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Fig. 1. We introduce a new technique to compute bulk scattering parameters (i.e., the extinction and scattering coefficients as well as the single-scattering
phase function) in a systematic fashion. By considering wave optical effects and particle (scatterer) interactions at the microscopic level, our technique enjoys
the generality of supporting a wide range of media (e.g., isotropic, anisotropic, and correlated). In this figure, we show renderings of thin slabs lit with a
small area light from behind (top). Additionally, we show visualizations of the corresponding particle distributions (middle) as well as per-cluster particle
counts 𝑁 cls and radii 𝑎𝑖 (bottom).

Light scattering in participating media and translucent materials is typi-
cally modeled using the radiative transfer theory. Under the assumption
of independent scattering between particles, it utilizes several bulk scat-
tering parameters to statistically characterize light-matter interactions at
the macroscale. To calculate these parameters based on microscale material
properties, the Lorenz-Mie theory has been considered the gold standard. In
this paper, we present a generalized framework capable of systematically
and rigorously computing bulk scattering parameters beyond the far-field
assumption of Lorenz-Mie theory. Our technique accounts for microscale
wave-optics effects such as diffraction and interference as well as interac-
tions between nearby particles. Our framework is general, can be plugged in
any renderer supporting Lorenz-Mie scattering, and allows arbitrary packing
rates and particles correlation; we demonstrate this generality by comput-
ing bulk scattering parameters for a wide range of materials, including
anisotropic and correlated media.
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1 INTRODUCTION
Participating media and translucent materials—such as marble, milk,
wax, and human skin—are ubiquitous in the real world. These ma-
terials allow light to penetrate their surfaces and scatter in the
interior. In computational optics and computer graphics, how light
interacts with participating media and translucent materials is typ-
ically modeled using the radiative transfer theory (RTT). Under
this formulation, a participating medium consists of microscopic
particles (scatterers) randomly dispersed in some homogeneous em-
bedding medium. After entering a translucent material, light travels
in straight lines in the embedding medium and occasionally col-
lides with a particle and gets redirected into a new direction. To
capture the macroscopic behavior of light, the RTT uses a statistical
description of the particles (the medium bulk parameters), namely
the extinction coefficient 𝜎t (aka. optical density), the scattering
coefficient 𝜎s, and the phase function 𝑓p.
While purely phenomenological in origin, the RTT has been

demonstrated a corollary of Maxwell equations, under the assump-
tion of far-field or independent scattering [Mishchenko 2002]. There-
fore, these optical bulk parameters can be obtained from first prin-
ciples, using e.g., Lorenz-Mie theory [van der Hulst 1981; Frisvad
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et al. 2007]. However, although very successful in practice, this the-
ory neglects the interactions occurring between particles in their
near-field, including wave-optics effects such as diffraction and
interference with neighbor particles. Consequently, Lorenz-Mie the-
ory is largely limited to isotropic media with relatively low packing
rates. Examples of particles arranged as clusters—or falling in the
near-field region of each other—are widespread in nature: From
dense media where the particles density and packing rate is large,
to spatially-correlated media such as clouds or biological structures
where microscopic scatterers form clusters.

Previously, the classical radiative transfer theory has been gener-
alized to handle materials with (statistically) organized microstruc-
tures. Anisotropic media [Jakob et al. 2010], for instance, have bulk
scattering parameters with stronger directional dependency com-
pared to isotropic media. Additionally, media comprised of particles
with correlated locations can exhibit non-exponential transmittance
and characteristic scattering profiles [Bitterli et al. 2018; Jarabo et al.
2018]. Although several empirical models have been proposed to
model these media, these models work on the macro-scale directly,
they are still based on the very same far-field assumption of Lorenz-
Mie scattering, and lack the generality to capture wave-optics or
multi-spectral effects. Therefore, techniques capable of computing
the bulk optical parameters of a material, based on its microscopic
properties, have been lacking.

In this paper, we bridge this gap by introducing a new technique
to systematically and rigorously compute the bulk scattering pa-
rameters. The elementary building block of our technique is particle
clusters in which individual particles follow user-specified distribu-
tions. Within a cluster, we consider full near-field light transport
effects; Between clusters, on the contrary, we use a far-field ap-
proximation to allow efficient modeling of macroscopic level light
transport.

Our formulation is derived from first principles of light transport
(i.e., Maxwell electromagnetism) and reduces to the Lorenz-Mie
theory in the special case of single-particle scatterers. Based on
this formulation, we demonstrate how the bulk parameters can be
computed numerically. Using our technique, we systematically gen-
erate radiative transfer optical parameters capturing multi-spectral,
anisotropic, and correlated scattering effects for particles with arbi-
trary distributions (Figure 1).
Concretely, our contributions include:

• Establishing a computational framework for modeling light scat-
tering from clusters of particles (§4).

• Showing how radiative transfer parameters can be computed
numerically based on our formulation (§5).

• Demonstrating how our technique can be applied to systemati-
cally compute scattering parameters for a variety of participating
media (§6).

2 RELATED WORK
Radiative transfer. Simulating the propagation of light in par-

ticipating media has been widely studied in graphics [Novák et al.
2018], building upon the radiative transfer equation (RTE), intro-
duced 125 years ago by von Lommel [1889] (see [Mishchenko 2013]

for a historical perspective). This scalar radiative formulation has
been extended in graphics accounting for anisotropic [Jakob et al.
2010], refractive [Ament et al. 2014], bispectral [Gutierrez et al.
2008], or spatially-correlated media [Jarabo et al. 2018; Bitterli et al.
2018]. All these works assume a radiometric light transport model,
establishing no connections with the electromagnetic behaviour
governing light transport. From a wave-optics perspective, a few
works have generalized light transport in media to account for wave-
based properties, including polarized light transport [Wilkie et al.
2001; Jarabo and Arellano 2018], or coherence [Bar et al. 2019]. This
last work is of special relevance, given that it was able to simulate
purely wave-based phenomena such as speckle or coherent back-
scattering on top of a radiative model. All these works build on the
assumption of the far-field approximation and independent scat-
tering, which largely simplifies computations. A notable exception
is the near-field model proposed by Bar et al. [2020], that renders
speckle statistics in the near-field zone of the camera, although it
still considers independent far-field scattering between particles.
In contrast, in this work we explicitly relate the radiometric light
transport modeled by the RTE with physics-based optics based on
electromagnetism, and generalize the independent scattering ap-
proximation to account clusters of particles in the near field.

Modeling scattering in media. The phase function models the aver-
age scattering distribution at a light interaction with the medium. A
common approach is to use simple phenomenological models, such
as the Henyey-Greenstein phase function [Henyey and Greenstein
1941] or mixtures of von Mishes-Fisher distributions [Gkioulekas
et al. 2013], as well as other functions modeling the scattering of
idealized anistropic particles [Zhao et al. 2011; Heitz et al. 2015];
however, these methods lack an explicit relationship with the un-
derlying microscopic material properties. Under the assumption
of geometric optics, several works have proposed to precompute
the phase functions of more complex particles for granular materi-
als [Meng et al. 2015; Müller et al. 2016] or cloth fibers [Aliaga et al.
2017] using explicit path tracing, by neglecting wave effects. A more
rigorous phase function is based on the Lorenz-Mie theory [van der
Hulst 1981], which provides closed-form solutions for the Maxwell’s
equations for spherical particles [Jackel and Walter 1997; Frisvad
et al. 2007]. Sadeghi et al. [2012] generalized the Lorenz-Mie the-
ory to larger non-spherical particles in the context of accurately
modeling rainbows. To avoid the expensive sum series of the Lorenz-
Mie theory, Guo et al. [2021] proposed to use the geometric optics
approximation [Glantschnig and Chen 1981], which gives a good
approximation to Lorenz-Mie theory for larger particles at signifi-
cantly lower cost. All these approaches provide accurate rigorous
solutions to the far-field scattering of disperse particles.
Beyond Lorenz-Mie, several exact rigorous solutions have been

proposed for computing electromagnetic scattering of particles in
media, including the finite elements method (FEM), the finite dif-
ference time domain (FDTD) method, or the boundary elements
method (BEM) [Wu and Tsai 1977], which solve the Maxwell’s equa-
tions for arbitrary shapes. Xia et al. [2020] proposed using BEM for
accurately precomputing the far-field scattering of individual fibers.
Unfortunately these methods are very slow as the number of par-
ticles increases, limiting its applicability to individual elements in
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problems with reduced dimensionality. The T-matrix method [Wa-
terman 1965] generalizes the Lorentz-Mie theory to particles of
arbitrary shape in both the near- and far-fields, with the only as-
sumption of the computed field being outside a sphere surrounding
the particles. This method was later extended to clusters of multiple
particles [Peterson and Ström 1973; Mackowski and Mishchenko
2011]. We leverage the T-matrix method for computing the scatter-
ing of groups of particles.

Wave optics in surface scattering. Inspired on the vast background
on electromagnetic surface scattering in optics (see [Frisvad et al.
2020] for a general survey), several works in graphics have taken
into account relevant wave effects including diffraction-aware BS-
DFs [He et al. 1991; Stam 1999; Cuypers et al. 2012; Dong et al. 2015;
Holzschuch and Pacanowski 2017; Toisoul and Ghosh 2017; Werner
et al. 2017; Yan et al. 2018], goniochromatic patterns due to thin-layer
interference [Smits and Meyer 1992; Gondek et al. 1994; Belcour and
Barla 2017; Guillén et al. 2020], or birefringence [Steinberg 2019].
These works assume single scattering, with no interaction between
different particles with a few exceptions that assume full incoher-
ence after single scattering [Falster et al. 2020; Guillén et al. 2020].
Notably, Moravec [1981] andMusbach et al. [2013] computed the full
electromagnetic surface scattering by solving the wave propagation
using the FDTD method.

3 PRELIMINARIES
We now briefly revisit the basics on first principles of (classical)
light transport theory based on Maxwell electromagnetism. Table 1
summarizes the symbols used along the paper.

3.1 Electromagnetic Scattering
The propagation of a time-harmonic monochromatic electromag-
netic field with frequency𝜔 is defined by theMaxwell curl equations
as

∇ × E(r) = i𝜔 𝜇 (r)H(r),
∇ × H(r) = −i𝜔 𝜀 (r) E(r), (1)

where ∇ × . is the curl operator; E(r) and H(r) indicate, respec-
tively, the (vector-valued) electric and magnetic fields at r; 𝜇 (r) and
𝜀 (r) denote the (scalar-valued) magnetic permeability and electric
permittivity at r, respectively; and i :=

√
−1 is the imaginary unit.

Assuming a non-magnetic medium satisfying 𝜇 (r) = 𝜇0 with 𝜇0
being the magnetic permeability of a vacuum, Equation (1) reduces
to the electric field wave equation

∇2 × E(r) − 𝑘 (r)2 E(r) = 0, (2)

where ∇2 = ∇ × ∇ , and 𝑘 (r) = 𝜔
√
𝜀 (r)𝜇0 is the medium’s wave

number at r. Note that the wave number 𝑘 has a dependence on the
frequency 𝜔 ; in the following we omit such dependence for brevity.

We now assume an infinite homogeneous isotropic medium with
permittivity 𝜀1, filled with scatterers bounded by a finite disjoint
region𝑉 , with potentially inhomogeneous permittivity 𝜀2 (r). Under
this assumption, we can solve Equation (2) by expressing it as the
volume integral equation (see §S1 on the supplemental or §3.1 of
Mishchenko’s work [2006] for a step-by-step derivation) as the sum
of the incident field Einc (r) and the scattered field Esca (r) due to

Table 1. Symbols used along the paper.

Symbol Definition

r ∈ R3 Position
r̂ ∈ S2 Direction to r
𝑟 ∈ R Distance
𝜀 (r) Permittivity
𝜇 (r) Permeability
𝜔 Wave angular frequency [s−1]

𝜆 = 2𝜋𝜔−1 Wavelength [m]
𝑘 (r) = 𝜔

√
𝜀 (r)𝜇 (r) Wavenumber at r

𝑚 (r) = 𝑘2 (r)/𝑘1 Relative refractive index at r
H(r) Magnetic field at r
E(r) Electric field at r (4)

Einc (r) Incident electric field r
Esca (r) Scattered electric field at r (4)
E0 Amplitude of a planar electric field

Esca1 (r̂) Far-field angular distribution of the scattered radiation
⇐⇒
𝐺 Free-space dyadic Green’s function (5)
⇐⇒
𝑇 Dyad transition operator (9)

𝑔 (n̂, r) Planar field scalar propagator
𝑉𝑖 Volume suspended by particle/cluster 𝑖

R𝑖 ∈ R3 Representative position of particle/cluster 𝑖
R̂𝑖 𝑗 ∈ S2 Direction from R𝑗 to R𝑖
𝑅𝑖 𝑗 ∈ R Distance from R𝑗 to R𝑖
𝑁 cls Number of particles in a cluster

Esca
𝑖

(r) Scattered field of r ∈ 𝑉𝑖 (8)
E𝑖 (r) Exciting field in r ∈ 𝑉𝑖
Eexc
𝑖 𝑗

(r) Partial exciting field in r ∈ 𝑉𝑖 from particle 𝑗 (10)
⇐⇒
𝐴near
𝑖

(n̂inc, r) Near-field scattering dyad of particle/cluster 𝑖 (21)
⇐⇒
𝐴𝑖 (n̂inc, n̂sca) Far-field scattering dyad of particle/cluster 𝑖 (24)

𝜅t (n̂inc), 𝜅s (n̂inc) Extinction (29) and scattering (30) cross-sections [m2]
𝑓p (n̂inc, n̂sca) Phase function (31) [sr−1]

𝜌 Particles density [m−3]
𝜎t (n̂inc), 𝜎s (n̂inc) Extinction (32) and scattering (33) coefficients [m−1]

inhomogeneities in the medium in the form of scatterers:

E(r) = Einc (r) + Esca (r) (3)

= Einc (r) + 𝑘21
∫
𝑉

[𝑚2 (r′) − 1]
⇐⇒
𝐺 (r, r′) · E(r′) dr′, (4)

with 𝑘1 the wave number at the hosting medium,𝑚(r) = 𝑘2 (r)/𝑘1
the index of refraction of the interior regions 𝑉 with respect to the
hosting medium, the operator . · . is the dot product1 and

⇐⇒
𝐺 (r, r′)

the free-space dyadic Green’s function defined as:

⇐⇒
𝐺 (r, r′) =

(⇐⇒
𝐼 + 𝑘−21 ∇ ⊗ ∇

) exp(i𝑘1 |r − r′ |)
4𝜋 |r − r′ | , (5)

where
⇐⇒
𝐼 is the identity dyad, and . ⊗ . denotes the dyadic product of

two vectors. Note that the derivative operator ∇ applies over r. Intu-
itively, Equation (4) models the scattering field as the superposition
of the spherical wavelets resulting from a change of permittivity (i.e.
with𝑚(r′) ≠ 1). Note also the recursive nature of Equation (4); we
will deal with this recursivity in the following section, computing
Esca (r) as a function of the incident field Einc (r).

1In the paper we use . · . as the vector-vector, vector-dyadic and dyadic-dyadic dot
products.
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Fig. 2. Schematical representation of the particles scattering geometry. Previous methods, including Lorenz-Mie theory, assume independent scattering of
particles (left), assuming that the distance 𝑅𝑖 𝑗 between two particles 𝑖 and 𝑗 is very large (i.e., 𝑅𝑖 𝑗 → ∞), neglecting the potential interactions between
particles. In our work (middle) we differentiate between near field scattering of particles within a small region in space (cluster𝐶 centered at R𝐶 ), and particles
𝑘 on the far-field region of the cluster (distance 𝑅𝐶𝑘 → ∞). For large values of 𝑅𝐶𝑘 , the direction between particle 𝑘 and any particle 𝑗 ∈ 𝐶 is 𝑑𝑃𝑥𝑖𝑘 ≈ R̂𝐶𝑘 :
Therefore, we can assume a planar exciting field Eexc

𝐶𝑘
(r) on the whole cluster𝐶 from particle 𝑘 , with direction R̂𝐶𝑘 (right).

3.2 Foldy-Lax Equations
We now consider a medium filled with 𝑁 finite discrete particles
with volume 𝑉𝑖 and index of refraction𝑚𝑖 (r). Considering an inci-
dent E-field Einc (r), we can rewrite Equation (4) as

E(r) = Einc (r) +
∫
R3

𝑈 (r′)
⇐⇒
𝐺 (r, r′) · E(r′) dr′, (6)

where
⇐⇒
𝐺 (r, r′) is the dyadic Green’s function (5), and 𝑈 (r) the po-

tential function given by

𝑈 (r) =
𝑁∑
𝑖=1

𝑈𝑖 (r) with 𝑈𝑖 (r) =
{
0, (r ∉ 𝑉𝑖 )
𝑘21 [𝑚

2
𝑖
(r) − 1] . (r ∈ 𝑉𝑖 )

(7)

By combining Equations (6) and (7), we can express the field at any
position r ∈ R3 following the so-called Foldy-Lax equation [Foldy
1945; Lax 1951] as

E(r) = Einc (r) +
𝑁∑
𝑖=1

=:Esca
𝑖

(r)︷                                                   ︸︸                                                   ︷∫
𝑉𝑖

⇐⇒
𝐺 (r, r′) ·

∫
𝑉𝑖

⇐⇒
𝑇𝑖 (r′, r′′) · E𝑖 (r′′) dr′′ dr′,

(8)
with Esca

𝑖
(r) and E𝑖 (r) the scattered and partial field of particle 𝑖 , and

⇐⇒
𝑇𝑖 (r, r′) the dyad transition operator for particle 𝑖 defined as [Tsang
et al. 1985]

⇐⇒
𝑇𝑖 (r, r′) = 𝑈𝑖 (r) 𝛿 (r − r′)

⇐⇒
𝐼

+𝑈𝑖 (r)
∫
𝑉𝑖

⇐⇒
𝐺 (r, r′′) ·

⇐⇒
𝑇𝑖 (r′′, r′) dr′′,

(9)

with 𝛿 (𝑥) the Dirac delta. The partial field at particle 𝑖 is defined as
E𝑖 (r) = Einc (r) + ∑𝑁

𝑗 (≠𝑖)=1 E
exc
𝑖 𝑗

(r), where the partial exciting field
Eexc
𝑖 𝑗

(r) from particles 𝑗 to 𝑖 is

Eexc𝑖 𝑗 (r) =
∫
𝑉𝑗

⇐⇒
𝐺 (r, r′) ·

∫
𝑉𝑗

⇐⇒
𝑇𝑗 (r′, r′′) · E𝑗 (r′′) dr′′ dr′, (10)

with r ∈ 𝑉𝑖 . Note that the scattered and exciting fields for par-
ticle 𝑗 have essentially the same form. As shown by Mishchenko
[2002], the Foldy-Lax equation (8) solves exactly the volume integral
equation (4) for multiple arbitrary particles in the medium, without

any assumptions on their composition or packing rate, beyond the
assumption of a homogeneous hosting medium.

Far-field Foldy-Lax Equations. Equation (10) defines the exact
exciting field resulting from the scattering by particle 𝑗 on particle 𝑖 .
However, if the distance 𝑅𝑖 𝑗 := ∥R𝑖 − R𝑗 ∥ between particles (with
R𝑖 denoting the center of particle 𝑖) is large, we can approximate
the propagation distance between any point r ∈ 𝑉𝑖 and r′ ∈ 𝑉𝑗 as

∥r − r′∥ ≈ 𝑅𝑖 𝑗 + (R̂𝑖 𝑗 · Δr) − (R̂𝑖 𝑗 · Δr′), (11)

with R̂𝑖 𝑗 := (R𝑖−R𝑗 )/𝑅𝑖 𝑗 , Δr := r−R𝑖 and Δr′ := r′ −R𝑗 (see Figure 2,
left). With this approximation, we can now express Eexc

𝑖 𝑗
(r) for

a point r ∈ 𝑉𝑖 using its far-field approximation (see §S3 in the
supplemental for the derivation), as

Eexc𝑖 𝑗 (r) =
exp(i𝑘1 𝑅𝑖 𝑗 )

𝑅𝑖 𝑗
𝑔(R̂𝑖 𝑗 ,Δr) Eexc1𝑖 𝑗 (R̂𝑖 𝑗 ), (12)

with r ∈ 𝑉𝑖 a point in particle 𝑖 , 𝑔(n̂, r) = exp(i𝑘1n̂ · r), and Eexc1𝑖 𝑗 the
far-field exciting field from particle 𝑗 to particle 𝑖 defined as

Eexc1𝑖 𝑗 (R̂𝑖 𝑗 ) = (4𝜋)−1 (
⇐⇒
𝐼 − R̂𝑖 𝑗 ⊗ R̂𝑖 𝑗 ) (13)

·
∫
𝑉𝑗

𝑔(−R̂𝑖 𝑗 ,Δr′)
∫
𝑉𝑗

⇐⇒
𝑇𝑗 (r′, r′′) · E𝑗 (r′′) dr′′ dr′.

The dyad (
⇐⇒
𝐼 − R̂𝑖 𝑗 ⊗ R̂𝑖 𝑗 ) ensures a transverse planar field, which

allows to solely characterize Eexc1𝑖 𝑗 (R̂𝑖 𝑗 ) by the propagation direction
R̂𝑖 𝑗 . In order for Equation (12) to be valid, the distance 𝑅𝑖 𝑗 needs to
hold the far-field criteria, which relates the 𝑅𝑖 𝑗 with the radius of
the particle 𝑎 𝑗 following the inequality [Mishchenko et al. 2006]:

𝑘1𝑅𝑖 𝑗 ≫ max
(
1,
𝑘21𝑎

2
𝑗

2

)
. (14)

This far-field assumption is both the basis for the Lorenz-Mie the-
ory [van der Hulst 1981] (to model electromagnetic scattering from
small spherical particles) and, as shown by Mishchenko [2002], at
the core of the radiative transfer theory.

In the following, we relax the assumption of near-field scattering
and compute the Foldy-Lax equations for clusters of particles for
both the near- and far-field regions. Then, we use them to compute
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the scatteringmatrix to be used in the RTE to efficiently approximate
light transport between clusters of particles.

4 SCATTERING FROM CLUSTERS OF PARTICLES
In this section, we present our main theoretical result: the far-field
approximated scattering dyad relating a field incoming at a particle,
which will be shown in Equation (24). This dyad can then be used
to compute a medium’s bulk scattering parameters, which we will
discuss in §4.1.

The two forms of computing the exciting field from particle 𝑗 to 𝑖
[Equations (10) and (12)] suggest that we can consider two subsets
of particles 𝑗 depending on their distance with respect to the point
of interest r: One set of 𝑁near particles in the near field and another
set of 𝑁far particles in the far field. With that, we can now calculate
the exciting field in particle 𝑖 as

E𝑖 (r) = Einc (r) +
𝑁near∑

𝑗 (≠𝑖)=1
Eexc𝑖 𝑗 (r) +

𝑁far∑
𝑘=1

Eexc
𝑖𝑘

(r) . (15)

In what follows, we derive the far-field Foldy-Lax equations for
groups of particles where a cluster of these particles are in their
respective near-field region, while the other elements in the system
are in the far field. For the simplicity of our derivations, we consider
a single far-field incident field in the cluster, and assume that the
far-field particles 𝑘 do not have neighbor particles in their respective
near field region. More formally, we now consider a cluster𝐶 of 𝑁𝐶

particles, where all particles 𝑖 ∈ 𝐶 are in their respective near-field
region, and that the particles of the cluster have a bounding sphere
centered at R𝐶 with radius 𝑎𝐶 (see Figure 2, middle).

Since both the incident field Einc (r) and the exciting field Eexc
𝐶𝑘

(r)
from particle 𝑘 are in the far-field region, we can assume both fields
to be planar waves defined as

Einc (r) = Einc0 exp(i𝑘1n̂ · Δr) = Einc0 𝑔(n̂,Δr), (16)

Eexc
𝐶𝑘

(r) = Eexc0𝐶𝑘 exp(i𝑘1R̂𝐶𝑘 · Δr) = Eexc0𝐶𝑘 𝑔(R̂𝐶𝑘 ,Δr), (17)

with Einc0 the amplitude of the planar incident field, n̂ its direction,
and Δr = r − R𝐶 . Equivalently, Eexc0𝐶𝑘 =

exp(i𝑘1 𝑅𝐶𝑘 )
𝑅𝐶𝑘

Eexc1𝐶𝑘 (R̂𝐶𝑘 ) is
the amplitude of the exciting field at 𝐶 from particle 𝑘 , and R̂𝐶𝑘 its
direction.
Now, let us slightly abuse the dot product notation, remove the

dependency on the spatial dependency on each term, and use (𝜑1 •
𝜑2) =

∫
𝜑1 (𝑥) 𝜑2 (𝑥) d𝑥 for scalar-valued functions 𝜑1 and 𝜑2. From

the far-field assumptions, plugging Equation (15) into the definition
of the scattered field from particle 𝑖 ∈ 𝐶 in Equation (8) (with
𝑁near = 𝑁 cls) yields

Esca𝑖 (r) =
⇐⇒
𝐺 •

⇐⇒
𝑇𝑖 • E𝑖

=
⇐⇒
𝐺 •

⇐⇒
𝑇𝑖 •

Einc +
𝑁far∑
𝑘=1

Eexc
𝐶𝑘

+
𝑁 cls∑

𝑗 (≠𝑖)=1
Eexc𝑖 𝑗

 .
(18)

By recursively expanding Eexc
𝑖 𝑗

and some algebraic operations (see
the supplemental for the full derivation), this results into

Esca𝑖 (r) = E0 ·
⇐⇒
𝐺 •

⇐⇒
𝑇𝑖 •

[
𝑔(n̂) +

𝑁 cls∑
𝑗 (≠𝑖)=1

[...]𝑔 (n̂)
𝑗

]
(19)

+
𝑁far∑
𝑘=1

Eexc0𝐶 𝑗


⇐⇒
𝐺 •

⇐⇒
𝑇𝑖 •

[
𝑔(R̂𝐶𝑘 ) +

𝑁 cls∑
𝑗 (≠𝑖)=1

[...]𝑔 (R̂𝐶𝑘 )
𝑗

] ,
where the domain of integration in the spatial domain of𝑔(n̂inc,Δr′)
is Δr′ = r′ − R𝐶 , and "[...]𝜑

𝑙
" term represents the recursivity as

[...]𝜑
𝑗
=

⇐⇒
𝐺 •

⇐⇒
𝑇𝑗 •

𝜑 +
𝑁 cls∑

𝑙 (≠𝑗)=1
[...]𝜑

𝑙

 . (20)

Note this recursivity is similar to the one appearing in the rendering
equation [Kajiya 1986]. Each element in the sum in Equation (19)
above is the result of the amplitude of the far-field incident or ex-
citing fields, and a series that encode all the near-field scattering in
the cluster 𝐶 . We can thus define the scattering dyad

⇐⇒
𝐴near
𝑖

(n̂inc, r)
relating a unit-amplitude planar incident field at particle 𝑖 from
direction n̂inc with the scattered field at point r as

⇐⇒
𝐴near
𝑖 (n̂inc, r) =

⇐⇒
𝐺 •

⇐⇒
𝑇𝑖 •

[
𝑔(n̂inc) +

𝑁 cls∑
𝑗 (≠𝑖)=1

[...]𝑔 (n̂
inc)

𝑗

]
. (21)

By considering constant Einc0 and Eexc0𝐶𝑘 for the whole cluster 𝐶 , we
can compute the cluster’s scattering dyad as

⇐⇒
𝐴near
𝐶 (n̂inc, r) =

𝑁𝐶∑
𝑖=1

⇐⇒
𝐴near
𝑖 (n̂inc, r), (22)

which defines the scattered field for a unit-amplitude incoming pla-
nar field in a scene consisting of the particles forming cluster 𝐶 . In
practice, the scattering dyad

⇐⇒
𝐴near
𝐶

(n̂inc, r) can be computed numeri-
cally using standard methods from computational electromagnetics
(see §5 for more details).

Far-field approximation. Equation (21) represents the general
form of the scattering dyad for particle 𝑖 , which results into a five-
dimensional function. Assuming that r is in the far-field region of a
particle 𝑖 ∈ 𝐶 , by using the far-field approximation of the scattered
or exciting field (12) (we refer to the supplemental document for the
derivation), we get the scattered field by particle 𝑖 as

Esca𝑖 (r) ≈ 𝑒 i𝑘1𝑅𝑖

𝑅𝑖

(⇐⇒
𝐴𝑖 (n̂, R̂𝑖 ) · Einc0 +

𝑁far∑
𝑘=1

⇐⇒
𝐴𝑖 (R̂𝐶𝑘 , R̂𝑖 ) · Eexc0𝐶𝑘

)
, (23)

with 𝑅𝑖 := |r − R𝑖 | and R̂𝑖 := r−R𝑖/𝑅𝑖 , and

⇐⇒
𝐴𝑖 (n̂inc, n̂sca) = (

⇐⇒
𝐼 − R̂𝑖 ⊗ R̂𝑖 ) ·

𝑔(−n̂sca)
4𝜋 •

⇐⇒
𝑇𝑖

•
[
𝑔(n̂inc) +

𝑁near∑
𝑗 (≠𝑖)=1

[...]𝑔 (n̂
inc)

𝑗

]
.

(24)
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300nm 600nm 900nm

Fig. 3. Comparison against Lorenz-Mie theory: We compare our method
with clusters containing a single particle (i.e., 𝑁 cls = 1) against a ref-
erence solution based on Lorenz-Mie theory for three different particle
radii 𝑎𝑖 ∈ {300nm, 600nm, 900nm}. As expected, for a single particle our
method reduces to the same results as Lorenz-Mie theory. The wavelength
is 𝜆 = 600nm, while the refractive index of the particle is𝑚 = 1.5 + 0.1i.

Finally, since R̂𝑖 ≈ R̂𝐶 for all particles 𝑖 ∈ 𝐶 , we can approximate
the far-field scattered field of cluster 𝐶 as

Esca𝐶 (r) = 𝑒 i𝑘1𝑅𝐶

𝑅𝐶

(⇐⇒
𝐴𝐶 (n̂, R̂𝐶 ) · E0 +

𝑁far∑
𝑘=1

⇐⇒
𝐴𝐶 (R̂𝐶𝑘 , R̂𝐶 ) · Eexc0𝐶𝑘

)
, (25)

where
⇐⇒
𝐴𝐶 (n̂inc, n̂sca) =

𝑁𝐶∑
𝑖=1

⇐⇒
𝐴𝑖 (n̂inc, n̂sca), (26)

is the far-field scattering dyad of cluster 𝐶 .
Thus, by grouping the individual particles into 𝑁 cls near-field

clusters, and assuming that all clusters and observation point r
lay in their respective far field, we can approximate the Foldy-Lax
equation (8) as

E(r) = Einc (r) +
𝑁 cls∑
𝐶 𝑗=1

Esca𝐶 𝑗
(r), (27)

with Esca
𝐶 𝑗

(r) the scattered field at cluster 𝐶 𝑗 .

4.1 Relationship with the Radiative Transfer Theory

The scattering dyad
⇐⇒
𝐴𝐶 (n̂inc, n̂sca) given by Equation (26) models

how a particles cluster 𝐶 scatters a planar unit-amplitude incident
field from direction n̂inc towards direction n̂sca in the far-field region.
However, for rendering we are generally interested on the average
field intensity (i.e., radiance).
As shown by Mishchenko [2002], the radiative transfer equa-

tion (RTE) directly derives from the far-field Foldy-Lax equations
under three additional assumptions: (i) The amount of coherent
backscattering is negligible; (ii) The particles are randomly dis-
tributed according to some distribution 𝑝 (𝑅𝑖 , 𝜉𝑖 ), with 𝑅𝑖 and 𝜉𝑖
denoting, respectively, the position and properties (e.g., shape, size,
index of refraction...) of a particle 𝑖; and (iii) We are interested on
the average field ⟨E(r)⟩.
Following these assumptions, and after a lengthy derivation,

Mishchenko demonstrates that the bulk scattering properties can
be obtained from the far-field Foldy-Lax form, and in particular
from the scattering dyad

⇐⇒
𝐴(n̂inc, n̂sca). Let us first assume that the

distribution of particle properties 𝜉𝑖 are independent of the particles

position, and compute the average scattering dyad ⟨
⇐⇒
𝐴(n̂inc, n̂sca)⟩ =∫

Ω

⇐⇒
𝐴𝑖 (n̂inc, n̂sca)𝑝 (𝜉𝑖 ) d𝜉𝑖 . Then, note that the Foldy-Lax equation

for clusters of particles (27), we derived above has the same form as
the original Foldy-Lax equation (8). Thus, by the same derivation
followed by Mishchenko we get to an equivalent RTE based on the
scattering dyad of clusters.

Computing the scattering parameters. By taking the vectors of the
parallel and perpendicular polarization 𝜽̂ inc and 𝝓̂inc of the incident
field as shown in Figure 2 (right), and equivalently for the scat-
tered field 𝜽̂ sca and 𝝓̂

sca, we can compute the polarized scattering
components 𝑺𝜃 and 𝑺𝜙 from the average cluster’s scattering dyad
⟨
⇐⇒
𝐴𝐶 (n̂inc, n̂sca)⟩ as

𝑺𝜃 (n̂inc, n̂sca) = 𝜽̂
sca · ⟨

⇐⇒
𝐴𝐶 (n̂inc, n̂sca)⟩ · 𝜽̂

inc
,

𝑺𝜙 (n̂inc, n̂sca) = 𝝓̂
sca · ⟨

⇐⇒
𝐴𝐶 (n̂inc, n̂sca)⟩ · 𝝓̂

inc
. (28)

Then, based on the two scattering components 𝑺𝜃 and 𝑺𝜙 , we can
obtain the optical parameters of the medium as

𝜅t (n̂inc) = 4𝜋ℜ
[
𝑺 (n̂inc, n̂inc)

𝑘2
𝑖

]
, (29)

𝜅s (n̂inc) =
∫
S2

|𝑺𝜃 (n̂inc, n̂sca) |2 + |𝑺𝜙 (n̂inc, n̂sca) |2

2𝑘21
dn̂sca,

(30)

𝑓p (n̂inc, n̂sca) =
|𝑺𝜃 (n̂inc, n̂sca) |2 + |𝑺𝜙 (n̂inc, n̂sca) |2

2𝑘21𝜅s
, (31)

with 𝑺 (n̂inc, n̂inc) = 𝑺𝜙 (n̂inc, n̂inc) = 𝑺𝜃 (n̂inc, n̂inc), ℜ[𝑥] returning
the real part of a complex number 𝑥 , and S2 the unit sphere of
directions. Lastly, assuming a uniform distribution of clusters, we
can compute the extinction and scattering coefficients as

𝜎t (n̂inc) = 𝜅t (n̂inc)
𝜌

⟨𝑁 cls⟩
, (32)

𝜎s (n̂inc) = 𝜅s (n̂inc)
𝜌

⟨𝑁 cls⟩
, (33)

with 𝜌 the number of particles per differential volume, and ⟨𝑁 cls⟩ the
average number of particles per cluster. Note that the optical prop-
erties defined in Equations (29)–(33) are directionally dependent, so
they are general and can represent both isotropic and anisotropic
media.

4.2 Relationship with Independent Scattering
Most previous works rendering light transport in media [Novák
et al. 2018] build on the assumption of independent scattering—that
is, particles are in their respective far-field region. It is easy to verify
that this is a special case of Equation (15) with 𝑁 cls = 1, causing the
scattering dyad

⇐⇒
𝐴𝐶 of Equation (26) to reduce to

⇐⇒
𝐴𝐶 (n̂inc, n̂sca) =

⇐⇒
𝐴𝑖 (n̂inc, n̂sca) =

𝑔(n̂sca) ·
⇐⇒
𝑇𝑖 · 𝑔(n̂inc)
4𝜋 , (34)

which encodes the scattered field in the far-field region of a particle
when excited by an incident unit-amplitude planar field. The Lorenz-
Mie theory [van der Hulst 1981] provides closed-form expressions

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: September 2021.



Beyond Mie Theory: Systematic Computation of Bulk Scattering Parameters based on Microphysical Wave Optics • 7

Fig. 4. Comparison against Lorenz-Mie theory: We compare the extinction
and scattering cross sections computed with our method for𝑁 cls = 1 against
the results obtained using Lorenz-Mie theory. As in Figure 3, our results
show perfect agreement.

for
⇐⇒
𝐴𝑖 (n̂inc, n̂sca) for spheres and cylinders, while numerical solu-

tions of
⇐⇒
𝐴𝑖 (n̂inc, n̂sca) have been proposed for scatterers of arbitrary

shapes via, for example, the T-matrix method [Waterman 1965], or
more recently based on the BEM for cylindrical fibers [Xia et al.
2020]. Our work is therefore a generalization of these works to
particles in the near field.

5 COMPUTING THE BULK SCATTERING PARAMETERS
We now detail our numerical computations of the scattering dyad
⇐⇒
𝐴𝐶 (n̂inc, n̂sca) of Equation (26), which in turn determines the bulk
scattering parameters following Equations (29)–(33). These bulk
scattering parameters can be directly used in any renderer support-
ing participating media [Novák et al. 2018] using tabulated phase
function and cross sections.
Computing

⇐⇒
𝐴𝐶 (n̂inc, n̂sca) essentially boils down to solving the

time-harmonic Maxwell equations for an incident unit-amplitude
planar field with direction n̂inc. While several different methods ex-
ist for that purpose (see §16 of [Mishchenko 2014] for an overview),
we opt for the superposition T-matrix method [Mackowski and
Mishchenko 1996] that has been demonstrated efficient for mod-
erately large 𝑁 cls, can handle scatterers with arbitrary geometry,
and is based on the principles of the Foldy-Lax equations, making it
particularly appealing for our work.
In practice, we use the open-source CUDA-based CELES solver

[Egel et al. 2017], which implements the superposition T-matrix
method proposed by Mackowski and Mishchenko [2011] for spheri-
cal or randomly rotated particles. In our implementation, we focus
on clusters of spherical particles. Since the Lorenz-Mie theory also
assumes spherical particles, this allows us to directly compare our
results with those computed using the Lorenz-Mie theory (see Fig-
ures 3 and 4). Note that the T-matrix method does not introduce
assumptions on the size of particles but, similar to Lorenz-Mie the-
ory, larger particles result in more expensive computations.
To compute the average scattering dyad ⟨

⇐⇒
𝐴𝐶 (n̂inc, n̂sca)⟩, we

average the scattered field of several random realizations of the
clusters (each of which obtained by randomly sampling the po-
sition of the particles inside the cluster’s bounding sphere). As

we will demonstrate in §6, we use a wide array of distributions
including particles uniformly distributed over the volume of the
cluster, positively-correlated particles following Shaw et al. [2002],
negatively-correlated particles using Poisson sampling of the sphere,
and anisotropic distributions by uniformly sampling the particles
on a oriented 2D disk.
Lastly, we represent the resulting phase function as well as the

extinction and scattering cross sections as tabulated (i.e., piecewise
constant) functions that can be used for rendering.

6 EXPERIMENTS
In this section, we first validate our technique by comparing bulk
scattering parameters computed with our method and the Lorenz-
Mie theory (§6.1). Then, we apply our technique described in §4
and §5 to compute bulk scattering parameters for a wide range of
participating media (§6.2).

6.1 Validation
To validate our technique, we compare computed bulk scattering
parameters provided by our implementation and MiePlot [Laven
2011], a free software based on the Lorenz-Mie theory. We focus
on the configuration where a cluster contains only one (spherical)
particle as this is a fundamental assumption of the Lorenz-Mie
theory.

In Figure 3, we visualize computed single-scattering phase func-
tions at the wavelength 600 nm with three particle radii (300, 600,
and 900 nm). We set the refractive index of the particle to 1.5 + 0.1i.
Additionally, we show in Figure 4 the corresponding extinction and
scattering cross sections 𝜅t and 𝜅s given by Equations (29) and (30),
respectively. In all these examples, our computed scattering param-
eters match those predicted by the Lorenz-Mie theory perfectly.

6.2 Main Results
We now demonstrate the versatility of our technique by computing
bulk scattering parameters for a range of participating media. In all
cases, we set the cluster size to roughly the same order of magnitude
of the coherence area of sunlight. This allows us to assume an
incident planar field. Further, we assume that particles outside the
cluster might receive different incident field. Then, light scattering
outside the cluster is assumed to be sufficiently far away, following
the central assumption of RTT.
By default, we set the refractive indices of the particles and the

embedding media to 1.33 + 0i and 1, respectively. Please see Table 2
for the performance statistics of our experiments.

Isotropic media. In computer graphics, volumetric light transport
effects are typically simulated using isotropic mediawhere the extinc-
tion and scattering coefficients 𝜎t, 𝜎s are directionally independent,
and the single-scattering phase function 𝑓p is formulated as a 1D
function on the angle between the incident and scattered directions.

Our technique can produce bulk scattering parameters for isotropic
media using particles distributed in radially symmetric densities.
We conduct a few ablation studies to demonstrate how different par-
ticle arrangements in a cluster affect the resulting parameters. We
use a wavelength of 700 nm for all these studies and represent the
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Sparse Intermediate Dense 𝑎𝑖=400nm 𝑎𝑖=500nm 𝑎𝑖=600nm 𝑁 cls = 20 𝑁 cls = 100 𝑁 cls = 500

(a) Varying particle spacing (b) Varying particle radii (c) Varying particle counts

Fig. 5. Comparison of the resulting (normalized) phase function for different cluster parameters, for a planar incident field at 𝜆 = 700nm. Unless mentioned
otherwise, the clusters have 𝑁 cls = 100 particles, and each particle has radius 𝑎𝑖 = 500nm. For each phase function, we vary: (a) The distance between particles
within the cluster; (b) The particle size 𝑎𝑖 ; and (c) The number of particles 𝑁 cls. We visualize all phase functions in logarithmic scale to better show their
low-magnitude regions.

1D phase functions as tabulated (i.e., piecewise constant) functions
using 180 equal-sized bins.
In our first study, we use a cluster of 100 particles with radii

500 nm. Then, we vary the distances between particles (by using
bounding spheres with different sizes and distributing particles
uniformly in these spheres). As shown in Figure 5 (a), the closer the
particles are to each other, the more forward the resulting phase
function is. This is expected: With sparsely distributed particles, it
is simpler for light to pass straightly through.
Our second ablation study examines the effect of particle size.

With 100 uniformly distributed particles, we apply our technique to
three particle sizes (𝑎𝑖= 400, 500, and 600 nm). As shown in Figure 5
(b), as we increase the particles radius, the phase function becomes
more forward and increases its frequency. This agrees with the
behaviour of single particles predicted by Lorenz-Mie theory.
In our third study, we vary the number of particles in a cluster

while keeping the particle size fixed to 𝑎𝑖=500 nm. Figure 5 (c) shows
that as we increase the number of particles, the phase function gets
more forward and of higher-frequency, in a behaviour somewhat
correlated with the particles size. This is the result of the increasing
number of diffractive elements on the cluster, that instead of making
scattering more diffuse (as predicted by geometric optics) increases
its forward frequency.
Lastly, we show in Figure 6 monochrome renderings using bulk

scattering parameters obtained with varying combinations of parti-
cle count and radius.

Multi-spectral results. Since our technique is derived using mi-
crophysical wave optics, it allows systematic generation of multi-
spectral parameters based on a single (monochrome) configuration
of particle cluster.
To demonstrate this, we use a configuration of 100 uniformly

distributed particles (per cluster) with radius 500 nm and compute

bulk scattering parameters at 50 wavelengths ranging from 400 nm
to 700 nm. In Figure 7, we visualize the computed phase functions
at five wavelengths as well as multi-spectral renderings of a back-
lit thin slab. The smooth changes in scattering parameters across
wavelength have resulted in a characteristic rainbow-like effect.
When using the single-particle configuration (with identical overall
particle density per unit volume), the rainbow effect is missing.

Figure 8 shows renderings of the Lucy model using these scatter-
ing parameters.

Varying particle refractive indices. We show in Figure 9 how the
refractive index of the particles affects the final appearance. In this
example, all four media is formed by clusters of 100 particles with
radii 500 nm. We keep the imaginary part of refractive index to 0
and vary the real part from 1.2 to 1.5. Increasing the refractive index
leads to a stronger backward scattering, which makes the rendered
object less transparent.

Varying particle sizes. Our technique supports clusters comprised
of particles with varying sizes. In Figure 10, we illustrate how varia-
tions of particle sizes affects macro-scale object appearance. Specifi-
cally, on the top of this figure, we show bulk phase functions of four
isotropic media generated using our method with 𝑁 cls = 100 and
uniformly distributed particles. Further, the particle sizes per cluster
follow normal distributions with the mean 300 nm and standard
deviations varying from 20 nm to 200 nm.
The bottom of Figure 10 shows renderings of the Lucy model

using the four media. We can see that, when the variation in particle
sizes increases, the object tends to appear overall more opaque (i.e.,
with lower light transmition).

Anisotropic media. Anisotropic media allow the extinction and
scattering coefficients 𝜎t, 𝜎s to be directionally dependent, and have
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Fig. 6. Renderings of homogeneous Lucy models at 𝜆 = 700nm. The bulk
scattering parameters are computed using our method with different com-
binations of particle radius 𝑎𝑖 and per-cluster particle count 𝑁 cls.

full 4D phase functions 𝑓p. Previously, although the scattering param-
eters of anisotropic media can be devised based on the microflake
models [Jakob et al. 2010; Heitz et al. 2015], equivalences of the
Lorenz-Mie theory, to our knowledge, have been lacking.

By using anisotropic particle distributions, our technique can gen-
erate bulk scattering parameters for anisotropic media. To demon-
strate this, we use a configuration where the cluster contains 𝑁 cls =
100 particles following an anisotropic Gaussian distribution, as il-
lustrated in Figure 11 (a). We tabulate the extinction and scattering
cross sections using the latitude-longitude parameterization with
a resolution of 180 × 360. Due to the symmetry of the disc, the
resulting phase function 𝑓p is three-dimensional, and we tabulated
it with the resolution 90 × 180 × 360.

In Figure 11 (b), we visualize slices of the computed single-scattering
phase function 𝑓p with two incident directions n̂inc. In Figure 12, we
show renderings of the Lucy model with three (spatially invariant)
orientations.

Ours

Single-particle
(a) Phase function (b) Thin-slab rendering

Fig. 7. Multi-spectral results: (a) visualizations of phase functions; (b)
corresponding multi-spectral renderings of a thin slab lit by a small area
light from behind. Results on the top are generated using a cluster of 100
particles with radii 500nm. Results on the bottom are obtained using a
conventional single-particle setting. We used identical particle counts per
differential volume for both configurations.

(a) Multi. (b) 400nm (c) 550nm (d) 700nm

Fig. 8. (a) Multi-spectral rendering of a homogeneous Lucy model using
identical bulk scattering parameters as the top row of Figure 7. (b–d) Mono-
chrome renderings of the same model at three wavelengths.

Correlated particles. In Figure 13, we demonstrate the effect of
particles correlation within the cluster, by analyzing particles dis-
tributed using both negative (Poisson sampled) and positive cor-
relation [Jarabo et al. 2018]. We compare the effect of introducing
microscopic correlation on media where the clusters position is it-
self correlated, compared with uniformly distributed particles inside
the clusters. These two levels of correlation have significant effect
on the final appearance of the translucent materials.
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𝑚 = 1.2 + 0i 𝑚 = 1.3 + 0i 𝑚 = 1.4 + 0i 𝑚 = 1.5 + 0i

Fig. 9. Effect of the refractive index of the particles. The top of this figure
visualizes the bulk phase functions of clusters of 100 particles with radii
500nm. The refractive index of the particles range from 𝑚 = 1.2 + 0i to
1.5 + 0i suspended in the vacuum. The bottom figures show renderings of
the Lucy model for media with each refractive index.

Table 2. Performance statistics for our simulation. The numbers are col-
lected using a workstation equipped with an Intel i7-6800K six-core CPU
and an Nvidia GTX 1080 GPU. Timings are given for each random realization
of the particles within the cluster; to compute the average scattering dyad
we average 50 realizations.

𝑁 cls 𝑓p res. time
Regular (Fig. 6) 1–500 180 × 360 3–16s
Multi-spectral (Fig. 8) 100 180 × 360 × 50 35m
Varying particle sizes (Fig. 10) 100 180 × 360 7–108s
Anisotropic (Fig. 12) 100 180 × 360 × 90 13m
Correlated (Fig. 13) 100 180 × 360 98s

7 DISCUSSION AND CONCLUSION
Limitations and future work. While taking into account the effect

of the near-field on clusters, our work is still based on the RTT.
Therefore it relies on the far-field approximation to represent a
scattering dyad useful for rendering. Therefore, while we can han-
dle near- and far-field scattering, we cannot accurately model the
scattering in the intermediate region, which we treat as the far field.
Using more accurate representations, that capture the effects at such
mid-field region could further enhance the generality of our theory
and, thus, is an interesting future topic. This would however require
exploring an alternative light transport framework beyond the RTT.
Recent light transport models tracking light coherence [Steinberg

N(300, 20) nm N(300, 60) nm N(300, 100) nm N(300, 200) nm

Fig. 10. Our technique supports clusters comprised of particles with vary-
ing sizes. The top of this figure visualizes bulk phase functions of four media
generated with𝑁 cls = 100 and uniformly distributed particles. Further, sizes
of particles in each cluster are normally distributed with the same mean
(300nm) but varying standard deviations (20nm, 60nm, 100nm, and 200nm).
The bottom of this figure shows renderings of the Lucy model made of the
four media, respectively.

and Yan 2021] are a promising framework for modeling such mid-
field scattering.

Our current implementation requires precomputing the bulk opti-
cal properties of the media. This limits the applicability of our work
to media with homogeneous particle statistical properties. Find-
ing faster approximations for our scattering functions, in the same
spirit as the geometric optics approximation for Lorenz-Mie the-
ory [Glantschnig and Chen 1981], is an interesting future research.
An efficient analytic approximation would also be very useful for
fitting real-world measurements as well as in inverse scattering ap-
plications, which are now limited by the expensive precomputation.
Finally, while our theory is fully general in terms of particles

shape, composition, and distribution, our implementation is cur-
rently limited in practice to clusters of spherical particles. Allowing
arbitrary particle shapes by using an alternative implementation of
the T-matrix method would further improve the versatility of our
technique.

Conclusion. In this paper, we introduce a new technique to sys-
tematically compute bulk scattering parameters for participating
media. Built upon first principles of light transport (i.e., Maxwell
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Forward Backward

(a) Incident direction (b) Phase function slice

Fig. 11. Visualizations of slices 𝑓p (n̂inc, ·) of a phase function for two inci-
dent directions n̂inc at 𝜆 = 700nm. This phase function is computed using a
configuration where 100 particles with radii 300nm follow an anisotropic
Gaussian distribution.

electromagnetism), our technique models a translucent material
as clusters of particles randomly distributed in embedding media.
Our work generalizes the widely-used Lorenz-Mie theory for rig-
orously deriving optical properties of scattering media, and can be
readily used in any radiative-based light transport simulator. We
have demonstrated the significant effects of departing from the un-
derlying assumptions of Lorenz-Mie theory, and the versatility for
modeling a wide range of participating media by modifying the
arrangement of particles within each cluster, including isotropic,
anisotropic, and correlated media.
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