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Abstract The phenomena of birefringency may be ob-
served when light arrives at an anisotropic crystal sur-
face and refracts through it, causing the incident light
ray to split into two rays; these become polarized in mu-
tually orthogonal directions, and two images are formed.
The principal goal of this paper is the study of the di-
rectional issues involved in the behavior of light when
refracting through a homogeneous, non participating
medium, including both isotropic and anisotropic me-
dia (uniaxial and, for the first time, biaxial). The pa-
per focuses on formulating and solving the non-linear
algebraic system that is obtained when the refraction
process is simulated using the geometric model of Huy-
gens. The main contribution focuses on the case of bi-
axial media. In the case of uniaxial media, we rely on
symbolic calculus techniques to formulate and solve the
problem.
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Universidad de Zaragoza. Maŕıa de Luna, 1. 50018 Zaragoza

Spain
Tel.: +34-976762355
Fax: +34-976761914

E-mail: platorre@unizar.es

Francisco J. Seron
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1 Introduction

The phenomena of birefringency may be observed when
light arrives at an anisotropic crystal surface and re-
fracts through it. Using the ray model for light propaga-
tion, birefringency causes two main effects: first, the in-
cident light ray splits into two rays that go through the
crystal at two different velocities and with two different
directions, and which, with the exception of some spe-
cific cases, form two images (see Figure 1); and second,
those two rays become polarized in mutually orthogo-
nal directions, even if the incident beam is incoherent.
The velocities, propagation directions and polarization
-and consequently the distribution of energy between
both rays- depend on the optical properties of the crys-
tal and on the propagation direction of the incident ray.
Birefringency also depends on wavelength, and in some
cases, may cause some color changes that depend on
the crystal’s orientation (pleochroism or polychroism)
[3].

The non-linear nature of the problem leads to a
number of challenging issues when it comes to efficiently
and robustly solving this problem. Our paper proposes
a novel method to solve this biaxial case, describing
the optical properties of crystals and the phenomena of
birefringency. We also present a set of original methods
based on the geometrical construction of the Huygens
principle [18] to calculate the solution to ray directions
that go through isotropic, uniaxial and biaxial crystals.

The solution for the biaxial media case does not
have a closed form. Solving the system has only been
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possible by using numerical techniques, which have un-
expectedly unveiled a surprisingly rich space of numer-
ical possibilities. For the solution of the non-linear sys-
tems a damped Newton method and continuation tech-
niques are used. With these a lookup table is obtained
for each of the crystal’s surfaces, given their principal
refraction indices and the orientations of the interface
planes. Each table contains a dense set of directions of
refracted rays as a function of the direction of the inci-
dent ray. The initial guess for the iterations is obtained
from the previous solutions by way of double-pass sam-
pling. Given a direction of incidence, the path of the
refracted rays is obtained from the four closest direc-
tions in the table.

Finally, we show some images describing our method,
and then enumerate the problems that still remain open.
We do not attempt to simulate all real materials show-
ing birefringency, but show how to simulate the effect
from a more academic perspective instead; however, the
results shown have been obtained with a range of in-
dices of refraction similar to those found in real mate-
rials such as calcite.

Fig. 1 Light rays split into two by a calcite crystal and forming
two images.

2 Previous work

Anisotropic crystals, and particularly birefringency, have
received little attention in computer graphics. They have
been more extensively studied in the physical optics
field [3] [13], although always in a very limited man-
ner; solutions only exist for uniaxial crystals or, in the
biaxial case, for very specific directions applicable for
instance to polarizers.

In [16], the authors describe methods for perform-
ing polarization ray tracing through birefringent me-
dia, although they leave the more difficult biaxial case

out. The main contribution, made by Tannenbaum et
al. [19], discussed coherency and polarization and pre-
sented a matrix based formulation1. They solved the
propagation through an uniaxial crystal and established
a set of formulas for calculating those uniaxial propaga-
tion directions. Another important contribution comes
from Guy et al. [10]. They present an algorithm for
rendering faceted colored gemstones in real time, us-
ing graphics hardware. Their solution is based on sev-
eral controlled approximations of the physical phenom-
ena involved when light enters a stone, which allows
an implementation based on recent hardware develop-
ments. Most crystal-structured materials are optically
anisotropic. As in the previously mentioned papers, this
work by Guy et al. solves light propagation only through
uniaxial crystals, leaving the biaxial case as future work.

More recently, Weidlich and Wilkie [21] derive the
complete set of formulas needed to generate physically
plausible images of uniaxial crystals. The work con-
tains the complete derivation of the Fresnel coefficients
for birefringent transparent materials, as well as for
the direction cosines of the extraordinary ray and the
Muller matrices necessary to describe polarization ef-
fects. This allows computing the interaction of light
with such crystals in a form that is useable by graph-
ics applications, especially if a polarization-aware ren-
dering system is being used. However, as the authors
state, extending this work to biaxial materials becomes
almost intractable, given that the mathematical sim-
plifications used for the derivation of the formulas are
no longer applicable. Whilst only a few biaxial crystals
exhibit macroscopically noticeable birefringency effects,
it is still a challenge to simulate and trace the second
extraordinary ray, using the geometric model of Huy-
gens. As we will show, this actually unveils a surprising
variety of numerical situations, which were unexpected
in advance.

3 Theoretical background

For the sake of clarity, we introduce here the basics of
Huygens principle, which will be used and explained in
more detail in successive sections, as well as a formal
description of the birefringency effect. A complete table
with all the necessary definitions can be seen in table
1.

1 This citation refers to both the two-page version that ap-
peared in the proceedings of SIGGRAPH 94 and the extended

version, which appeared on the CD but not in the proceedings
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Symbol Definition

ε dielectric permitivity

n refraction index

vc velocity of light in vacuum

vx, vy , vz velocity of wave surface

vo velocity of ordinary ray (uniaxic)

ve velocity of extraordinary ray (uniaxic)

θi, θs angles of incident and refracted rays

(x, y, z) point on the wave surface

ri incident ray direction

rs normal of plane of incidence

ro ordinary ray direction (uniaxial)

re extraordinary ray direction (uniaxial)

r1, r2 extraordinary ray directions (biaxial)

O,B points of the wave train located on the plane
of incidence

P equation of plane tangent to a surface

F equation of the wave surface

T point of tangency

Table 1 Table of symbols

3.1 Basics of the Huygens principle

Huygens principle can be used to describe effects of
wave propagation such as refraction and diffraction. It
establishes that each point of an advancing wavefront
produces a new disturbance that becomes the source of
a new train of waves; so, the whole advancing wave will
form a new wavefront formed by the sum of all these
secondary waves.

Let us assume a plane wavefront traveling through
an isotropic medium, where its speed is perpendicular
to this wavefront. When it arrives to an interface with
a different medium (see Figure 2), the first point in
the wavefront hitting such interface (point O in Figure
2) begins to vibrate at a different speed, transmitting
its vibration to the neighboring points in the second
medium. The points from O to B will be reached by the
wavefront in successive instants ti; therefore, the waves
originated at points belonging to OB will also produce
vibrations in the second medium in successive instants
ti. So finally the new plane wavefront (assuming that
the second medium is also isotropic) is formed. Both
speed vectors and the normal to the interface plane of
separation lay on the same plane.

When the second medium is anisotropic, the wave-
front formed by every oscillating point is not a sphere
but a two-folded surface as it will be explained later.
This means that the wave coming from the first me-
dia is split in two different ones, each of them traveling
with different speed and direction. Note that in this
case speed and normal do not lay on the same plane,
depending on the crystal type and orientation instead.

Fig. 2 Explanation of the Huygens principle.

3.2 Refraction on crystals. Birefringency.

Crystalline structures are characterized by the ordered
arrangement of atoms in a basic cell that repeats in
a three dimensional lattice [9]. This specific arrange-
ment is responsible for the crystal’s optical properties,
with the inherent symmetries determining its optical
isotropy or anisotropy (see Table 2). The lattice de-
termines a reference system that follows the directions
of three intersecting edges, the relative dimensions of
which are a, b and c. The relative orientation of axes
are given by three angles, α, β and γ.

The behavior of light in a medium may be estab-
lished by using Maxwell’s laws for electromagnetic fields
[17]. When light arrives onto the surface separating two
dielectric media, part of the energy reflects onto the first
one, and the remaining energy either goes through the
second one or is absorbed. From the point of view of
electromagnetism, anisotropy is explained by the direc-
tional dependence of the dielectric permittivity tensor
ε, which is a simple scalar constant in isotropic media.
It may be stated that there is one system of reference
in which the permittivity tensor is diagonal; the three
mutually orthogonal axes of this orientation are called
principal axes of the crystal. For simplicity, this orien-
tation will be used throughout this paper. If two of the
components of ε are equal, the crystal is uniaxial; if
εx 6= εy 6= εz, the crystal is biaxial (see table 2).

The anisotropic propagation may be modeled using
the crystal’s wave surface. This is defined as the enve-
lope of all the points hit by the wavefront at a given
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Table 2 Crystalographic systems, unit cell shape, type of anisotropy and dielectric - crystallographic axis orientation.

time. In this case, the dimensions of the principal axes
of the wave surface coincide with the principal velocities
[3].

vx = vc/
√
εx; vy = vc/

√
εy; vz = vc/

√
εz (1)

where vc is the velocity of light in vacuum.
In an isotropic medium, the wave surface is a sphere;

in anisotropic media, a two-fold surface. In biaxial me-
dia, the wave surface equations are fourth-order poly-
nomials with even powers only; that is, the surface is
symmetrical with respect to the origin. Both surface
folds intersect only at four symmetrical points, as can
be seen in Figure 3. Note that this intersection does not
yield a curve, but only the four points.

Fig. 3 Wave surface for a biaxial medium. Inner fold (left), ver-
tical section (center) and outer fold (right)

The wave surface equation is [3]:

r2(v2
xx

2 + v2
yy

2 + v2
zz

2)

−[v2
x(v2

y + v2
z)x2 + v2

y(v2
z + v2

x)y2 + v2
z(v2

x + v2
y)z2]

+v2
xv

2
yv

2
z = 0 (2)

where r2 = x2 + y2 + z2.
In uniaxial crystals, two of the velocities are equal.

The equation may be factorized, resulting in

(r2 − v2
0)[v2

0(x2 + y2) + v2
zz

2 − v2
0v

2
z ] = 0 (3)

where vo = vx = vy.

Fig. 4 Positive uniaxial medium wave surface. Inner fold (left),

vertical section (center) and outer fold (right)

The first factor corresponds to a spherical fold, and
the second to an ellipsoid. One of its principal sections
is a circle that coincides with the intersection of both
folds. If the spherical fold is located inside the ellip-
soid, the uniaxial crystal is called negative, and positive
if the ellipsoid is located inside the sphere. (see Fig-
ures 4 and 5). In all equations, (x, y, z) represents a
surface point. For a complete and detailed description
of all the phenomena involved, we refer the reader to
the work by Born and Wolf [3], chapter XV (Optics of
Crystals). The authors also describe some applications
of anisotropic crystals in optics, such as Nicol prisms
and compensators.
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Fig. 5 Negative uniaxial medium wave surface. Inner fold (left),

vertical section (center) and outer fold (right)

4 Calculating propagation directions

Our work focuses on formulating and solving the non-
linear algebraic system that describes the refraction
process for anisotropic media, as explained by the model
of Huygens. We will present for the first time a solution
for the biaxial case, relying on numerical techniques.

In order to make a complete and clear description
of the method, a brief consideration on the isotropic -
isotropic media refraction will be presented first. The
paper presents and solves the non-linear algebraic sys-
tem obtained. In the case of uniaxial media the solu-
tion has been obtained following symbolic calculus tech-
niques. This is the problem already solved by [19], but
it is included here for the sake of clarity and complete-
ness of this paper. Finally, our main contribution, which
is the general isotropic - biaxial anisotropic refraction
will be introduced. The solution of the resulting sys-
tem has only been possible by using numerical tech-
niques (damped Newton methods), coupled with pre-
computed lookup tables to efficiently find initial values.
The numerical techniques have unexpectedly unveiled
a surprisingly rich space of numerical possibilities.

One major difference between light propagation in
isotropic and anisotropic crystals is that energy and
wave propagation directions are not coincident (with
the exception of some specific directions). Instead, they
depend on the incident ray direction and on the orienta-
tion of the crystal’s surface with respect to the crystal’s
principal axis. In this paper we obtain the ray velocities,
from which wave normals can easily be calculated.

Our method consists of obtaining a lookup table for
each crystal surface, given its principal refraction in-
dices and interface plane orientations. Each table con-
tains a dense set of directions of refracted rays as a func-
tion of direction of the incident ray, calculated using a
damped Newton method and continuation techniques.
The initial guess for the iterations is obtained from pre-
vious solutions, with double-pass sampling. Given a di-
rection of incidence, the path of refracted rays is cal-
culated by bilinear interpolation from the four closest
directions in the table.

4.1 Isotropic - isotropic refraction

When an incident plane wave (see Figure 6) train ar-
rives at a point O on the separation surface between two
media at a given time t, this point begins to vibrate,
transmitting its vibration to the neighboring points in
the second medium. The points from O to B will be
hit by the wave in successive instants. After a certain
time lapse, the point A1 in the original wavefront will
hit point B. The distance OB may be calculated from
d(OB) = v1/sinθi, where v1 = 1/n1 is the transmission
velocity of the incident ray, the inverse of the refraction
index n1.

Fig. 6 Geometrical method for calculating propagation direc-
tion: Isotropic - isotropic refraction. OA1 and A2B represent the

wavefronts before and after refraction.

At that time (say t = 1 sec.) the swept surface of
each secondary emitter will be a hemisphere of radius
v2, its wave surface. For the same reason, the waves
originated in points from O to B will produce hemi-
spheric surfaces with decreasing radius, from v2 to 0.
The resulting total wavefront is again the swept surface
of all hemispheres, which results in a plane, the orien-
tation of which will be normal to the refracted rays.

The refracted ray may be calculated from Figure 6.
According to the Snell’s law of refraction:

sin θi

sin θrefr
=
v1
v2

=
n2

n1
(4)

where θi and θrefr are the angles that incident and re-
fracted rays form, respectively, with regard to the sur-
face normal. v1, v2, n1 and n2 are, respectively, the
incident and refracted ray velocities and refraction in-
dices. Incident, reflected and refracted rays, as well as
the surface normal, all lay in the same plane.

4.2 Isotropic - uniaxial anisotropic refraction

The second medium’s wave surface now has two folds,
so the incident plane wave will split into two refracted
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Fig. 7 Geometrical method for calculating propagation directions. Left: Isotropic - uniaxial anisotropic refraction. The incident ray

ri and the ordinary ray r0 belong to the plane of incidence. Right: Isotropic - biaxial anisotropic refraction. Note that in this case
the refracted rays r1 r2 does not belong to the plane of incidence. For both cases, the separation between the two folds has been

exaggerated. (after [19]).

plane waves (see Figure 7, left). The equations of these
planes may be calculated by applying the conditions of
field continuity to Maxwell laws.

Directions and velocities of refracted rays now de-
pend on the following data:

– The incident ray direction ri(xi, yi, zi) and veloc-
ity vi = 1/n0. The first medium is supposed to be
isotropic.

– The interface surface orientation, which is supposed
to be a plane (specified by its normal rs(xs, ys, zs))
and the incidence plane normal ri′(xi

′yi
′, zi
′) (cal-

culated as ri′ = ri × rs).
– The principal wave velocities of the second medium
v0 and vz.

The orientation of the second medium’s wave sur-
face is fixed. Its center coincides with the coordinates
origin, and the largest principal axis is made to coincide
with the OZ axis (see Figure 7, left). Different orien-
tations may be reduced to this one by applying the
appropriate rotations to all vectors.

Following a method similar to the isotropic - isotropic
case, the incident plane wave train arriving at point O
on the separation surface in a given time t will hit point
B t+∆t later. The direction and velocity of propagation
of the ray which corresponds to the spherical fold (or-
dinary ray, vo) can be calculated directly using Snell’s
law. The remaining ray, (extraordinary ray, ve) can be
calculated from the ellipsoidal fold ellipsoidal fold as
follows:

1. Determination of B(xB , yB , zB): point B may be
calculated from the three following conditions:

– B is located on the incidence plane
– B is located on the interface plane (the separa-

tion plane between the two media)
– d(OB) = vi/ sin θi

2. Determination of the tangent plane to the
ellipsoidal fold: The equation of a plane tangent
to a surface is:

P ≡
(
∂F

∂x

)
T

(x− xT ) +
(
∂F

∂y

)
T

(y − yT )

+
(
∂F

∂z

)
T

(z − zT ) = 0 (5)

where F ≡ x2/v2
Z + y2/v2

Z + z2/v2
0 = 1 is the equa-

tion of the wave surface’s elliptical fold, and
T (xT , yT , zT ) is the point of tangency.

3. System description: Planes which
– are perpendicular to the incidence plane
– are tangent to the wave surface
– contain point B

are the refracted plane waves; the vectors OTo and
OT determine the velocities of both rays.
Formulating the system results in:
xTx

′
i

v2
z

+
yT y

′
i

v2
z

+
zT z

′
i

v2
0

= 0 (6)

x2
T

v2
z

+
y2

T

v2
z

+
z2
T

v2
0

= 1 (7)

xTxB

v2
z

+
yT yB

v2
z

+
zT zB

v2
0

− 1 = 0 (8)

where the preceding calculations have been taken
into account. As opposed to the rest of cases pre-
sented in this paper, this case can be solved analyt-
ically (see Appendix A).
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4. Determination of the velocity of the extraor-
dinary ray: Once the tangency point has been cal-
culated, the extraordinary ray velocity is:

ve =
√
x2

T + y2
T + z2

T (9)

The direction of propagation may be calculated by
normalizing the ve vector.

The method shown above cannot be applied if the
direction of incidence coincides with the direction nor-
mal to the interface plane. In this particular case, the
planes needed to obtain the refracted plane waves must
obey the following conditions:

– The planes are parallel to the interface plane (and
perpendicular to the direction of incidence)

– The planes are tangent to the wave surface
– The planes contain point B

Solutions may be easily derived from these condi-
tions, resulting in:

xT =
1
2
λv2

zxi yT = 1
2λv

2
zyi zT =

1
2
λv2

0zi

x2
T

v2
z

+ y2
T

v2
z

+ z2
T

v2
0

= 1 (10)

for the extraordinary ray, where λ can take any value.
From these, it easily follows:

xT =
v2

zxi√
v2

z(x2
i + y2

i ) + v2
0z

2
i

yT =
v2

zyi√
v2

z(x2
i + y2

i ) + v2
0z

2
i

zT =
v2
0zi√

v2
z(x2

i + y2
i ) + v2

0z
2
i

(11)

The ordinary ray follows the direction of incidence.

4.3 Isotropic - biaxial anisotropic refraction

The second medium wave surface again has two folds,
so the incident plane wave will split into two refracted
plane waves in a similar way to isotropic - uniaxial re-
fraction. The equations of these planes may again be
calculated by applying the conditions of field continu-
ity to Maxwell laws (see Figure 7, right). Figure 3 shows
the wave surface for this case; its intersection with the
interface surface is different and the refracted rays r1
and r2 do not belong to the plane of incidence.

We will follow a similar reasoning as for the isotropic
- uniaxial case, although the equations obtained in this
case are quite different. The incident plane wave train
arriving onto point O on the separation surface at an
instant t will hit the point B one second later. The
planes which

– are perpendicular to the plane of incidence
– are tangent to the wave surface
– contain point B

are the refracted plane waves; the vectors OT1 and OT2

determine the velocity of both rays.
The wave equation cannot be factorized as in the

previous case, so the calculation of both refracted rays
cannot be separated. The system to be solved (again
using Maple), after factorizing and ordering under de-
creasing powers is shown in Figure 8, and it is the equiv-
alent to the system defined by Equations 6, 7 and 8.

Directions and velocities of refracted rays, as well as
the calculation of point B, are derived from the same
data as the isotropic - uniaxial case. The orientation of
the second medium’s wave surface also coincides with
the prior case, with the principal wave velocities now
being vx, vy and vz. Different orientations may be re-
duced to this one by applying the adequate rotations
to all vectors.

Fig. 8 System to be solved for the isotropic - biaxial anisotropic
refraction. Note that it is equivalent to the system defined by

equations 6, 7 and 8.

4.4 Obtaining ray velocities

No analytical solution has yet been found for the system
shown in Figure 8. Previous works could only provide an
analytical solution for the uniaxial problem, leaving the
biaxial problem as unsolved future work. These facts
lead us to consider necessary the use of a numerical
method to solve the system for the biaxial case. Given
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also the strong non-linearity of the problem, the most
common numerical methods will fail to converge to a
solution.

Fig. 9 The four solutions obtained in uniaxial and biaxial cases.
Light arrives to interface surface with direction ri. Directions r1
and r2 corresponds to physically correct solutions for refracted

rays, while r3 and r4 corresponds to solutions back to first media
and must be rejected.

A first look at the geometric model (Figure 7, right)
shows that, except for one particular direction, four so-
lutions must be expected for each direction of incidence.
Two of them are located in the first medium and must
be rejected; the other two represent the two tangent
points, one on each fold of the wave surface. Figure 9
sketches in a simpler way the election of the two solu-
tions corresponding to the real refracted rays.

Let F (x) = 0 be the system to solve, and x the vec-
tor of solutions. Iterative numerical methods for nonlin-
ear systems solving [20] [15] have a particularly favor-
able convergence rate, but for many systems this rapid
convergence is only achieved if the initial iterate is cho-
sen from a small subset of the region of attraction. This
subset is generally located close to the desired solution
x. Thus, in connection with the practical solution of the
system, it is most crucial to find an appropriate initial
value x(0); this is especially true in this case, because
of the proximity of both solutions.

To give an idea of the problem’s complexity, given
a method (e.g. Newton), a set of data (light velocity in
the first medium, the three principal velocities in the
second medium and the normal direction to interface
plane plus direction of incidence) and an initial solution
guess, one of the following cases may occur:

1. The correct solution on the desired fold is found
2. A correct solution on the other fold is found, and

must be discarded

3. A geometrically correct but physically impossible
solution is found, and must be discarded

4. The iteration diverges, and no solution is found
5. Moreover, since floating point numbers do not con-

stitute a continuum, the iteration may fall within a
stationary or periodic sequence before achieving the
required approximation to the solution, and fail.

Since the method is deterministic, the only way to
(try to) find a solution is to repeat the whole iteration
with a different initial guess.

Using Newton’s method for solving the system and
different initial value techniques, a comprehensive set
of attempts has been carried out. The goal was to find
a suitable seed which could be derived from data for
each given direction of incidence (using Snell’s law of
refraction to calculate the three theoretical directions of
refraction corresponding to isotropic media with index
refraction values equal to the three principal biaxial
indices). Different linear combinations of these three
theoretical directions of refraction were tested as seeds,
resulting in failures in different regions.

These attempts suggest that all the methods for cal-
culating the paths of refracted rays for a given set of
data -following an independent way- fail. If no adequate
initial approximation for starting an iterative method
is available, then a homotopy or continuation method
often leads to a sufficiently accurate approximation. For
that purpose a parameter inherent to the problem (in
our case the direction of incidence) is used to trans-
form a non-linear system of n equations into a family
of problems H(r, w) = 0, whose solutions r∗(w) de-
pend continuously on w under certain conditions [5]. In
this case the problem has a one-dimensional manifold
(a space curve) as its set of solutions.

In order to obtain a discrete solution, the problem
can be subdivided in a sequence of non-linear equations
H(r, wk) = 0 with k = 1, 2...K and can be solved se-
quentially, where the solution r(k) of the kth system of
non-linear equations can be used as the initial iterate
for solving the (k+ 1)th system. Then r(k) is a suitable
initial approximation for the iterative determination of
r(k + 1).

Therefore, the next logical step is to build -in an
orderly way- a lookup table containing a dense enough
set of solutions corresponding to a uniformly spaced
set of possible directions of incidence for each given set
of data. Every preceding solution is used as the ini-
tial guess for calculating each refracted ray path for
the next direction of incidence; this ensures the close-
ness of initial guesses. The initial guess for each series
of directions of incidence is obtained from the solution
corresponding to the normal incidence.
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A method for visualizing the results has also been
developed (see Visualization techniques in Section 5.1).
One of these images can be seen in Figure 10, showing
mathematically correct solutions (in red) and periodic
sequence failures (in green). Regions where no correct
solutions were found appear in grey (the wave surface
fold).

Fig. 10 Distribution of solutions using the Newton method. Up-
per left, solutions on outer fold coming from initial guesses on in-

ner fold. Upper Right, solutions on inner fold coming from initial

guesses on outer fold. Lower left, solutions on inner fold coming
from initial guesses on inner fold. Lower right, solutions on outer

fold coming from initial guesses on outer fold. Observe the solu-

tions misplaced on the upper hemispace, which correspond to the
first (isotropic) medium.

Subsequent attempts have been carried out to try
to build these tables with Newton’s method and other
different methods for traversing and filling in the table,
resulting in better but still incomplete results. Better
results were obtained using a double - pass method,
filling in the table from the zenith to low angles of inci-
dence and vice versa for each given azimuthal direction
(Figure 11). Initial guesses are calculated using the val-
ues provided by Snell’s law of refraction with minimum
and maximum principal values of v; this choice ensures
some proximity to the inner and outer fold solutions,
and yields good results for the regions chosen to begin
each series: those close to normal incidence (zenith) and
those with low angles of incidence.

The Damped Newton method has been used to solve
the remaining problems. We choose this method since it
provides the best compromise between reliability (con-

Fig. 11 Distribution of solutions using the Newton method with

double - pass initial guess determination.

vergence to the desired solution) and a relative low in-
crease in programming complexity. We found that other
variants of the conventional Newton method that fo-
cus on efficiency (such as the Modified, or the Quasi-
Newton methods) did not compensate the additional
programming burden, whilst the Relaxed Newton me-
thod does not help near critical points [8]. The Damped
Newton Algorithm is central to many computer prob-
lems, such as vision (structure from motion, illumina-
tion based reconstruction, non-rigid model tracking) [4],
image restoration [22], simulation [11], fractal modeling
[7] or even computational economics [6]. This method
extends the region of attraction of the zeros, which are
very small in some regions when using the normal New-
ton method. As opposed to the usual Newton step, the
iteration:

x(k+1) := x(k) + λk∆x
(k), 0 < λk < 1, (12)

is executed, where the damping factors λk are chosen
in such a way that:

‖ F (x(k+1)) ‖<‖ F (x(k)) ‖, k = 0, 1, 2, . . . , (13)

for some norm ‖ ‖. If F ′(x) is regular at x(k) then for a
sufficiently small λk the inequality (13) must hold [20]
[15] [14].

Therefore, the following steps must be carried out
to implement the method: first, definition of a norm
that allows to choose the damping factors λk in such
a way that the convergence indicated in equation 13 is
guaranteed; second, a strategy for calculation has to be
designed; and third, each λk must be determined, tak-
ing into account the different cases in which problems
may arise.

The method has been implemented as follows (for
a full description of the implementation the reader can
refer to Appendix B): given a set of data -principal crys-
tal indices or velocities and interface plane orientation
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with respect to the principal axes- the system is re-
oriented in a way that the principal axes coincide with
the axes of the coordinates system (vx < vy < vz)). The
lookup table of solutions is calculated for every 1 deg to
0.5 deg (depending on the relative values of the prin-
cipal refraction indices) in azimuth and zenith angular
directions of incidence and using a double - pass filling
method, similar to the one previously described for the
Newton system solving method.

Given a particular orientation of the crystal and a
direction of incidence, the appropriate transformation
is applied to make orientation coincide with that of the
table, which may be pre-calculated. The four double
solutions corresponding to the nearest directions of in-
cidence are found on the table, and precise solutions are
calculated by bilinear interpolation; precision is guar-
anteed provided that table samples are near enough.
Finally, an inverse transformation is applied to return
the system to its original orientation, and the two re-
fracted directions are used to calculate the path of the
refracted rays. The algorithm scheme is shown in Figure
12, where ExternalGuess and InternalGuess are the
seeds for the external and internal folds respectively.
The calculation of the temporary table ProvTable1 is
similar to ProvTable2, except for the sampling direc-
tion for θ (0 deg to 89.5 deg) and the initial values in
each series.

5 Results

A lookup table has been calculated and a visualization
method for solutions has been developed in order to
test the different methods used for calculation of solu-
tions and initial guess choice (in the case of isotropic
- biaxial refraction). Additionally, sets of images using
similar parameters for the three possible cases (isotropic
- isotropic, isotropic - uniaxial, isotropic biaxial) have
been calculated.

5.1 Description of the tests

Given a crystal that is characterized by its three prin-
cipal refraction indices, a table including the pair of
solutions corresponding to each (sampled) direction of
incidence is needed for each of the crystal’s faces (sym-
metries may reduce the number of tables). Each table
will contain N ×M pairs of solutions, N and M being
the number of samples for the zenith and azimuth an-
gles of incident directions respectively. The calculation
method has been explained in the previous section.

To test the process, a simple experiment has been
designed as follows:

algorithm calculateLookUpTable(vx,vy ,vz ,5φ, 5θ);
begin

calculateProvTable1;

φ := 0;
while φ ≤ 90 do

θ := 89.5;
calculate ExternalGuess and InternalGuess

using Snell’s refraction law;

while θ ≥ 0 do
calculate solution1(φ, θ, ExternalGuess)

using damped Newton;

if solution1 exists then
place solution1 in right octant;

if solution1 is external then

ExternalSol:= solution1
else InternalSol:= solution1

endif

endif;
calculate solution2(φ, θ, InternalGuess)

using damped Newton;
if solution2 exists then

place solution2 in right octant;

if solution2 is external then
ExternalSol:= solution2

else InternalSol:= solution2

endif
endif;

if ExternalSol exists then

ExternalGuess:= ExternalSol
endif;

if InternalSol exists then

InternalGuess:= InternalSol
endif;

save InternalSol and ExternalSol in ProvTable2;

θ := θ −5θ
endwhile;

φ := φ+5φ
endwhile;

put ProvTable1 and ProvTable2 data in LookUpTable

end

Fig. 12 Final method algorithm

– Data and solutions lookup table: The table has
been calculated using the data and obtaining the
results in the following way:
– Refraction indices: In some real-world biax-

ial materials, two of the principal refraction in-
dices are usually quite similar. That results in
very small differences, not allowing a clear com-
parison of this case with uniaxial materials. On
the other hand, real-world materials have rela-
tively high values for all refraction indices. That
means that all the rays coming from a given
medium, such as air, are thus considerably bent,
concentrating in a narrow cone near the direc-
tion of the surface normal. Again, this fact makes
the biaxial phenomena more difficult to observe
than uniaxial phenomena. The values chosen for
our simulation are: First medium, isotropic with
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n = 1.0. Second medium, biaxial, with princi-
pal refraction indices nx = 1.01, ny = 1.06,
nz = 1.15. These relatively low values still be-
long to the range of those found in real crystals,
whilst being different enough to make the effects
more clearly observable.

– Interface plane orientation: Coincident with
the XY plane. This choice has two advantages:
first, azimuth direction sampling is reduced by
half due to symmetry; second, solutions corre-
sponding to normal incidence may be calculated
directly and used as initial guesses to begin the
calculations.

Fig. 13 Diagram of the experiment.

Tables may be calculated in a similar way for any
other orientation. The program has been devel-
oped to allow calculations for this general case.

– Sampling distribution of directions of in-
cidence: the directions of incidence are deter-
mined by two polar angles: azimuth (φ), mea-
sured from the OX axis in the z = 0 plane, and
zenith (θ), measured from the OZ axis.
The directions of incidence have been sampled
at each half degree in the zenith direction and
at each degree in the azimuth direction. Taking
symmetry into account, only an octant is sam-
pled (0o ≤ φ ≤ 90o, 0o ≤ θ ≤ 90o).
In any other case, and depending on symmetry,
the zenith sampling range must extend to two or
four octants corresponding to the first medium.

– Number of iterations: 256. We have empiri-
cally found that, once a suitable numerical method
is found, it converges in a much lesser number of
iterations, so 256 is a safe limit. The color uni-
formity in Figure 14 reflects this fact.

– Solutions: The three components of the tangent
point have been obtained for each solution. Two

additional fields have been included: number of
iterations and type of result; the latter encodes
information about the method used and the va-
lidity and type of convergence.

– Visualization techniques: Different sets of im-
ages have been calculated to visualize and analyze
the results of the different methods tested. These
images display the following information:
– System of reference: The three coordinate axes
XX ′, Y Y ′ and ZZ ′ are drawn in red, green and
blue, respectively.

– Wave surface: The wave surface is drawn in
grey, only in the octant corresponding to refrac-
tion directions.

– Solutions representation: Valid solutions are
visualized as small red spheres; solutions falling
in a periodic iteration are represented as green
spheres; hue varies from lighter to darker green
depending on the number of iterations before be-
coming periodic (0 to 255). Obviously, the solu-
tion is not represented if the iteration diverges.

– Points of view (position): Solutions are found
on both folds of the wave surface, and cannot be
seen in one image only. For that reason, images
are presented in pairs under symmetric points of
view, in such a way that each image shows the
inner or outer fold and solutions.

Fig. 14 Distribution of solutions using Damped Newton
method.

Images obtained following this method help to ex-
plain the behavior of the solving methods:
– If all solutions are drawn (Figure 14), the general

behavior of the method, as well as regions with
problems and validity of solutions (which must
be located on the wave surface) can be observed.

– If only solutions corresponding to a given set of
directions of incidence, e.g. those corresponding
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to a fixed value of φ (Figure 15) are drawn, the
path described by the solutions as the direction
of incidence changes may be observed.

– A particular pair of solutions may also be repre-
sented in order to make a detailed study.

Fig. 15 Solutions corresponding to directions of incidence φ =
5o, φ = 10o and φ = 15o.

5.2 Images

Figure 16 shows a real picture of a calcite uniaxial
crystal, showing the visual deformations caused over
a checkered pattern. The pattern was displayed on a
computer monitor for better visibility of the effect. In
order to visualize the results of the simulations pre-
sented in the paper, and to provide direct comparison
with the real effect shown in Figure 16, two series of
images have been obtained. The first set (Figure 17)
displays three images which correspond to refraction on
isotropic, uniaxial and biaxial crystals. Both refracted

rays receive the same energy (k1 = k2 = 0.5). The
second set (Figure 18) shows three images which cor-
respond to non-uniform energy distribution on uniaxial
and biaxial crystals.

Fig. 16 Deformations caused by a calcite uniaxial crystal over

a checkered pattern.

Both sets of images have been calculated as follows:

– Geometric parameters of the camera and the
scene elements: The camera has been placed on
the ZZ ′ axis, facing the coordinates origin. A check-
ered texture surface has been placed on the XY

plane; the refracting plate has been placed right over
this surface.
The only point light source is placed in the same
position as the camera.

– Rendering: Images have been calculated using a
simplified and adapted ray tracer, with perspective
projection. Aliasing has been reduced using super-
sampling techniques (4 rays/pixel).

– Calculation of directions of refracted rays
– Biaxial medium: Directions of refraction are

determined using a lookup table, which has been
pre-calculated following the method and values
previously described.

– Uniaxial medium: Directions of ordinary and
extraordinary rays are determined following the
method previously described. Refraction indices
are set to n = 1.0 (first medium) and n0 =
1.06, ne = 1.15 (second medium).

– Isotropic medium: In order to compare the re-
sults visually, an image has been calculated using
n = 1.0 (first medium) and nr = 1.15 (second
medium).

Once the directions of the refracted rays have been
calculated, the ray paths are followed using stan-
dard ray tracing techniques, thus determining their
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intersection with the checkered texture plane and
returning the resulting RGB color. No other reflec-
tions or internal refractions are included.

– Energy distribution: Energy and polarization is-
sues have been left out of this work. Anyway, to al-
low a simple visualization of the directional behavior
of the phenomena we have assumed a simple approx-
imation where the energy transmitted by each ray
E1 and E2 is obtained as ET = k1E1+k2E2, instead
of using variable Fresnel terms.

5.3 Explanation of images

The following observations may be formulated after com-
paring the images corresponding to isotropic, uniaxial
and biaxial media:

– Double refraction (see Figure 16), which is charac-
teristic of anisotropic media, may be observed on the
areas of separation between red and green squares,
which acquire an intermediate color instead of a
clean separation, as in isotropic media (see Figure
17, center and right and Figure 18).

– Separation between both rays (in biaxial and uniax-
ial media) depends on the zenith angle of incidence,
which is zero in the normal direction of incidence
(see Figure 17, center and right and Figure 18).

– The patterns formed near the corners of the squares
in the biaxial medium is different from the uniaxial
medium (see Figure 17, center and right and Figure
18). This is caused by the difference in the principal
refraction indices (three different values in biaxial,
two in uniaxial).

6 Conclusions and future work

The main goal of this paper is to study the directional
issues of light behavior when ideally refracting from a
homogeneous, non participating and isotropic medium
to a homogeneous, non participating and anisotropic
(uniaxial or biaxial) medium.

The main contribution has focused on formulating
and solving the non-linear algebraic system that is ob-
tained when the refraction process is simulated using
the geometric model of Huygens for anisotropic media,
and solving for the first time the biaxial case. This has
been possible only using numerical techniques. The use
of pre-computed tabled data should save computation
times, thus being a good step towards real time simu-
lation of the birefringency effect. We believe that the
results shown are practical for the computer graphics
community, in that the implementation is robust and
feasible, and computational times acceptable.

We have additionally found a special case (which is
never found in real materials, but can be reproduced in
laboratory settings) when the direction of incidence co-
incides with the direction normal to the interface plane.
For that case the system to solve is different. The so-
lution for that specific case has also been obtained (see
[12]) but it is not included here due to its minimal im-
portance in the simulation of real materials. A second
particular case for biaxial materials is given when the
direction of the propagation of the wave inside the crys-
tal coincides with its optical axis [3]. This case is known
as conical refraction and its specific solution can also be
found in [12].

The last open problems needed to generate physically-
accurate images of biaxial crystals are including light
polarization and taking into account the distribution of
energy through Fresnel coefficients. As stated in [21],
this represents a formidable problem for which no cur-
rent solution has been found in literature.

A Analytical solution of the isotropic - uniaxial
anisotropic refraction

The system given by equations 6, 7 and 8 has two different ana-

lytic solutions:

xT =
v2z
(
2v20y

′
iE16 − y′izBE17 + z′iyBE17

)
2v20(y′ixB − yBx

′
i)E16

yT = −
v2z
(
2v20x

′
iE16 − x′izBE17 + z′ixBE17

)
2v20(y′ixB − yBx

′
i)E16

zT =
E17

2E16
(14)

and

xT =
v2z
(
2v20y

′
iE16 − y′izBE15 + z′iyBE15

)
2v20(y′ixB − yBx

′
i)E16

yT = −
v2z
(
2v20x

′
iE16 − x′izBE15 + z′ixBE15

)
2v20(y′ixB − yBx

′
i)E16

zT =
E15

2E16
(15)

where the following substitutions have been made:

E1 = xByBx
′
iy
′
iv0

2

E2 = y′i
2
xB

2v0
2

E3 = y′i
2
zB

2vz
2

E4 = y′iz
′
izByBvz

2

E5 = z′i
2
yB

2vz
2

E6 = z′i
2
xB

2vz
2

E7 = x′iz
′
ixBzBvz

2

E8 = x′i
2
zB

2vz
2

E9 = yB
2x′i

2
v0

2
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Fig. 17 Final images with uniform energy distribution. From left to right, isotropic, uniaxial and biaxial crystals over a checkered

board. Notice how there is no distortion in the isotropic case, while the distortions caused by the biaxial crystal are more pronounced
and seemingly irregular than in the uniaxial case.

Fig. 18 Final images with non-uniform energy distribution. From left to right, uniaxial (k2 = 0.7), biaxial (k1 = 0.4) and biaxial

(k2 = 0.6)

E10 = −v02
(
xBy

′
i − yBx

′
i

)√
E18 − E6 + vz

4z′i
2 − E5 + 2E4 − E3 − E2 + 2E1

E11 = y′iz
′
iyBvz

2v0
2

E12 = y′i
2
v0

2vz
2zB

E13 = xBx
′
iz
′
ivz

2v0
2

E14 = zBv0
2vz

2x′i
2

E15 = 2E14 − 2E13 + 2E12 − 2E11 − 2E10

E16 = E9 + E8 − 2E7 + E6 + E5 − 2E4 + E3 + E2 − 2E1

E17 = 2E14 − 2E13 + 2E12 − 2E11 + 2E10

E18 = y′i
2
v0

2vz
2 − E9 − E8 + 2E7 + v0

2vz
2x′i

2
(16)

One of the solutions must be rejected, as it corresponds to a

first medium point and has no physical meaning. The right so-
lution may be determined by taking into account the direction

of incidence and the interface plane normal. All the above calcu-
lations have been performed in Maple. This tool also allows to
obtain the C (and other programming languages) code automat-

ically [1] [2].

B Implementation of the numerical method

1. Election of the norm: The function

f =
1

2
F · F (17)

has been chosen due to the fact that the Newton step 4x is
a descent direction for f :

5f · 4x = (F · J) · (−J−1 · F ) = −F · F < 0 (18)

where J is the Jacobian matrix.
2. Calculation strategy: The full Newton step λ = 1 is first

attempted, because once the iteration is close enough to the
solution quadratic convergence is achieved. However, the ad-

equate reduction of f with the proposed step is checked at
each iteration. If not suitable, backtracking along the Newton
direction is performed until an acceptable step is found; this

is guaranteed because the Newton step is always a descent

direction for f . The only occasional failure may be caused by
falling into a local minimum of f , and the only remedy is to

try a different starting point.
3. Election of step λk. It is not sufficient to simply require

that f(xk+1) < f(xk). This criterion can fail to converge to
a minimum of f in one of two ways.
First, a sequence of steps satisfying this criterion with f de-

creasing too slowly relative to the step lengths may appear.
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A way to solve the problem is to require the average rate of
decrease of f to be at least some fraction α of the initial rate

of decrease 5f · 4x:

f(xk+1) ≤ f(xk) + α5 f · (xk+1 − xk) (19)

where 0 < α < 1; a good choice may be α = 10−4.
Second, a sequence where the step lengths are too small rel-

ative to the initial rate of decrease of f may also appear.
The solution now is to require the rate of decrease of f to be

greater than some cutoff value.
4. Backtracking algorithm strategy. For each iteration, a

g(λ) function is defined:

g(λ) ≡ f(xk + λ4 x) (20)

so that

g′(λ) = 5f · 4x (21)

If backtracking is needed, then g is determined with the most

up to date information available, and λ is chosen to minimize

g.
At the starting point g(0) and g′(0) are known. The first step

is always the Newton full step λ = 1 obtaining g(1). If this
step is not acceptable, g(λ) may be obtained from a quadratic

approximation g(λ) ≈ aλ2 + bλ+c. Taking this equation and
its derivative in λ = 0 and the equation in λ = 1, c = g(0),

b = g′(0) and a = g(1)− g(0)− g′(0) are obtained, and

g(λ) ≈ [g(1)− g(0)− g′(0)]λ2 + g′(0)λ+ g(0) (22)

Taking the derivative, a minimum is found when

λ = −
g′(0)

2[g(1)− g(0)− g′(0)]
(23)

It may be shown that λ ' 1
2

for small values of α. Moreover,
λmin = 0.1 is imposed to avoid too small values of λ.
On second and subsequent backtracks (if needed) g may be
calculated as a cubic in λ using the previous and second most

previous values (g(λ1)) and (g(λ2)).
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