furthest
and one point in the nearest part of the scene. These points,
together with any other constraint defined by the user, are
integrated in the optimization process described below.

Figure 1: Graph construction: Pixels as nodes and neigh-
bourhood relationships as edges.

3.1. Problem formulation

We represent the image I as an undirected graph G = (V,E),
being vi ∈ V the set of vertices corresponding to pixels of
the image, and ei j = (pi, p j)∈ E the set of edges connecting
pairs of neighbouring pixels in a 4-connected neighbourhood
(see Figure 1). Each edge has a weight wi j, which depends
on the image gradient and defines the depth similarity be-
tween two connecting pixels as follows:

wi j ∝ e−β(Ii−I j)
2

(1)

where Ii represents the image intensity at pixel pi, and β

is a parameter of this method. This function maps intensity
changes to edge weights, such that weight values are high in
homogeneous areas; while they are low in presence of high
intensity gradients, implying a possible depth discontinuity.

Our goal is to propagate depth values to all the pixels of
the image given user constraints and the weights computed
from Equation 1. We minimize the following function:

minimize: ∑
∀ei j∈E

wi j(di−d j)
2

subject to: dk = d̂k, ∀pk ∈ S
(2)

where di represents the depth value estimated at pixel pi,
S is the set of pixels pk which are given a depth (just the
maximum or minimum depth), which is denoted as d̂k. This
formulation was developed by [Gra06] for image segmenta-
tion. Sýkora et al. [SSJ∗10] used a simplified version of this
formulation to assign depths to cartoons. In both cases, they
assumed that a number of depth values (or seeds) are given
or computed in a previous step. In our case, we require a
minimal number of depth values of two: one point in the far-
thest and one point in the nearest region, as shown in Figure
2 (top-left).

This problem can also be formulated as a quadratic pro-
gram:

minimize: dT Ld

subject to: dk = d̂k, ∀pk ∈ S
(3)

where d is the array of depths to be estimated, and L is a
sparse large matrix that represents the Laplace-Beltrami op-
erator [Gra06], which in turn L=ATWA, where W is a m×m
diagonal matrix (m = |E|) called the constitutive matrix, and
A is called the incidence matrix. W contains the weights of
each edge along the diagonal, and A stands for:

Aei j pk =


+1 if i = k,
−1 if j = k,
0 otherwise.

(4)

3.2. Weight values

Regarding the weight values, wi j, a number of consider-
ations must be taken into account. Our simpler solution
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Figure 2: Top-left, original image with two selected points:
red in the far, blue in the near. Top-right, gradient on lu-
minance channel of the CIELAB color space. Bottom-left,
weights computed from gradient. Bottom-right, depths ob-
tained from optimization with β = 5 and Sobel filters for
gradient computation.

uses the luminance channel of CIELAB color space to com-
pute intensity values Ii (see Figure 2), although Equation 1
could be easily modified to handle the three color channels
or any other vector value to compute the gradient. Notice
that throughout this paper gradient magnitudes are shown
negated: zero gradient is painted in white and the maximum
gradient in black. Also, depths are considered inversely:
maximum depth is coded as zero (black) and the minimum
depth is coded white. In all the experiments, we use the So-
bel operator to compute gradient values. We force wi j to be
in the range [0,1], so that a gradient of zero would be rep-
resented with a weight wi j = 1. In general, wi j = 0 means
non-existing neighbour relationship and should be avoided
because it increases instability in the optimization. There-
fore, we limit wi j to the range [wmin,1], being wmin = 0.001
in all the experiments.

The optimization propagates the minimal user input from
Figure 2, top-left, to the rest of the image to obtain depths,
such that high intensity gradients prevent from propagation,
while homogeneous areas obtain similar depths. This simple
example illustrates how the approach works with minimal
input. However, the obtained depth map can be improved
considerably (the car in the middle should be closer than the
other two) with additional input.

In Figure 3 we compare different depths obtained with
different values of β. Intensity or color discontinuities (dark
values in the center-left image) can be seen as barriers for
propagation of depths (right column). Therefore, higher val-
ues of β will produce lower weights (darker values in the
bottom-left image), and therefore taller barriers. The results
in Figure 3 were obtained by taking into account the gradient

Figure 3: Left column, from top to bottom: original image
with two selected points (red in the far, blue in the near), im-
age gradient (dark values represent intensity/color discon-
tinuities) and weights for β = 5. Right column, depths ob-
tained with different values of β: from top to bottom, 5, 10
and 20. Original image courtesy of Yotam Gingold.

in both luminance and color, while Figure 2 was obtained
with only the luminance channel. Also, in this example, a
larger number of input seeds improves the resulting depths,
as shown in Figure 4.

We also made experiments with other weighting func-
tions. For example, we used a sigmoid function with two
parameters, gain g and cutoff c:

wi j ∝
1

1+ eg(c−zi j)

where zi j is the magnitude of intensity gradient. Parameter c
is usually set to 0 and the gain g is similar to parameter β in
the previous equation: the higher g, the higher is the barrier
at intensity discontinuities (see Figure 5). Both parameters
seem to be very easy to interpret by an inexperienced user.
Note that results with the exponential function of Equation 1
and β = 20 (Figure 4, bottom right) are quite similar to those
with the sigmoid and g = 10 (Figure 5, right).

3.3. Perspective Constraints

Perspective information is a key piece when recovering the
structure of some scenes. Several works [LCZ99, CRZ00]
take advantage of these constraints by computing, or requir-
ing from the user, the position of the horizon or camera
parameters, information which will be used to recover the
whole scene structure. In this work, we focus on ground-
plane user input although additional cues could be used.
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Figure 4: Same original image than Figure 3 with 6 points
selected (3 points in the far -red-, 3 in the near -blue-), and
depths obtained with β = 10 (left) and 20 (right).

Figure 5: Depths obtained with sigmoid weighting function,
g = 5 (left) and 10 (right), for the original image and user
input in Figure 4. Results for g = 5 are very similar to those
of β = 20 in Figure 4.

The user can draw a number of strokes to be considered as
pixels that belong to the ground, as well as the position of the
horizon. Although the user could indicate the horizon line di-
rectly, that is often a difficult task for untrained users. There-
fore, we provide a simple interface to compute the horizon
line by placing four straight lines. Figure 6 illustrates how
the horizon line can be computed and how the ground pixels
are assigned to a common ground plane. The user is given
a set of straight lines (top-left) to be relocated (top-right)
such that the paralelism and orthogonality properties can be
used to obtain the horizon line (center-left). Parallel lines on
the world intersect at vanishing points in the image, which
lie on the vanishing line. Note that the vanishing line can
be determined by means of other constraints [LCZ99] but
we selected this one for its simplicity. The user places these
lines in the ground (two red, two blue), such that the lines in
identical color are parallel, while they are orthogonal to the
lines in the other color.

The user can also draw a scribble to define the ground
pixels (center-right in Figure 6). Let G be the set of points in
the scribble and Gw the 3D ground points whose perspective
projection correspond to the points in G. All the points Pi =
(xi,yi,zi)

T in the ground are constrained to belong to the

Figure 6: Ground plane depth estimation: the user is given
a set of straight lines (top-left) to be relocated (top-right),
then the horizon line is computed (center-left, horizon in yel-
low), which together with a scribble (center-right, scribble
in white-blue) is used to calculate the ground plane and the
depths at the same time. Bottom: The resulting depth ob-
tained with this user input (bottom-left) and with two more
seed points added in the near (bottom-right).

same 3D plane:

a1xi +a2yi +a3zi +a4 = 0, ∀Pi ∈ Gw (5)

where (a1,a2,a3,a4) are the plane parameters.

The perspective projection of any point Pi in the world
into an image pixel pi = (ui,vi)

T can be modeled as sui
svi
s

=

 f 0 u0 0
0 f v0 0
0 0 1 0




xi
yi
zi
1

 (6)

where f is the focal length, (u0,v0)
T is the principal point

(the intersection between the image and the view direction)
and s is a scale factor. This can be abbreviated as

sp̃i =
[

A 0
]

P̃i (7)

where p̃i and P̃i correspond to pi and Pi in homogeneous co-
ordinates and A is a 3× 3 matrix that contains the camera
parameters. This simplified camera model assumes that the
physical angle between the u and v axes is π

2 and the aspect
ratio of the camera is equal to 1 (the scales of u and v are
identical). It is possible to compute the internal parameters
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Figure 7: Example of progressive addition of user input. Top row: image with input superimposed. Bottom row: depths cor-
responding to each input. From left to right: two seed points, addition of horizon and ground plane and addition of equality
constraints.

of the general camera calibration matrix from three vanish-
ing points in three orthogonal directions [LCZ99]. Instead
of that, we seek for an approximated solution and we further
simplify the model by assuming the principal point to be at
the center of the image. This is not always true, for example,
if the image was cropped.

From the camera parameters A and the depth of a pixel zi,
we can recover the 3D coordinates of the point Pi by

P̃i =

[
ziA−1 p̃

1

]
(8)

where

A−1 =

 1
f 0 − u0

f
0 1

f
−v0

f
0 0 1

 .
Equation 8 becomes

P̃i =


zi(ui−u0)/ f
zi(vi− v0)/ f

zi
1

 (9)

As all the pixels in Gw fulfill Equation 5,[
a1 a2 a3 a4

]
P̃i = 0,∀Pi ∈ Gw (10)

From this equation we obtain

[
a1 a2 a3

] (ui−u0)/ f
(vi− v0)/ f

1

=
−a4

zi
(11)

Note that, if depths zi and f were known, parameters ai
would be the only unknowns in this equation, and−a4 acts a
scale factor. As many works, we encode the estimated depths

di as inversely proportional to zi, such that zi =∞ corre-
sponds to di = 0 and the minimum zi corresponds to the
maximum di. These di are similar to disparities in the area of
stereo vision, except for true disparities the appropiate scale
must be computed. Also, as we do not aim to recover the
plane parameters, but only use them as a constraint on im-
age depths, we can rewrite the three unknowns to include the
scale factors so that the equation becomes

[
b1 b2 b3

] (ui−u0)/ f
(vi− v0)/ f

1

= di (12)

Finally, if f is known –many digital images include the
focal length in their metadata–, parameters bi are the un-
knowns in this equation, together with the depths, encoded
as di. Let us define qi as the pixel pi = (ui,vi)

T translated
with respect to the image center, and divided by the focal
length:

qi =

[
(ui−u0)/ f
(vi− v0)/ f

]
(13)

Then, we can represent Equation 12 as:

BT q̃i = di

where B = (b1,b2,b3)
T is the set of unknowns that model

the ground plane, and q̃i represents qi in homogeneous coor-
dinates.

This constraint is included into the optimization process
as three additional unknowns that represent the 3D plane
constraint, by forcing all the points in the scribble to follow
it:

BT q̃g = dg, ∀pg ∈ G

The points in the horizon (not the pixels themselves, but
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the 3D virtual straight line) are also ground points that fulfill
this constraint, which in addition are further constrained to
be at the maximum depth (di = 0). Let H be a set of points
in the horizon (in the experiments, we used only two). For
any pixel ph ∈ H, we can define a constraint:

BT q̃h = 0

where q̃h represents qh in homogeneous coordinates, defined
by Equation 13 from ph.

Therefore, the optimization process becomes:

minimize: ∑
∀(pi,p j)∈E

wi j(di−d j)
2

subject to: dk = d̂k, ∀pk ∈ S

BT q̃h = 0, ∀ph ∈ H

BT q̃g = dg, ∀pg ∈ G

(14)

The resulting depths are shown in the bottom-left of Fig-
ure 6. The bottom-right depths are computed with the addi-
tion of two more points in the near part of the image. Let
us note the differences between depths in Figures 6 and 2,
which show results from the same example, with and with-
out considering ground information, respectively. In Figure
2 the ground depth forms a kind of steps, due to preven-
tion of propagation through high gradients. Therefore, depth
changes occur between the tiles in the ground, and produce
depth discontinuities, mainly horizontal steps. Ground depth
in Figure 6 is much softer. The pixels in the scribble are as-
signed depths following the constraint, and these values are
propagated to the rest of their neighbouring pixels. These
neighbours still tend to form some irregularities in presence
of high gradients, but in general depths vary more softly
thanks to the ground plane constraint.

Figure 7 shows depths calculated from a view of a Manch-
ester street obtained from the Google Street View, both with-
out (left) and with (center) information about the horizon and
the ground plane. The depths in the sides of the street are
assigned depths somehow coherent with the ground depths.
The examples in Figures 6, 7 and 12 were computed with the
default value f = 1.

3.4. Equality and Inequality constraints

We allow the user to include an additional set of constraints
in the form of equalities Q= and inequalities Q<. In both
cases, these constraints are given by the user through pairs
of points. Let Q= be the set of pairs of pixels selected by the
user to be at equal depth. We add:

da = db, ∀(pa, pb) ∈ Q= (15)

into the list of constraints of Equation 14.

Figure 7 (right) shows the addition of ten equality con-
straints to an urban image. Figure 8 shows the addition of
nineteen of these constraints to the example in Figure 6.

Figure 8: Equality constraints: depth map resulting from
the addition of nineteen pairs of pixels (linked in green) with
equal depth to the example in Figure 6.

Some pairs of pixels with equal depth were used to homog-
enize depths of the cars with their own wheels, other pairs
were dedicated to the rear mirrors and the rest of pairs re-
lated the car in the middle to appropriate ground pixels to
obtain a better depth ordering of the cars.

We can formulate as constraints not only equalities but
also inequalities in pixel depths. The inequality constraint
prevent regions of the image from having the same depth.
The input is also in the form of pairs of points, and is added
to Equation 14 as follows:

da−db < D, ∀(pa, pb) ∈ Q< (16)

where Q< the set of pairs of pixels selected by the user, and
D is the desired depth difference, which can be calculated
as a percentage of the range of depth values, being in our
experiments D = 20 for a depth range of 256.

Figure 9, right, shows an example of use of these inequal-
ity constraints, where six pairs of pixels with different depths
are selected. The green point is constrained to be further than
the yellow point of each pair. These points allow to refine
depths in some areas of the face.
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Figure 9: Image from the Berkeley dataset [MFTM01]
with input data superimposed (left) and the resulting depth
(right). The addition of six pairs of inequalities (bottom row)
allows to refine the resulting depth.

4. Results

We use Matlab and the cvx library [BV04] to perform
the convex optimization. Processing a standard image takes
from seconds to tens of seconds, depending on the image
size and the number of constraints. For example, the min-
imization for the 481× 321 example in Figure 11 (first
columnn), takes ten seconds, while the right example of Fig-
ure 10, with identical size, takes 30 seconds. The example in
Figure 12, with size 1080×720, takes 130 seconds.

For the experiments we tested images from different
sources. We used synthetic images like the example in Fig-
ure 2. We experimented with real images from the Berkeley
segmentation dataset [MFTM01], like the ones in Figures 9-
10. We also considered the special case of urban images, by
using Google street view (Figures 7 and 12).

For some scenes, the amount of user input required is
minimal, like the first column of Figure 11, while others
require much more user input (see Figure 10). In other
scenes, which apparently seem more difficult, we obtain

quite satisfactory results with a few hints (see second and
third columns of Figure 11). Although in several cases it
is not easy to preview the optimal combination of hints, the
user can add hints progressively (like the examples in Fig-
ures 7 and 9, to succesively refine the depth map. Moreover,
many of the hints consist on barely one or two clicks (i.e.
Figure 11), which is easy to learn by the user.

As opposed to some automatic approaches [SSN09,
LGK10, HB13] which require accurate depth maps and per-
forms quantitative comparisons with the ground truth; re-
sults from methods that rely on user interaction are more
difficult to measure. Such depth maps can be refined pro-
gressively to match a desired output, which frequently do
not need to be identical to the reality. Comparison should
be performed under identical conditions. For example,
[YSHSH13] used the same user input data than [WLF∗11]
in order to allow acurate comparison of their results, but our
user input data is different from this. As our method also
relies on the user perception and interaction and obtains rel-
ative depth values, we provide the resulting depth maps for
qualitative evaluation and we use images from the Berkeley
database, among others.

5. Conclusions

We have developed a method to obtain an approximated
depth map from a single image which relies on the user
ability to interpret 2D images. We allow two types of con-
straints provided by the user: perspective constraints and
equality/inequality constraints. These constraints are incor-
porated into an optimization framework, whose minimal in-
put required is one point in the farthest and one point in the
nearest regions of the image. Depth values are propagated
throughout the scene leveraging gradient information.

There are several ways to improve this work. For exam-
ple, due to the flexibility of the optimization framework, it
would be possible to incorporate additional constraints de-
rived from automatic methods such as blur produced by de-
focus [EL93], or low-level depth ordering features [CC13].
Current input could be transformed to scribbles [YSHSH13]
to minimize interaction. New tools could be developed to
improve accuracy, such as additional hints on plane orien-
tation or basic modeling tools to establish geometrical con-
straints. Finally, although the processing times are still high
to be suitable for interaction, we also plan to check other
optimization tools to reduce the computational effort.

Acknowledgements

We want to thank the reviewers for their helpful comments,
Jose Ribelles for insightful discussions, Carlos Aliaga for
the synthetic image of cars and Yotam Gingold for shar-
ing his input images. This work was supported by the Euro-
pean Commission, Seventh Framework Programme, through
projects GOLEM (Marie Curie IAPP, grant: 251415) and

c© The Eurographics Association 2014.



A. Lopez, E. Garces, D. Gutierrez / Depth from a single image through user interaction

Figure 10: Left pair, image from the Berkeley dataset [MFTM01] with only two seeds (near and far). Right pair, resulting depth
map adding the equality and perspective constrains shown in the picture.

Figure 11: Two images from the Berkeley dataset [MFTM01] (left) and one image courtesy of Yotam Gingold (right), with user
input superimposed (top row), and the obtained depths (bottom row).

VERVE (ICT, grant: 288914), the Spanish Ministry of Sci-
ence and Technology (TIN2010-21543). The Gobierno de
Aragón additionally provided support through the TAMA
project and a grant to Elena Garces.

References
[ART10] AMER M., RAICH R., TODOROVIC S.: Monocular Ex-

traction of 2.1D Sketch. In ICIP (2010). 2

[BV04] BOYD S., VANDENBERGHE L.: Convex Optimization.
Cambridge University Press, New York, NY, USA, 2004. 8

[CC13] CALDERERO F., CASELLES V.: Recovering Relative
Depth from Low-Level Features Without Explicit T-junction De-
tection and Interpretation. International Journal of Computer Vi-
sion (Feb. 2013). 1, 2, 8

[CCM96] CASELLES V., COLL B., MOREL J.-M.: A kanizsa
programme. In Variational Methods for Discontinuous Struc-
tures. Springer, 1996, pp. 35–55. 2

[CRZ00] CRIMINISI A., REID I., ZISSERMAN A.: Single View
Metrology. IJCV 40, 2 (2000), 123–148. 2, 4

[EL93] ENS J., LAWRENCE P.: An investigation of methods for
determining depth from focus. Pattern Analysis and Machine
Intelligence, IEEE Transactions on 15, 2 (1993), 97–108. 8

[GIZ09] GINGOLD Y., IGARASHI T., ZORIN D.: Structured an-
notations for 2D-to-3D modeling. ACM Transactions on Graph-
ics (TOG) 28, 5 (2009), 148. 1, 3

[Gra06] GRADY L.: Random walks for image segmentation.
IEEE transactions on pattern analysis and machine intelligence
28, 11 (2006), 1768–1783. 3

[GSCO12] GINGOLD Y., SHAMIR A., COHEN-OR D.: Micro
perceptual human computation. ACM Transactions on Graph-
ics (TOG) 31, 5 (Aug. 2012), 119:1–119:12. doi:10.1145/
2231816.2231817. 2

[GWZS07] GAO R.-X., WU T.-F., ZHU S.-C., SANG N.:
Bayesian inference for layer representation with mixed markov
random field. In Energy Minimization Methods in Computer Vi-
sion and Pattern Recognition, Yuille A., Zhu S.-C., Cremers D.,
Wang Y., (Eds.), vol. 4679 of Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2007, pp. 213–224. 2

[HB13] HASSNER T., BASRI R.: Single view depth estimation
from examples. CoRR abs/1304.3915 (2013). 1, 2, 8

[HC12] HAINES O., CALWAY A.: Detecting planes and esti-
mating their orientation from a single image. In Proceedings
of the British Machine Vision Conference (2012), BMVA Press,
pp. 31.1–31.11. 2

[HEH11] HOIEM D., EFROS A. A., HEBERT M.: Recovering
Occlusion Boundaries from an Image. IJCV 91, 3 (2011). 1, 2

c© The Eurographics Association 2014.

http://dx.doi.org/10.1145/2231816.2231817
http://dx.doi.org/10.1145/2231816.2231817


A. Lopez, E. Garces, D. Gutierrez / Depth from a single image through user interaction

Figure 12: Top, image of a Manchester street from the
Google Street View, with user input superimposed. Bottom,
depths obtained from optimization.

[KZP∗13] KIM C., ZIMMER H., PRITCH Y., SORKINE-
HORNUNG A., GROSS M.: Scene reconstruction from high
spatio-angular resolution light fields. ACM Trans. Graph. 32,
4 (July 2013), 73:1–73:12. 1

[LCZ99] LIEBOWITZ D., CRIMINISI A., ZISSERMAN A.: Cre-
ating Architectural Models from Images. Computer Graphics
Forum 18, 3 (1999), 39–50. 2, 4, 5, 6

[LGK10] LIU B., GOULD S., KOLLER D.: Single Image Depth
Estimation From Predicted Semantic Labels. In CVPR (2010),
pp. 1253–1260. 2, 8

[LHK09] LEE D., HEBERT M., KANADE T.: Geometric reason-
ing for single image structure recovery. In CVPR (June 2009),
Ieee, pp. 2136–2143. 2

[Mai10] MAIRE M.: Simultaneous Segmentation and Fig-
ure/Ground Organization Using Angular Embedding. Lecture
Notes in Computer Science 6312 (2010), 450–464. 2

[MFTM01] MARTIN D., FOWLKES C., TAL D., MALIK J.: A
database of human segmented natural images and its application
to evaluating segmentation algorithms and measuring ecological
statistics. In Proc. 8th Int’l Conf. Computer Vision (July 2001),
vol. 2, pp. 416–423. 8, 9

[NM90] NITZBERG M., MUMFORD D.: The 2.1-D Sketch. In
ICCV (1990), pp. 138–144. 2

[OCDD01] OH B. M., CHEN M., DORSEY J., DURAND F.:
Image-based modeling and photo editing. ACM SIGGRAPH
(2001), 433–442. 1, 2

[PS13] PALOU G., SALEMBIER P.: Monocular depth ordering us-
ing t-junctions and convexity occlusion cues. IEEE Transactions
on Image Processing 22, 5 (2013), 1926–1939. 2

[PZF06] PRASAD M., ZISSERMAN A., FITZGIBBON A.: Single
view reconstruction of curved surfaces. CVPR (2006). 2

[RB13] RAMALINGAM S., BRAND M.: Lifting 3d manhattan
lines from a single image. In ICCV (2013), IEEE, pp. 497–504.
2

[SCD∗06] SEITZ S. M., CURLESS B., DIEBEL J., SCHARSTEIN
D., SZELISKI R.: A comparison and evaluation of multi-view
stereo reconstruction algorithms. In Proceedings of the 2006
IEEE Computer Society Conference on Computer Vision and
Pattern Recognition - Volume 1 (Washington, DC, USA, 2006),
CVPR ’06, IEEE Computer Society, pp. 519–528. 1

[SSJ∗10] SÝKORA D., SEDLACEK D., JINCHAO S.,
DINGLIANA J., COLLINS S.: Adding Depth to Cartoons
Using Sparse Depth ( In ) equalities. Computer Graphics Forum
29, 2 (2010), 615–623. 3

[SSN09] SAXENA A., SUN M., NG A. Y.: Make3D: learning
3D scene structure from a single still image. PAMI 31, 5 (2009),
824–840. 1, 2, 8

[WLF∗11] WANG O., LANG M., FREI M., HORNUNG A.,
SMOLIC A., GROSS M.: Stereobrush: interactive 2d to 3d con-
version using discontinuous warps. In Proceedings of the Eighth
Eurographics Symposium on Sketch-Based Interfaces and Mod-
eling (New York, NY, USA, 2011), SBIM ’11, ACM, pp. 47–54.
1, 3, 8

[YJHS12] YÜCER K., JACOBSON A., HORNUNG A., SORKINE
O.: Transfusive image manipulation. ACM Transactions on
Graphics (proceedings of ACM SIGGRAPH ASIA) 31, 6 (2012),
176:1–176:9. 3

[YSHSH13] YÜCER K., SORKINE-HORNUNG A., SORKINE-
HORNUNG O.: Transfusive weights for content-aware image
manipulation. In Proceedings of the Vision, Modeling and Vi-
sualization Workshop (VMV) (2013), Eurographics Association.
1, 3, 8

c© The Eurographics Association 2014.


