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Fig. 1. In this study we evaluate visual discomfort in virtual reality using a naturalistic, within-subjects paradigm. We find that optical distortions from

near-eye optics (pupil swim) increase visual discomfort, and eye-tracked dynamic distortion correction (ETDDC) can mitigate that discomfort. We use
representational similarity analysis to identify changes in blink and eye movement behavior as potential indicators of visual discomfort among 41 head and

gaze metrics collected during our study. (A) We modified an Oculus Rift with custom high pupil swim optics and implemented eye-tracked dynamic distortion
correction to enable our user study. Participants played Job Simulator for 80 minutes with and without ETDDC enabled. (B) At session completion, SSQ Total
was reduced when ETDDC was enabled, indicating visually induced motion sickness symptom severity was moderated by pupil swim. Markers represent
average SSQ Total and error bars are standard error of the mean. (C) Using multidimensional scaling, we find that some head and gaze metrics are more
similar to SSQ Total than abbreviated surveys used in place of SSQ during the experiment (Misery Scale and CVS-Q).

Outside of self-report surveys, there are no proven, reliable methods to
quantify visual discomfort or visually induced motion sickness symptoms
when using head-mounted displays. While valuable tools, self-report sur-
veys suffer from potential biases and low sensitivity due to variability in
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how respondents may assess and report their experience. Consequently,
extreme visual-vestibular conflicts are generally used to induce discomfort
symptoms large enough to measure reliably with surveys (e.g., stationary
participants riding virtual roller coasters). An emerging area of research is
the prediction of discomfort survey results from physiological and behav-
ioral markers. However, the signals derived from experimental paradigms
that are explicitly designed to be uncomfortable may not generalize to more
naturalistic experiences where comfort is prioritized. In this work we in-
troduce a custom VR headset designed to introduce significant near-eye
optical distortion (i.e., pupil swim) to induce visual discomfort during more
typical VR experiences. We evaluate visual comfort in our headset while
users play the popular VR title Job Simulator and show that eye-tracked
dynamic distortion correction improves visual comfort in a multi-session,
within-subjects user study. We additionally use representational similarity
analysis to highlight changes in head and gaze behavior that are potentially
more sensitive to visual discomfort than surveys.

CCS Concepts: » Computing methodologies — Virtual reality; « Human-
centered computing — User studies.

Additional Key Words and Phrases: pupil swim, dynamic distortion correc-

tion, ETDDC, visually-induced motion sickness, VIMS, visual discomfort,
oscillopsia
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1 Introduction

Understanding visually induced motion sickness (VIMS) and visual
discomfort experienced while using head-mounted displays (HMDs)
is among the most challenging perceptual problems in virtual reality
(VR). Measuring and characterizing VIMS alone is a significant
effort; the current gold standard is to use standardized surveys
such as the Simulator Sickness Questionnaire (SSQ) [Kennedy et al.
1993]. Due to the low sensitivity and specificity of self-reported
surveys, researchers often resort to extreme measures to induce
visual discomfort through the introduction of large visual-vestibular
conflicts (VVCs) in short amounts of time [LaViola Jr 2000]. This
is generally achieved by showing stationary participants virtual
camera motion, for example, by riding virtual roller coasters [Chang
et al. 2021; Islam et al. 2021]. Such studies are typically completed
in 10-30 minutes and, when attempting to test multiple conditions,
either utilize between-subjects designs or run multiple conditions
within the same session for within-subjects designs [Luong et al.
2022]. These study designs complicate the proper identification of
factors that contribute to VIMS by increasing noise and introducing
additional confounds (e.g., running multiple conditions together
conflates condition and time).

Three general classes of studies have emerged that are broadly
based on the experimental design outlined above: (i) studies that
relate demographic information (e.g., age, interpupilary distance,
gender, etc.) to VIMS susceptibility [Arns and Cerney 2005; Bannigan
et al. 2024; Rebenitsch and Owen 2014], (ii) studies that attempt to
identify behavioral changes (e.g., head and gaze dynamics) that can
be used in place of surveys [Jasper et al. 2020; Martin et al. 2020;
Wibirama et al. 2020], and (iii) a relatively new class of studies that
aim to model and predict the magnitude of VIMS symptoms based on
a combination of behavioral, demographic, and visual information
using classes of models ranging from linear regression to neural
networks [Chang et al. 2021; Hell and Argyriou 2018; Islam et al.
2021; Luong et al. 2022; Wen et al. 2024; Zhao et al. 2023].

The latter two categories of studies aim to address the limitations
of survey-based data collection by supplementing survey responses
with additional signals for VIMS characterization. However, an open
question in interpreting data derived from paradigms reliant on
camera-motion based VVCs is whether the trends identified in these
atypical settings generalize to more naturalistic use cases. Head and
gaze behavior are highly task-dependent [Burlingham et al. 2024;
Malpica et al. 2023], and changes in their characteristics derived
from a paradigm intended to quickly induce VIMS may not apply to
more typical scenarios (e.g., immersive gaming designed with visual
comfort in mind). Such experiences avoid large VVCs and usually
involve task-driven interaction rather than free-gaze explorations
employed in many lab-based studies.

Additionally, many comfort mitigation strategies are designed
specifically to reduce discomfort arising from differences in camera
and user motion [Fernandes and Feiner 2016; Hu et al. 2019; Serrano
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et al. 2020; Tariq and Didyk 2024; Xiao and Benko 2016]. Many
applications attempt to avoid this problem altogether by replac-
ing smooth locomotion with teleportation mechanics or building
experiences that do not require significant user translation at all
(e.g., Beat Saber). Despite these efforts, VIMS remains a problem
for some VR users because a number of VVCs are still present
in modern-day HMD hardware. For example, tracking errors and
motion-to-photon latency [Palmisano et al. 2020], inaccurate render
camera placement [Guan et al. 2023; Krajancich et al. 2020], and
gaze-contingent optical distortions from near-eye optics (i.e., pupil
swim) [Geng et al. 2018] can all contribute to geometric inconsisten-
cies between images seen by the user and the perspective-correct
images of the virtual environment consistent with the user’s head
and eye movements. Other limitations in HMD hardware can in-
troduce other non-geometric errors that lead to visual discomfort,
including vergence-accommodation conflicts [Hoffman et al. 2008]
and physical discomfort from the size and weight of the headset.

The design of VR HMD optics presents a particularly interesting
tradeoff for VIMS. Smaller and more compact optics and displays
enable smaller, more ergonomic headsets but can often lead to more
pupil swim. It has been speculated, but not conclusively shown, that
the VVC introduced by pupil swim can lead to visual discomfort.
In this work, we experimentally manipulate pupil swim and assess
its impact on visual comfort. In doing so we avoid the need for
camera-based VVC to induce discomfort and make the following
specific contributions:

e We retrofit an Oculus Rift with high pupil swim optics and
implement eye-tracked dynamic distortion correction (ET-
DDC) in a custom OpenXR implementation that allows the
use of our headset with all Meta PC VR content. We enable
or disable ETDDC to manipulate pupil swim magnitude and
study the impact of pupil swim on VIMS.

o We present the longest and most naturalistic study on visual
discomfort to date, with users playing Job Simulator for 80
minutes in two separate sessions in a within-subjects experi-
ment (all participants complete all conditions).

e We use standardized surveys to evaluate visual comfort and
show, for the first time, that pupil swim leads to increased
visual discomfort through the use of ETDDC to improve com-
fort in our 80-minute sessions.

e We use representational similarity analysis (RSA) as a tool
to investigate visual discomfort and identify potential behav-
ioral markers that can more accurately and quickly indicate
the onset of discomfort compared to surveys.

2 Related Work

Visual Discomfort in VR. It is commonly accepted that a subset of
potential users within the general population are likely to experience
some degree of VIMS or visual discomfort resulting from VR use
[Keshavarz et al. 2023; Stanney et al. 2003]. A leading hypothesis
about the cause of VIMS during VR use is that the presence of VVC
leads to elevated discomfort symptoms [Bos et al. 2008; Oman 1990].
According to this framework, an inter-related set of features of
the hardware and software that compose modern VR experiences
may exaggerate VVC, including but not limited to, field of view
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[Harvey and Howarth 2007; Lin et al. 2002], fixed virtual image
distance [Shibata et al. 2011], and motion to photon latency [DiZio
and Lackner 2000; Palmisano et al. 2019]. Many studies also attribute
VIMS to VVCs that lead to self-motion illusions arising from visual
input that is inconsistent with vestibular stimulation [Bonato et al.
2008; Keshavarz and Hecht 2011; Keshavarz et al. 2019, 2015].

Demographic Correlates to Discomfort. Subsets of users could be
more or less likely to experience VIMS based on a variety of char-
acteristics that may intersect with hardware/software causes, in-
cluding susceptibility based on prior experience of VIMS [Golding
et al. 2021; Hakkinen et al. 2006; Oh and Son 2022; Rebenitsch and
Owen 2014; Stanney et al. 2003], age [Arns and Cerney 2005; Hakki-
nen et al. 2002], and gender or sex [Bannigan et al. 2024; Stanney
et al. 2003; Weech et al. 2020] (although gender/sex differences
may be a result of differences like average interpupillary distance
[Stanney et al. 2020]). We refer the reader to Luong et al. [2022]
for an in-depth review of the most relevant works studying these
demographic correlates to VIMS. While certain demographic char-
acteristics may be correlated with VIMS, they cannot be directly
influenced or controlled to mitigate potential discomfort. Our study
shows that large amounts of pupil swim can induce VIMS and, in
doing so, provides actionable evidence for potential VIMS mitigation
in hardware design.

Behavioral Correlates to Discomfort. Finding behavioral correlates
of VIMS to use in place of self-report surveys has been an active
research area for decades [Saredakis et al. 2020]. Many metrics have
been studied including physiological responses [Dennison et al.
2016; Kim et al. 2005; Martin et al. 2020], postural stability [Jasper
et al. 2020; Yokota et al. 2005], and eye movements [Webb and Grif-
fin 2003]. Some works have found the impact of different metrics,
including visual yaw rotation [Nooij et al. 2017], retinal slip veloc-
ity [Yang et al. 2011], blink rate [Abusharha 2017], fixations [Chang
et al. 2021; Wibirama and Hamamoto 2014; Wibirama et al. 2020], or
saccades and visual-vestibular reflexes [Neupane et al. 2018; Nooij
et al. 2017]. Furthermore, some works have built predictive models
of discomfort leveraging the combination of both demographics
and eye-related measurements [Chang et al. 2021; Islam et al. 2021;
Luong et al. 2022].

Notably, a vast majority of work used to develop our understand-
ing of VIMS during VR use is predicated upon short-duration, high
VVC visual stimuli, without a "no conflict" baseline or repeated mea-
sures study design to compare relative changes in SSQ ratings. A
recent meta-analysis found that 67.3% (37/55) of studies evaluating
VIMS included sessions that lasted <20 minutes and 90.9% (50/55)
lasted <30 minutes [Saredakis et al. 2020]. Even within these short
time frames, studies will often attempt to measure VIMS sensitiv-
ity to multiple factors, which means that many conclusions about
mechanisms that lead to VIMS are effectively extrapolated from
very short-term exposures of several minutes with measurements
that are potentially affected by high VVC visual input seen minutes
before and/or the natural increase of discomfort scores over time
from any headset use. We attempt to address many of these issues in
our study design with a multi-session, within-subjects long duration
VIMS evaluation conducted with naturalistic behavior where the
only factor changed between sessions is the use of ETDDC.
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VIMS from Pupil Swim in HMDs. Chan et al. [2022] have run the
lone study to explicitly examine the relationship between pupil
swim and VIMS and report that user estimates of VIMS vary with
the magnitude of pupil swim across four lens designs. However, their
results cannot conclusively link pupil swim and VIMS as they studied
92 conditions in one continuous session and asked participants
to predict their VIMS symptoms 20 minutes in the future after
viewing each condition for one minute. McLean et al. [2023] built
custom minifying spectacles, and demonstrated that differences
in magnification (from combinations of 0%, 2%, and 4%) between
the two eyes lead to increased visual discomfort over one to two
hours while performing real-world tasks. While these glasses were
designed to induce a global minification and produce a significantly
different type of optical distortion than what is observed with pupil
swim, this study does demonstrate that optical distortions can lead
to increased discomfort.

Representational Similarity Analysis. RSA is a method first made
popular in cognitive neuroscience that uses similarity as a met-
ric between pairwise entities to construct a representational map
or geometry among all possible entities of interest [Kriegeskorte
et al. 2008a]. In the context of eye tracking or physiological signals,
these entities could be different types of eye movements, physiolog-
ical signals, or motion sickness self-report surveys. The similarity
metric used can be determined by the correlation between the en-
tities, the Euclidean distance, or through cross-validated decoding
performance in distinguishing between two entities to construct
Representational Dissimilarity Matrices (RDMs). This process al-
lows all entities to exist within representational space, removing the
limitations of the original measurements used to measure that en-
tity. RSA has been employed as a framework for hypothesis testing
[Carlson et al. 2013; Cecere et al. 2017; Cichy et al. 2014; Giordano
et al. 2013; Kriegeskorte et al. 2008a], and for comparing between
model systems [Khaligh-Razavi and Kriegeskorte 2014; Kriegeskorte
et al. 2008b; Tovar et al. 2020; Xu and Vaziri-Pashkam 2021] due to
its flexibility. Recent work has used RDM feature re-weighting to
optimize and identify links between model and target RDMs [Hen-
drickson et al. 2024; Kaniuth and Hebart 2022]. In this study, we
apply RSA to identify behavioral correlates to self-reported VIMS,
providing a novel application of this method in VIMS research.

3 Hardware and Software

The optical designs and distortion correction meshes used to mini-
mize pupil swim in commercially available HMDs are not readily
available to developers—-a significant hurdle for aftermarket ETDDC
implementation. It is possible to measure the distortion correction
mesh directly by removing the optics and imaging a known pattern
on the display and to additionally characterize the viewing optics
by building calibration rigs to measure distortion throughout the
eye box [Martschinke et al. 2019]. We elected instead to replace the
lenses of an Oculus Rift with an off-the-shelf optic which allows us
to use a published design to generate distortion correction meshes
for ETDDC. We then implement our own distortion correction soft-
ware for both static and eye-tracked distortion correction with a
Light Field Portal distortion representation [Guan et al. 2022].

ACM Trans. Graph., Vol. 43, No. 6, Article 278. Publication date: December 2024.
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Fig. 2. Hourglass optical design in modified Rift headset designed to intro-
duce large changes in gaze-contingent optical distortion (i.e., pupil swim).

3.1 Optical Design

When generating our optical design, we aimed to increase the
amount of pupil swim in the HMD to induce a larger VVC so any
potential visual discomfort could be more reliably detected with
SSQ surveys. At the same time, the lens modulation transfer func-
tion (MTF) must fully support the HMD display panel resolution
to avoid blurring images seen by users. We used two identical off-
the-shelf plano-convex lenses (Edmond Optics 33-384) for each eye,
positioned with the convex surfaces of the two lenses facing each
other (Figure 2). This design results in a 1.3 meter virtual image
distance and creates a sharp image across an 85° field of view. The
overall image distortion in our design is more pronounced than
the benchmark system described by Geng et al. [Geng et al. 2018].
Additionally, when compared side-by-side with commercially avail-
able headsets, our design exhibits a magnitude of pupil swim that is
considerably larger.

3.2 Head and Eye Tracking

We also retrofitted our customized Rift with an integrated binocular
XR eye tracking platform from Tobii (Tobii AB, Sweden). The eye
tracker has a sampling frequency of 240 Hz and is based on Tobii’s
latest-generation off-axis (direct to eye) solution for VR and AR
optical designs. Using this eye tracker, we recorded cyclopean gaze
origin and direction and gaze depth. Six degree-of-freedom head
position is obtained from the standard OpenXR API and recorded at
240 Hz. We used a custom Matlab toolbox to analyze eye and head
movement data (details in supplementary materials).

3.3 Distortion Correction

In our headset we can use ETDDC to reduce the magnitude of pupil
swim relative to distortion correction with a static correction mesh.
The deliberate introduction of excessive pupil swim via static cor-
rection and the corresponding ability to mitigate its presence with
ETDDC allows us to reliably introduce additional visual-vestibular
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conflict in the ETDDC off condition of our user study without rely-
ing on manipulations to virtual camera motion. When experiencing
our ETDDC implementation, users viewer eye position reported
from our eye tracker in combination with Light Field Portals (LFPs)
which were previously described by Guan et al. [2022]. The LFP for
our lens is generated from optical ray tracing software to perform
dynamic distortion correction. Instead of implementing ETDDC
within a custom application, we modify an OpenXR implementation
to enable distortion correction at the systems level, enabling ETDDC
across all Meta PC VR content. We next use this custom ETDDC
solution to run a naturalistic VIMS study with a real VR game.

4 User Study Design

Our aim in this user study is to design a protocol to evaluate how
much intrinsic headset properties such as pupil swim affect user-
reported VIMS symptoms during naturalistic HMD use. Importantly,
we want to evaluate VIMS under the "best possible" conditions with
content designed to avoid visual discomfort. To achieve these goals,
we evaluate VIMS in a multi-session, within-subjects protocol where
users play the popular VR game Job Simulator (Owlchemy Labs,
Boston, MA) which avoids virtual user motion inconsistent with the
user’s actual movement. Across the two sessions we use ETDDC to
manipulate the amount of pupil swim. In theory, participants will
experience less VVC in the ETDDC-enabled session.

4.1 Experimental Design

All participants participated in two 80-minute sessions on different
days. Sessions differed based on whether ETDDC was enabled or
disabled but were otherwise identical. Session order (i.e., whether
ETDDC on or off was conducted first) was counterbalanced across
participants. There was a minimum of 24 hours between sessions
and on average 9.87 (+1.1) days between sessions. We only included
participants who completed both sessions. Of these participants, two
dropped out after 60 minutes in one of their sessions, and their data
are not included in the analysis. Prior to donning and immediately
after doffing our customized Rift HMD, participants completed the
SSQ [Kennedy et al. 1993], Misery Scale [Bos et al. 2005], and five
questions adapted from the Computer Vision Syndrome Question-
naire [del Mar Segui et al. 2015] evaluating the experienced severity
of annoyance with eye strain, image clarity, and headache related
to HMD fit, HMD weight and visual experience.

In Job Simulator player perform various tasks in simulated roles
as a chef, office worker, convenience store clerk, and mechanic.
Participants completed tasks in each of the jobs for 20 minutes in
standardized order (Figure 3). Participants verbally completed the
Misery Scale and CVS-Q surveys at the midpoint and end of each 20
minute block while remaining in headset. We logged gaze position
and head rotation/translation data throughout each session, and
participants performed an eye tracking calibration at the beginning
of each job.

4.2 Participants

Thirty-eight participants (16 male, 22 female) with 20/20 vision
without glasses and normal stereoacuity voluntarily took part in
the IRB-approved experiment. The mean age of participants was
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Fig. 3. Study design and timeline of events in each 80 minute user study session. All participants completed two sessions that were identical except for
whether ETDDC was enabled or disabled. Time spent in the level selection lobby and eye tracking calibration (ET calibration) was generally between one to
three minutes. Our in-headset surveys were completed verbally and we opted for a shorter set of questions using the Misery Scale and Computer Vision
Syndrome Questionnaire (CVS-Q) compared to the full Simulator Sickness Questionnaire. Participant gaze behavior, head position, and orientation was
logged at 240 Hz. In each session we collected eight logs corresponding to the gaze and head behavior which correspond to the eight sets of CVS-Q and

Misery in-headset surveys.

36.6 £1.4 years. The mean interpupillary distance was 61.2 0.4 mm.
Mean years of experience using AR/VR technology was 1.9 0.3 and
mean number of hours spent playing VR per week was 0.7 £0.2.

4.3 Participant Motion Sickness Susceptibility

VIMS susceptibility has been shown to moderate whether and how
a user experiences VIMS while using VR headsets [Golding et al.
2021; Keshavarz et al. 2023; Zhao et al. 2023]. Participants completed
the Visually Induced Motion Sickness Susceptibility Questionnaire
(VIMSSQ) to assess VIMS susceptibility [Keshavarz et al. 2023],
which yields a continuous numerical estimate of susceptibility based
on self-reported history of VIMS symptoms. The distribution of
VIMMSSQ scores in our sample was not meaningfully different
from those expected in the general population: sample VIMSSQ
Total mean and median were 26.9 and 20.7 compared to the expected
population mean and median of 25.6 and 22.0 [Keshavarz et al. 2023].

5 Effect of Pupil Swim on Visual Comfort

We first evaluate whether pupil swim mitigation through ETDDC
affects visual comfort during naturalistic VR use over 80 minutes.

5.1

To determine whether ETDDC mitigates VIMS symptom severity,
we analyzed how participants’ SSQ scores varied as a function of
time and condition. Figure 1B depicts the average SSQ Total score
prior to session start (baseline) and after session completion for
both ETDDC enabled (green) and disabled (purple) sessions. Using
a mixed-effects linear model, we observed a significant decrease
in SSQ Total when ETDDC was on compared to when it was off
(B = —8.86 £ 3.51, 1111 2.53,p = 0.01), indicating that ETDDC
mitigated VIMS symptom severity across the 80-minute play session
(full model results are reported in supplementary materials).
Additionally, after playing both sessions, we showed all partici-
pants an A/B comparison of the Job Simulator level selection area
(similar to an office lobby) with ETDDC enabled and disabled to
determine whether the pupil swim present in our system was readily
perceptible. More participants reported an image quality preference
when ETDDC was enabled (29/38, 76.3%) compared to static distor-
tion correction (9/38, 23.7%) indicating that a majority of participants

Impacts on Visual Discomfort and User Preference

could see the increased pupil swim without ETDDC. Taken together,
we found a clear reduction in visual discomfort without ETDDC
and visual preference with ETDDC enabled compared to using a
static distortion correction, indicating pupil swim contributes to
visual discomfort and a reduced user experience.

5.2 Comparison to Prior Work

We next compare the relative magnitude of experienced discomfort
in our naturalistic study task with that observed in previous studies
over shorter time durations using SSQ Total scores. The overall
average SSQ Total across both sessions in this study was 25.5 + 18.7.
Saredakis et al. [2020] calculated the average SSQ Total values across
55 recent studies investigating VIMS that largely employed non-
naturalistic experiences (i.e., using virtual camera motion to induce
large VVCs). Broken down by session length, the average SSQ Total
for those studies was 23.5 + 3.2 for studies less than 10 minutes, 33.4
+ 2.9 for studies greater than or equal to than 10 minutes, and 27.4 +
3.1 for studies greater than or equal to 20 minutes (of which no study
included sessions longer than 60 minutes). The observed SSQ Total
in this study was not meaningfully different from those observed
in previous studies, even though participants in this study played
VR for significantly longer. This comparison indicates that after
controlling for session length, the overall magnitude of experienced
VIMS during naturalistic gameplay may be significantly less than
that observed in studies employing intentional manipulations to
exaggerate VVC.

Like prior studies, we additionally evaluate SSQ subscales and
how demographic factors contribute to experienced VIMS symptom
severity. We observed VIMS susceptibility, sex (unlike past studies,
we find men experienced more VIMS symptoms than women), and
their interaction were significant predictors (see supplementary
materials for details and SSQ subscale outcomes).

6 Behavioral Correlates to Visual Discomfort

In an initial 30 minute version of our experiment with 43 different
participants, we observed overall smaller values of SSQ Total and
did not observe comfort differences between sessions with ETDDC
enabled or disabled (details in supplementary materials). It is unclear
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if this finding indicates that there was no difference in visual com-
fort at 30 minutes or if surveys were not sensitive enough to detect
differences in comfort. While we do not have the data to conclu-
sively answer this question, our within-subjects study design does
allow us to examine whether user head and gaze behavior changed
significantly between the two ETDDC conditions at different points
in time in our 80-minute dataset.

6.1 Representational Similarity Analysis

We used RSA to explore survey, eye tracking, and head tracking
data for a number of reasons. First, it provides a holistic view of
the entire representational space of the survey and eye tracking
behaviors across time and ETDDC conditions. This way, we are not
only comparing each feature to an end metric (i.e., SSQ Total) but
rather gaining an understanding of how the behavioral metrics and
surveys naturally cluster. In Figure 1C, we use multidimensional
scaling (MDS) to visualize the dissimilarity matrices to see that the
SSQ-defined VIMS is more closely tied to a number of behavioral
metrics than abbreviated survey questions we asked during the
session (Misery Scale and CVS-Q). Secondly, the RSA framework
does not heavily rely on linear assumptions, allowing for exploration
of complex, potentially nonlinear relationships between features
and conditions, which might be missed by linear models. Lastly,
RSA offers a more flexible and adaptable framework for comparing
models, as it does not require specific assumptions about the form
of the relationship between predictors and the outcome, unlike
regression analysis. We add to the flexibility of the RSA framework
by finding weights through a Bayesian optimization using a non-
parametric objective function, further emphasizing the potential
to explore non-linear relationships between VIMS and our surveys
and behavioral metrics.

In this experiment, our conditions were defined by the number
of repeated time points (10-80 minutes in 10 minute increments)
and the conditions (higher and lower SSQ Total sessions rather than
ETDDC on or off), which allows us to construct a 16x16 represen-
tational dissimilarity matrix (RDM). For the surveys, each of the
six RDM matrices represents one of the six questions we asked
during the session. For the gaze and head behaviors, each of the
RDMs represents one of the 41 gaze or head movement metrics we
indexed (eye blink duration, saccade velocity, total fixations, etc.;
see the supplementary materials for depiction of the RDMs for each
variable). When constructing these RDMs, each participant acts as
their own "channel” such that the similarity between conditions is
compared across a vector of participants for a given feature. Each
index in our RDM represents the Euclidean distance between two
38-length (the number of participants) vectors representing each
participant’s survey responses or head and gaze behavior at various
time points across both study sessions.

6.2 Features Associated with Visual Comfort

We employed Bayesian optimization to identify the optimal linear
combination of features that best approximates the target RDM for
user comfort (higher or lower SSQ Total difference; see Figure 4A).
The process was initiated by subsampling 80% of the participants
from the data, a procedure bootstrapped 30 times to create model
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weights that can better generalize across participants and potentially
studies. To ensure that one matrix does not contribute more than
another merely due to the magnitude of the measure being collected,
we min-max normalized each of the matrices, assigning the lowest
dissimilarity score 0 and the highest dissimilarity score 1. This
normalization was performed for each of the survey and behavioral
metrics. We then initialized weights for the Bayesian optimization
such that the sum of weights equaled one. The relative weights were
determined by finding the optimal combination of weighted features
to maximize the Spearman rank correlation to the target SSQ Total
RDM matrix (Figure 4A). The weights were determined over 50
optimization cycles, using the results of the previous optimization
to continually refine the best linear combination of feature RDMs.
The weights from this process are presented in Figure 4B.

When analyzing all data across both sessions, we found that for
the survey scores, the session with higher SSQ Total score was best
approximated (p = 0.42, p < 0.001) by headaches from the headset
fit (80%), weight (17%) and clarity (3%). For the behavioral metrics,
SSQ Total was best correlated (p = 0.85, p<0.001) overwhelmingly
by eye blink behavior (80%) followed by vestibulo-ocular reflex (8%),
fixations (7%), and saccades (4%). When looking at the magnitude
of difference across participants, during sessions with higher mo-
tion sickness, participants blinked for longer (approximately 15-30
milliseconds longer, average blink duration of 322 ms across all con-
ditions) and made slower vestibulo-ocular reflex head movements
(1-3 degrees/second slower, average 95th percentile rotation speed
of 44.2 degrees/second across all conditions. See supplementary
materials for more details). We next examine how well the weights
found through the optimization were generalized to participant data
held out from optimization and found that the eye and gaze behavior
weights, when applied to participants that were left out, predicted
the higher SSQ Total session better (p<0.001) than survey responses
(behavioral data p = 0.60, survey p = 0.41).

6.3 Temporal Representational Similarity Analysis

Next, we examined how well behavioral metrics and surveys could
differentiate between the more and less comfortable sessions at
different points in time. If discomfort increases over time, then the
initial surveys, collected during periods of time when comfort is
relatively similar between the two sessions, may have little predic-
tive power on the user’s final levels of visual comfort. Furthermore,
the overall discomfort across the 80 minutes may suffer from a mix-
ture of weights and scores during the full experiment. To do this
analysis, we used a sliding window approach, in which we used 30-
minute windows (reducing our RDMs to 8x8 matrices), performed
the Bayesian optimization from Section 6.2, and moved the window
in 10 minutes increments until we captured the full 80 minutes.
This windowing approach provides an indication of how well each
respective factor can differentiate between higher and lower SSQ
Total differences at various points in time. The 30-minute window
is a constraint imposed by RSA which requires a meaningful vector
length to compute distances between conditions, or in our case,
to compute meaningful Spearman rank correlation scores in our
target RDM. We can vary the gaze/head behavior window to ar-
bitrary lengths because the data is collected at >90 Hz, however,
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Fig. 4. A. To identify reliable correlates to visual discomfort as reported by the Simulator Sickness Questionnaire, we analyze participant gaze and head
movement behavior alongside surveys. We generate a target Representational Dissimilarity Matrix (RDM) where lower and higher SSQ Total sessions are
separated into two separate 80-minute blocks comprised of 10-minute intervals (gray Target SSQ RDM, right). Individual questions for in-headset self-report
surveys (center) and individual head and gaze summary statistics collected during the study (left) are separated into the same block structure, and these
feature RDMs are optimally weighted using the Bayesian optimization procedure outlined in Section 6.2 to best match the target SSQ Total RDM using
Pearson rank correlation. B. These resulting features represent the RDMs that most reliably differentiate between the more and less comfortable sessions
across our 38 participants. Bars represent mean feature weights and error bars represent standard error of the mean.

in-HMD surveys were only collected in 10-minute intervals so we
are constrained to multiples of 10 minutes to maintain consistent
comparison between survey and behavioral data.

We found that the survey Spearman correlation gradually in-
creased with time, with later time windows being stronger indica-
tors of simulator sickness (Spearman p: 10-40 mins: 0.62, 20-50 mins:
0.79, 30-60 mins: 0.83, 40-70 mins: 0.86, 50-80 mins: 0.86). In con-
trast, gaze and head tracking metrics were able to indicate simulator

sickness earlier, with p reaching 0.86 from the first time window,
and never falling below it (Figure 5). Thus, it took the survey scores
approximately 20 additional minutes to reach the same Spearman
correlation from the optimization as the behavioral data. While this
Bayesian optimization approach can differentiate between higher
and lower SSQ Total user study sessions sooner than surveys in
post-hoc analysis, further investigation is required before we can
identify broadly generalizeable markers of visual discomfort.
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Fig. 5. We repeat the Bayesian weighting procedure from Section 6.2 but
restrict the data to 30-minute subset of the total data to examine how well
survey and behavioral data can differentiate between higher and lower SSQ
Total study sessions over time. Survey responses and behavioral data should
diverge across the two study sessions as comfort differences become more
pronounced. Participant in-headset survey responses become more reliable
predictors of visual comfort over time (Spearman p increases from 0.62
to 0.86 over 30 minutes). In contrast, head and gaze statistics are reliable
predictors of discomfort within the first time window, and remain predictive
throughout the entire experiment (Spearman p = 0.86 for all time windows).

7 Discussion

We built a high pupil swim HMD and enabled ETDDC across the
entire library of VR content available on the Meta PC VR platform.
Leveraging this HMD, we studied the effects of pupil swim on visual
comfort over 80 minutes while participants played Job Simulator. We
found that ETDDC can mitigate the effects of pupil swim to improve
visual comfort and using RSA identified changes in blink and VOR
behaviors that are potentially correlated with higher SSQ Total
scores. While both abbreviated discomfort surveys (Misery Scale and
CVS-Q) and user behavior could predict relative discomfort between
our two sessions, behavioral metrics could predict the differences
earlier (p>0.8 after 40 minutes and 60 minutes for behavior and
surveys respectively) and more accurately (p = 0.86 and 0.66 after
40 minutes using behavior and surveys respectively). We conclude
with some additional thoughts.

Other Sources of VIMS. Multiple sources of visual-vestibular con-
flict can contribute to VIMS in HMDs, and ETDDC cannot address
all of these issues. The repeated-measures study design in this study
isolates reduced pupil swim magnitude as the most likely factor
that can explain improved visual comfort with ETDDC enabled and
underscores the importance of using within-subjects designs to mit-
igate confounding effects from interpersonal differences in VIMS
research.

Generalizability of Behavioral Correlates. Eye and head movement
behavior is a function of the observer’s task and individual charac-
teristics [Burlingham et al. 2024; Malpica et al. 2023]. Our head and
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gaze dataset partially addresses this concern because our study is a
within-subjects experiment which has participants playing the same
game in two different sessions. This enables us to look at relative
changes in an individual’s behavior, rather than behavioral changes
in absolute terms aggregated across all participants. Importantly,
our use of ETDDC and pupil swim to induce VIMS, rather than
virtual camera motion inconsistent with real user movement facili-
tates more naturalistic participant behavior. The behavioral changes
identified here are more likely to generalize compared to those iden-
tified with experiences explicitly designed to induce discomfort.
However, the changes in eye and head movement patterns observed
in this study when users report elevated visual discomfort still may
not generalize to other VR experiences or when factors other than
pupil swim induce visual discomfort. Further investigation should
be conducted to evaluate whether and how the approaches outlined
in this work generalize to other experiences.

Alternatives to RSA. While RSA provides a powerful tool for ex-
ploring complex relationships in physiological data, it’s important
to consider alternative approaches. RSA requires a large number of
conditions and can require deeper univariate investigation to find
the direction of effects. Regression-based methods, such as Ridge Re-
gression, Lasso, Bayesian regression and Gradient Boosting Regres-
sion (GBR), offer alternatives. These techniques can directly model
relationships within the feature space, handle multicollinearity, and
provide clear measures of feature importance. GBR, in particular,
although computationally intensive can capture complex nonlinear
relationships effectively. Despite these alternatives, RSA’s ability to
provide a holistic view of the representational space, capture po-
tentially nonlinear relationships, and when coupled with Bayesian
optimization provide interpretable weights make it a valuable tool
in data analysis. In addition, RSA provides a framework that can
fine tune [McClure and Kriegeskorte 2016] neural network models,
providing a bridge to connecting new data to existing VIMS models
[Chang et al. 2021; Hell and Argyriou 2018; Islam et al. 2021; Luong
et al. 2022; Wen et al. 2024; Zhao et al. 2023].
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