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Abstract
The field of computational photography, and in particular the design and implementation of coded apertures, has
yielded impressive results in the last years. Among their applications lies defocus deblurring, in which we focus
in this paper. Following the approach of previous works, we obtain near-optimal coded apertures using a genetic
algorithm and an existing quality metric. We perform both synthetic and real experiments, testing the performance
of the apertures along the dimensions of depth, size and shape. We additionally explore non-binary apertures,
usually overlooked in the literature, and perform a comparative analysis with their binary counterparts.

Categories and Subject Descriptors (according to ACM CCS): I.4.3 [Image Processing and Computer Vision]:
Enhancement—Sharpening and deblurring

1. Introduction

In the past few years, the field of computational photogra-
phy has yielded spectacular advances in the imaging process.
The main idea is to code the light information in novel ways
before it reaches the sensor, in order to decode it later and
obtain an improved, enhanced or extended representation of
the scene being captured. Several different strategies exist,
from structured lighting, to new optical devices, to modu-
lated apertures or shutters. In this work we focus on coded
apertures. These are masks obtained by means of computa-
tional algorithms which, placed at the camera lens, encode
the defocus blur in order to better preserve high frequencies
in the original image. They can be seen as an array of multi-
ple ideal pinhole apertures (with infinite depth and no chro-
matic aberration), whose location on the 2D mask is deter-
mined computationally. Decoding the overlap of all pinhole
images yields the final image.

Some existing works interpret the resulting coded blur at-
tempting to recover depth from defocus. Given the nature of
the blur as explained by simple geometrical optics, this ap-
proach imposes a multi-layered representation of the scene
being depicted. While there is plenty of interesting on-going
research in that direction, in this paper we limit ourselves to
the problem of defocus deblurring: we aim to obtain good
coded apertures that allow us to recover a sharp image from
its blurred original version. We follow standard approaches
and pose the imaging process as a convolution between the
original scene being captured and the blur kernel (plus a

noise function). In principle, this would lead to a blind de-
convolution problem, given that the such blur kernel is usu-
ally not known. Assuming no motion blur nor camera shake,
this kernel is reduced to the point spread function of the op-
tical system. Traditional circular apertures, however, have a
very poor response in the frequency domain: not only do
they lose energy at high frequencies, but they exhibit mul-
tiple zero-crossings as well; it is thus impossible to recover
information at such frequencies during deconvolution.

In this paper, we present several coded apertures with bet-
ter frequency response, which allow us to recover informa-
tion apparently lost to blur during the capture process. We
follow the approach of previous works, and rely on the aver-
age power spectra of natural images to guide our optimiza-
tion process, which is in turn performed by means of genetic
algorithms. Once the coded apertures have been obtained,
we show the feasibility of our results by printing them out
on a photomask sheet and inserting them in an off-the-shelf
camera. The captured blurred images are then deconvolved
using Wiener deconvolution. We analyze the performance
of our apertures as a function of shape, depth and size. We
additionally modify our genetic algorithm to allow for non-
binary masks, and perform a comparative analysis with their
binary counterparts.

2. Previous Work

Coded apertures have been traditionally used in astronomy,
coding the direction of incoming rays as an alternative to fo-



cusing imaging techniques [ItZ92]. Possibly the most popu-
lar patterns were the MURA patterns (Modified Uniformly
Redundant Array) [GF89]. Veeraraghavan et al. [VRA∗07]
showed how a 4D light field can be reconstructed from 2D
sensor information by means of a coded mask. Placed at the
lens, the authors achieve refocusing of images at full resolu-
tion, provided the scene being captured contains only Lam-
bertian objects. Nayar and Mitsunaga [NM00], extended the
dynamic range capabilities of the imaging system by placing
a mask of spatially varying transmittance next to the sensor,
and then mapping the captured information to high dynamic
range.

Other works have proposed different coded apertures for
defocus deblurring or depth approximation. To restore a
blurred image, the apertures are designed to have a broad-
band frequency response, along with none (or distinguish-
able) zero-crossings in the Fourier domain. Hiura and Mat-
suyama [HM98] proposed a four-pinhole coded aperture to
approximate the depth of the scene, along with a deblurred
version of it, although their system required multiple images.
Liang et al. [LLW∗08] use a similar approach, combining
tens of images captured with Hadamard-based coded pat-
terns. Levin et al. [LFDF07] attempted to achieve all-focus
and depth recovery simultaneously, relying on image statis-
tics to design an optimal aperture. Depth recovery is limited
to a multi-layered representation of the scene. Last, the idea
of spatial coding of the mask was transferred to the tempo-
ral domain by applying a coded exposure aimed at motion
deblurring [RAT06].

In [ZLN09], the authors obtained paired apertures to re-
cover both depth and focus from two images, using both ge-
netic algorithms and gradient descent search. Last, a frame-
work for evaluating coded apertures was recently presented
[ZN09], based on the quality of the resulting deblurring and
taking into account natural image statistics. Near-optimal
apertures are obtained by means of a genetic algorithm. In
this paper we follow the same approach, and analyze the ob-
tained apertures along the size, depth and shape dimensions.
Additionally, we extend our study by analyzing non-binary
masks.

3. Optimal Aperture Design

Image blur due to defocus is caused by the loss of high fre-
quency content when capturing the image. The capture pro-
cess can be modeled as a convolution between the scene be-
ing captured and the point spread function (PSF) of the cam-
era, which is defined as the response of the optical system of
the camera to an impulse input in the spatial domain. Thus:

f = kd ∗ f0 +η (1)

where f0 is the real scene being photographed, f is the cap-
tured image, kd is the PSF and η accounts for the noise in-
troduced in the imaging process. Subscript d accounts for
depth, since the PSF varies with depth or, more specifically,

with the degree of defocus (strictly speaking, it also varies
spatially with the position within the image). We will assume
that the noise follows a Gaussian distribution of zero mean
and standard deviation denoted by σ, N(0,σ2). By means of
deconvolution, an approximation f̂0 to the original sharp im-
age can be obtained. Note that in the frequency domain the
convolution becomes a multiplication, and Equation 1 can
be written as:

F = Kd ·F0 +ζ (2)

As Figure 1 shows, the PSF, and thus the response of the
camera, is characterized by the pattern of the aperture. The
response to a coded aperture can also be seen in Figure 2,
which depicts the calibration array used in our physical ex-
periments. Since, as mentioned, blur is caused by the loss of
information at certain frequencies, the response of an aper-
ture is better analyzed in the frequency domain. Figure 3
depicts a 1D slice of the power spectrum of different aper-
ture patterns, computed by Fourier transforming the aperture
(note that the y-axis is log-scale). This shows the magnitude
of the response for different frequencies. Circular apertures
exhibit zero crossings at several frequencies, and thus in-
formation at those frequencies is lost during the imaging
process. Optimal apertures for deblurring therefore seek a
smooth power spectrum, while keeping the transmitted en-
ergy as high as possible.

Figure 1: Left: Images of the response to a point light of
different apertures (from top to bottom: focused aperture,
defocused circular aperture -defocus depth = 90 cm- and
one of our coded apertures -defocus depth = 90 cm-, shown
in the right). A LED and black cardboard were used to create
the point light. Right: Canon EF 50mm f/1.8 lens with one of
our coded apertures.

3.1. Aperture Quality Metric

Devising an aperture pattern whose frequency response is
optimal can be done in different manners. In this paper we
follow the approach of Zhou and Nayar [ZN09], which states
the quality of an aperture pattern based on the quality of the
deconvolution and on a prior model of natural images. In the
following we briefly describe the metric and its foundation,
and we refer the reader to the original paper for additional
details.



Figure 2: Our poor man’s LED array used to calibrate the
PSFs of the apertures. Top: Focused image. Bottom: Image
taken with one of our coded apertures at a defocus depth of
70 cm.

Figure 3: Power spectra comparison of different apertures
with respect to a circular aperture (blue). Left: Our aper-
tures for resolution 11×11 and noise levels σ = 0.001 (red)
and σ = 0.005 (green). Right: Our apertures for resolution
7×7, binary (red) and non-binary (green).

The quality metric chosen is the expectation of the L2
distance between the deconvolved image F̂0 and the ground
truth image F0 with respect to ζ, which we want to be mini-
mal (note that we have removed the subscript d for the sake
of simplicity):

R(K,F0,C) = E
ζ

[
∥∥F̂0−F0

∥∥2
] (3)

The recovered image F̂0 can be obtained using Wiener de-
convolution as follows:

F̂0 =
F · K̄

|K|2 + |C|2
(4)

where K̄ is the complex conjugate of K, and |K|2 = K · K̄.
|C|2 = C · C̄ is the matrix of noise-to-signal power ratios
(NSR) of the additive noise. Substituting this formulation in

Equation 3 we have:

R(K,F0,C) = E
ζ

[

∥∥∥∥∥ζ · K̄−F0 · |C|2

|K|2 + |C|2

∥∥∥∥∥
2

] (5)

and assuming that ζ follows a Gaussian distribution with
zero mean, ζ∼ N(0,σ2):

R(K,F0,C) =

∥∥∥∥∥ σ · K̄
|K|2 + |C|2

∥∥∥∥∥
2

+

∥∥∥∥∥ F0 · |C|2

|K|2 + |C|2

∥∥∥∥∥
2

(6)

Using a model of natural images as a prior, the expectation
of |F0|2 is

A(ξ) =
∫

F0

|F0(ξ)|2dµ(F0), (7)

where ξ represents frequency and A can be approximated by
averaging the power spectra of a number of natural images.
This way the dependance on F0, which is unknown, is cir-
cumpassed, obtaining:

R(K,C) =

∥∥∥∥∥ σ · K̄
|K|2 + |C|2

∥∥∥∥∥
2

+

∥∥∥∥∥ A1/2 · |C|2

|K|2 + |C|2

∥∥∥∥∥
2

(8)

The value of |C|2 which, for a given K, minimizes the value
of R is |C|2 = σ

2/A. Substituting this value in Equation 8
yields the sought quality metric, which depends only on the
Fourier transform of the aperture pattern K, the estimated
image noise σ and the average power spectra of natural im-
ages A:

R(K) =
σ

2

|K|2 +σ2/A
(9)

3.2. Aperture Pattern Optimization

Once we have a way of evaluating a certain aperture with
Equation 9, an optimization method can be used to obtain
the minimum value of R(K) over the range of possible aper-
tures. The space of possible apertures is infinite, since the
aperture can be of different resolutions, and each pixel can
in principle take infinite values. A priori the solution is lim-
ited only by physical restrictions, i.e. apertures with negative
values are not realizable in practice and resolution is limited
by the printing process. Resolution is additionally limited by
diffraction effects, which appear as the size of the pixels in
the aperture gets smaller, and hinder the performance of the
aperture. Transmissivity is an additional issue to be taken
into account when designing an aperture. Coded apertures
typically have lower transmission rates than their circular
counterparts, and the use of a longer exposure time to obtain
an equivalent brightness to that of the circular aperture can
cause other problems such as motion blur. This metric does
not consider transmissivity when evaluating an aperture, but
still it yields satisfactory results for the majority of cases.



4. Experimental Setup and Results

In order to search for the best aperture pattern we have im-
plemented a genetic algorithm which uses the quality met-
ric described in Section 3 as evaluation function, resembling
Zhou and Nayar’s work. The algorithm has the following
scheme:

• Initialization. The initial population of N possible aper-
tures is randomly generated. An aperture is defined by
a vector of L elements, each element corresponding to a
pixel.
• Selection. The quality metric of Equation 9 is used to eval-

uate the N possible apertures. They are then sorted accord-
ing to this value and the best M apertures are selected.
• Reproduction. The selected M apertures, by means of

crossover and mutation, populate the next generation.
Crossover implies randomly selecting two apertures, du-
plicating them, and exchanging corresponding bits be-
tween them with probability c1, obtaining two new aper-
tures. Mutation ensures diversity by modifying each bit of
the aperture with probability c2.
• Termination. The two previous steps of reproduction and

selection are repeated sequentially until the termination
condition is met. We use a maximum number of genera-
tions G as stopping condition.

We have tested apertures of two different resolutions,
11× 11 and 7× 7 pixels (that is, L = 121 and L = 49, re-
spectively), while the rest of the parameters we used for the
algorithm are N = 4000, M = 400, G = 80, c1 = 0.2 and
c2 = 0.05. Since the optimal aperture depends on the noise
of the image we have run the algorithm for different noise
levels and tested the resulting apertures. Apertures designed
for σ values of 0.001 and 0.005 proved to work best for a
wide variety of images. Regarding the possible values the
pixels in the aperture can take, we have experimented both
with binary and non-binary apertures, but at this first stage
we show results just for binary apertures. Results for non-
binary apertures are discussed in Section 5.

From all the obtained apertures we have chosen three, and
a conventional circular aperture, to perform our experiments.
We chose the ones which we saw performed best over a wide
variety of images. Two of them are 11× 11 apertures de-
signed for noise levels of σ = 0.001 and σ = 0.005, and the
third one is a 7× 7 aperture designed for σ = 0.005. The
three of them are depicted in Figure 4. For these apertures,
we have performed both a synthetic validation and a valida-
tion with physical printed-out apertures.

The synthetic validation is done by simulating the cap-
ture process convolving a sharp image f0 with the aperture
(plus noise) as in Equation 1, and subsequently using Wiener
deconvolution to recover a deblurred image f̂0. The quality
of the recovered image is measured using the L2 norm. We
did this for 10 images and computed the average L2 value.
Results are shown in Table 1 for the tested apertures. The
minimum error is obtained by the 7× 7 aperture and the

two 11× 11 apertures perform very similarly, there is no
significant difference, while, as expected, the circular aper-
ture yields worse results. Another measure of the quality of

σ = 0.001 σ = 0.005 σ=0.005(7x7) Circular

Figure 4: Apertures used in our experiments.

0.001 0.005 0.005 (7x7) circular
L2 norm 1.28 1.27 0.88 1.62

Table 1: Results of the L2 norm for different apertures. The
table shows percentages with respect to the maximum error.

the apertures is given by their power spectrum, depicted in
Figure 3. The 11× 11 apertures eliminate less frequencies
than the circular aperture, and the 7×7 aperture has an even
smoother spectrum, which correlates with the L2 values pre-
viously obtained.

Experiments in real scenarios have been performed using
a Canon EOS 550D with a Canon EF 50mm f/1.8 II lens
shown (unmounted) in Figure 5. Our apertures were printed
in a high resolution photomask sheet (see Figure 6 left) and
inserted into the lens. The first step is the calibration of the

Figure 5: Camera and lens used in our experiments.

response of the camera (PSF) at different depths. We also
calibrated the PSF for different image positions, since the re-
sponse is spatially varying across the image plane. To do this
we used an array of LEDs which we made as close as pos-
sible to point light sources with the aid of black cardboard.
Figure 2 shows a close-up of the LED array. We locked the
focus at 1 m and took an initial focused image, followed by
images of the LEDs every 10 cm and until a distance of 2
m, thus having PSFs for defocus depths from 10 to 100 cm.
For each position within the image and each depth, the ac-
tual cropped image of the LED served us as PSF, after ap-
propriate thresholding of surrounding values which contain
residual light. The resulting PSFs for three depths and the
four tested apertures are shown in Figure 6 (right).



Figure 6: Left: Photomask sheet showing some of the apertures used. Right: PSFs at three different defocus depths (40, 70 and
90 cm) for the four apertures depicted in Figure 4.

Figure 7: Focused ground truth scenes.

Once calibration had been performed, images of three
scenes at different depths were taken with each of the se-
lected apertures. These images are then deblurred using the
corresponding calibrated PSF by means of Wiener deconvo-
lution. We used a NSR of 0.001 when deconvolving, since it
gave the best results. The same exposure time and aperture
was used for all the apertures, which results in some images
being darker than others. Figure 7 shows the ground truth fo-
cused images of the three scenes, whereas Figure 8 depicts
the defocused image captured with each aperture and the re-
covered image for the three different depths. Insets show
the corresponding PSF. For all cases our apertures clearly
outperform the circular one. The results of the other three
apertures are fairly similar, with the 7×7 aperture revealing
more detail than the others in some regions. However, we
believe this may be due to the fact that because of its smaller
size, it offers a wider depth of field, thus causing less defocus
blur for the same settings as the others. The ringing artifacts
which can be observed are probably partially caused by inac-
curacies of the calibrated PSFs. Additionally, and although
very minor, some of the apertures exhibit slight diffraction
effects which can also be the cause of artifacts due to mis-
alignments of the color channels [VRA∗07].

5. Study of Non-Binary Apertures

Binary codes have the initial advantage of reducing the
search space, and are usually preferred in the existing liter-
ature. However, there is no principled motivation to restrict
the aperture pixel values to either black or white, other than
apparent simplicity. A notable exception in this regard is the
work by Veeraraghavan and colleagues [VRA∗07], where
the authors report the advantages of continuous-valued aper-

tures, found by gradient descent optimization, over their bi-
nary counterparts. In this section we perform an analysis of
non-binary apertures focused on our specific context and op-
timization method; in order to limit the search space of the
genetic algorithm, we restrict the set of possible values to
{0,0.5,1}.

We have studied the quality of the resulting aperture and
the computation time for different executions of the genetic
algorithm for the cases of binary and non-binary apertures.
We have varied both the initial population N and the number
of generations G, yielding seven different combinations of
these two parameters. For each combination of parameters
we have performed three executions of the algorithm, plot-
ting the average values. For all the figures in this section,
the x-axis shows the initial population N and the number of
generations G of each set of executions. The number of se-
lected apertures, M, is always a 10% of the initial population,
the crossover probability c1 is set to 0.2 and the probabil-
ity of mutation c2 is 0.05. All the calculated apertures have
a resolution of 7× 7. The reason of this is two-fold; first,
computational cost of the algorithm is significantly reduced,
and second, our previous experiments have shown that 7×7
apertures yield results on par with (or better than) 11× 11
apertures. The value of σ (noise level) is set to 0.005 for all
executions.

Figure 9 shows the average value of the quality metric to
which the algorithm converged. Non-binary apertures tend
to converge to slightly lower values of R(K), potentially in-
dicating a better performance. However, as expected, it also
takes longer for non-binary apertures to converge to a stable
value of R(K). The execution times consumed until conver-



σ = 0.001 σ = 0.005

Circular σ = 0.005 (7×7)

σ = 0.001 σ = 0.005

Circular σ = 0.005 (7×7)

σ = 0.001 σ = 0.005

Circular σ = 0.005 (7×7)

Figure 8: From top to bottom, each of the three scenes have been captured at a defocus depth of 40, 70 and 90 cm, respectively.
For each pair of images, the left image shows the captured defocused image and the right image the recovered one. Insets depict
the PSF of the aperture used in each case.

gence when running the algorithm on an Intel Core i7 930
@ 2.80GHz are shown in Figure 10.

For all the optimal apertures obtained in the different ex-

ecutions we have performed a synthetic evaluation similar
to the one described in Section 4. We applied Equation 1 to
an image f0 of the ISO 12233 resolution chart, to simulate



Figure 9: Average value of the quality metric R(K) for bi-
nary and non-binary apertures and for different initial pa-
rameters of the genetic algorithm.

Figure 10: Average value of the time until convergence (in
seconds) for binary and non-binary apertures and for differ-
ent initial parameters of the genetic algorithm.

the capture process with the different apertures; we then per-
formed Wiener deconvolution to recover the estimated sharp
image f̂0. We have computed the L2 norm between f̂0 and
f0 and plotted the results in Figure 11. The non-binary aper-
tures tend to behave better, the global tendency thus correlat-
ing with that of the quality metric R(K). Nevertheless, this
graphs shows how lower values of R(K) not necessarily yield
lower values of the L2 norm. This can be explained by the
fact that R(K) is devised to give optimal performance over
the entire space of natural images and thus may not be op-
timal for an image in particular [ZN09]. Figure 12 shows
the image of the chart after convolution, and the recovered
image for the best binary and non-binary apertures we ob-
tained. For these two apertures we also plotted the power
spectrum, shown in Figure 3 (right). Although both spectra
are similar, overall the non-binary aperture has a more favor-
able response.

To further test the performance of binary vs. non-binary
apertures, we printed out these two best apertures (shown
in the insets of Figure 12) and captured real images with
them. We have calibrated their PSF at different depths as
explained in Section 4, and captured a set of images which
we then have recovered using Wiener deconvolution. Figure

Figure 11: Average value of the L2 norm for binary and
non-binary apertures and for different initial parameters of
the genetic algorithm. Values show percentage with respect
to the maximum error.

13 shows the results for a defocus depth of 70 cm and 90 cm.
The corresponding ground truth focused scenes are shown in
Figure 7. We can see how even though both recover detail to
a great extent, the non-binary aperture performs better.

Figure 12: Top left: Defocused image of the ISO 12233 chart
obtained using Equation 1 with the aperture shown in the
inset in the right as convolution kernel. The aperture is the
optimal binary aperture we obtained. Top right: Image re-
covered using Wiener deconvolution. Bottom row: Same for
the optimal non-binary aperture, shown in the inset.

6. Conclusions and Future Work

In this paper we have introduced a comprehensive study of
coded apertures for defocus deblurring, and implemented the
full pipeline: from the genetic algorithms to obtain the codes,
to their physical realization, and finally to the actual deblur-
ring of out-of-focus images. We have analyzed the perfor-



Binary Non-binary

Figure 13: For each pair of images, the left image shows the captured defocused image and the right image the deblurred
image. Insets depict the PSF used in each case. Defocus depths are 70 cm (top scene) and 90 cm (bottom scene). The color of
the images differs from those in Figure 8; please note that this is due to the fact that illumination conditions during the capture
process were different, and not to the coded apertures itselves.

mance of the different patterns along several dimensions,
namely shape, depth and size. For instance, we found that
7×7 apertures are on par with, or outperform, higher resolu-
tion ones, which tend to be more computationally expensive
to obtain. Additionally, we have extended previous works in
the literature by lifting the binary restriction in our patterns,
and allowing the genetic algorithms to add mid-gray to the
binary (black or white) set of possible values. Although our
results are not conclusive and more research needs to be car-
ried out, initial findings suggest that there may be value in
exploring continuous apertures, where several gray levels are
allowed.

The inherent reduced light transmission when placing a
modulating mask at the lens is also a factor that we would
like to investigate further. By adding a term that maximizes
transmission, we may come up with more efficient apertures.
Similarly, finding coded apertures that optimize both defo-
cus deblurring and depth is still an open problem where the
community has barely scratched the surface. Last, we be-
lieve that the results shown in this paper show the viabil-
ity and potential of this line of research, and we hope to
raise awareness of this exciting field, fostering the creation
of more research groups and potential collaborations.
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