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Figure 1: Given an (a) input image and (b) its corresponding depth or equivalent (it could come from a RGB-d depth map or
be estimated by any standard 3D reconstruction algorithm, where darker color means closer distances), our work is focused
on improving this input depth result. We combine the (c) superpixel segmentation with the input depth to obtain our (d) initial
superpixel depth. We use a Markov Random Field to optimize the superpixel depth values assigned to the whole image. In (e)
we can see how we achieve significant improvements with regard to the input depth.

Abstract

This work is focused on assigning a depth label to each pixel in the image. We consider off-the-shelf algorithms
that provide depth information from multiple views or depth information directly obtained from RGB-d sensors.
Both of them are common scenarios of a well studied problem where many times we get incomplete depth informa-
tion. Then, user interaction becomes necessary to finish, improve or correct the solution for certain applications
where accurate and dense depth information for all pixels in the image is needed. This work presents our approach
to improve the depth assigned to each pixel in an automated manner. Our proposed pipeline combines state-of-the
art methods for image superpixel segmentation and energy minimization. Superpixel segmentation reduces com-
plexity and provides more robustness to the labeling decisions. We study how to propagate the depth information to
incomplete or inconsistent regions of the image using a Markov Random Field (MRF) energy minimization frame-
work. We propose and evaluate an energy function and validate it together with the designed pipeline. We present
a quantitative evaluation of our approach with different variations to show the improvements we can obtain. This
is done using a publicly available stereo dataset that provides ground truth information. We show additional qual-
itatively results, with other tests cases and scenarios using different input depth information, where we also obtain
significant improvements on the depth estimation compared to the initial one.

Categories and Subject Descriptors (according to ACM CCS): 1.4.6 [Image Processing and Computer Vision]:
Segmentation—Pixel classification

1. Introduction drawn the attention of researchers world wide, which have
proposed a set of solutions, each of one finding their specific
tradeoff between cost, accuracy, restrictions, user interaction
and estimation time. It is a well studied problem, and there
are several available tools that lead to a reasonable solution.

One very challenging and exciting area in computer vision
is 3D reconstruction from a set of images, since it presents
plenty of industrial applications in diverse areas such as nav-
igation, archaeology, augmented reality... As such, it has
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Specific applications (such as reilumination, augmented re-
ality or image navigation) require an image as input (a view
of the scene) and its per-pixel depth. State-of-the-art recon-
struction algorithms usually do not provide such a dense
depth information for a specific view: regions with no sig-
nificant features or areas with unstructured high frequency
details are very ill-conditioned for such algorithms and lead
to incomplete or noisy depth maps that are unusable. Even
directly using an RGB-depth sensor (such as Kinect) the res-
olution and range of the provided depth map can be very low.

In this work, we tackle the problem of, given an incom-
plete and potentially inaccurate depth estimation and the cor-
responding image for the same view, completing and im-
proving the depth map. Our algorithm is based on reason-
able heuristics related to both geometrical features and im-
age properties, and provide plausible and dense depth maps
that can be used in a wide range of applications.

We present an approach to improve the depth estimation
of a certain scene by combining any kind of rough initial
estimation with a pipeline for pixel-wise labeling optimiza-
tion. This pipeline makes use of superpixel image segmen-
tation and Markov-Random-Field solvers, both of them very
powerful tools frequently used to obtain a robust and con-
sistent labeling in an image. Figure 1 presents a summary of
the main steps of this process. Given an input image and an
input depth estimated for that view, the steps we perform are
the following:

1. Superpixel segmentation. This step groups similar image
pixels to avoid discontinuities in the results from follow-
ing steps.

2. Initial superpixel depth. As a second step, we obtain a
rough depth estimation (or equivalent) with any available
method, which typically will not provide a dense depth
map, and combined it and the superpixel segmentation to
obtain a initial depth labeling.

3. Depth propagation through the graph of connected super-
pixels. We model how the superpixels in the image are
related and connected with a Markov Random Field. We
use this framework to propagate the depth information
across the whole image and improve the initial solution.

Besides detailing these steps, in this paper we analyze
and propose different modifications on this pipeline, and we
evaluate the improvements achieved in depth estimation us-
ing a public dataset with depth ground truth information
(consisting of stereo pair images and disparity maps). We
also show how this pipeline could improve the depth infor-
mation obtained from other sources, such as 3D reconstruc-
tion from multiple views [FP10] or 3D information directly
obtained from RGB-d sensors.

2. Related Work

Markov Random Fields: Many problems in computer vi-
sion and scene understanding can be formulated in terms

of finding the most probable value for a set of variables,
which encode certain property of the scene. This labeling
problem is often formulated by means of a Markov Ran-
dom Field (MRF). In [SZS*08], the authors compare dif-
ferent algorithms to solve MRF optimization problems and
show the results obtained applying them to several computer
vision tasks such as stereo, image stitching, interactive seg-
mentation, and de-noising image pixels. This kind of label-
ing has been frequently used to assign a label to each pixel
in an image [MAJ11], but lately we find more and more
excellent proposals which actually assign a label per pixel
group or superpixel instead of modeling each pixel individ-
ually [XQO09] [TL10] [SBS12].

Superpixel segmentation: Superpixel segmentation is
becoming increasingly popular as the initial pre-processing
step in many computer vision applications, since it allows
to make computations and decisions per superpixel instead
of per pixel. This provides a more robust and efficient set-
ting and has been shown to be very useful to combine im-
age segmentation and object recognition [FVS09], intrinsic
image decomposition [GMLMG12], to improve depth maps
obtained from RGB-d cameras [VABCVG13], depth estima-
tion in a single image [LGK10], or 3D reconstruction re-
sults [MKO09, CDSHD13]. There has been a lot of research
on superpixel image segmentation since the term was estab-
lished in [RMO3].

They can be divided in two families: in the first one,
the detection is based on graphs connecting image pixels
and gradually adding cuts in this graph for example ap-
plying Normalizad Cuts [SMOO], such as one of the early
superpixel extraction methods presented by Fezenszwalb
and Huttenlocher [FHO4]; in the second group, the ap-
proaches gradually grow superpixels starting from an ini-
tial set of candidates, such as the SLIC superpixel detection
method [ASS*10], or the more recent approach for SEEDS
superpixel detection [VABBR™12], which proposes a way
to deform the boundaries from an initial superpixel parti-
tioning. The different approaches have recently been com-
pared [ASS™12] and although the SEEDS was presented to
be faster than SLIC, we use SLIC because it provided a more
homogeneous segmentation in our initial experiments. Fur-
thermore, we are not focused on real time applications.

3D Reconstruction: In relation to our goal of improving
the depth estimation assigned to each pixel in the image, we
find plenty of state-of-the-art implementations of 3D recon-
struction from multiple views [FP10, Wul3] or commercial
software, e.g., Agisoft PhotoScan' and plenty of sensors are
available in the market that provide RGB-depth information
(such as Kinect). However, these approaches still need hu-
man interaction or additional post-processing to achieve a
dense per pixel depth labeling. We find several ways of deal-

T http://www.agisoft.ru/
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(a) Input image (b) Superpixel Slze =

(e) Input depth (disparity)

(f) Superpixel Size =

(c) Superpixel Size = 15 (d) Superplxel Size = 30

(g) Superpixel Size = 15 (h) Superpixel Size = 30

Figure 2: SLIC superpixel size. (b) (c) (d) Different superpixel size values applied on the same input image (a). The superpixel
size also affects the resulting disparity map (f) (g) (h), which will be the initial superpixel depth used in later with the MRF.

ing with this in the literature: some hybrid human-in-the-
loop approaches, where the information from the users is
used to train an automatic system [KCGC11]; or approaches
that try to fully automatically improve and propagate the
depth information to every pixel in the image, such as the
work in [VABCVG13]. This last group is where we can cur-
rently classify our work.

3. Superpixel segmentation

Superpixel image segmentation is becoming increasingly
popular as the key pre-processing step in plenty of computer
vision tasks. This image segmentation provides a convenient
form to compute local image features and reduces the com-
plexity of many image processing tasks. It groups all the
pixels in the image into different regions (covering all the
image) with homogeneous properties, such as color content.
This kind of segmentation assumes for instance that nearby
pixels with similar color belong to the same object and in
our particular problem, they have high probability to be at
the same depth. For all these reasons, we found convenient
to use superpixel segmentation. We assign a depth value to
each superpixel, and in the next steps we propagate depth
labels between superpixels.

In this work, we use the SLIC superpixel extraction algo-
rithm [ASS*10], in particular the implementation provided
in the VLFeat library t. There are some parameters in this
algorithm that will strongly influence the results of our next
labeling and labeling propagation steps:

! VLFeat: An Open and Portable Library of Computer Vision Al-
gorithms, http://www.vlfeat.org
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e Superpixel size: In Figure 2, we can see different ex-
tractions with different superpixel sizes. Using small su-
perpixels leads to larger processing times, while choosing
large superpixels hides the segmentation information in
small and background objects.

e Superpixel regularity: In Figure 3, we can see that if we
decrease the regularity restriction in the superpixels form,
we obtain better superpixels because they fit better to the
object boundaries.

1 0.1 0.01

Figure 3: SLIC superpixels shape. Bottom row: SLIC reg-
ularity parameter. Top row: Superpixel depth according to
the regularity parameter. The lower the regularity restric-
tion, the better the segmentation fits object boundaries.

How these parameters affect the final depth propagation
are detailed in the Section 6.2.

4. Initial superpixel depth

To be able to initialize the next step in our pipeline (the
global optimization of the image labeling using the MRF
formulation), we need an initial superpixel depth, which we
will construct combining the superpixels segmentation and a
given input depth. As previously mentioned, we could obtain
this input depth of an image from multiple sources (using
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multiple-view commercial software or state-of-the-art im-
plementations, using depth and vision sensors or using stereo
estimation), but in general, all of them frequently provide
partially incomplete, sparse or incorrect depth estimation,
i.e., there are pixels without an assigned depth value, what
we will call depth gaps in the following.

Hence, in order to assign a depth value z to each super-
pixel S, we analyze the depth distribution among the pixels
that belong to each superpixel and we choose the median
depth value M, as representative of that superpixel depth S;.
All depth values are normalized € [0, 1]. In cases where no
pixel inside a superpixel S has a valid depth value, the super-
pixel gets assigned a 0 depth value (S; = 0).

Using this simple step that merges the superpixel segmen-
tation with the input depth we already manage to fill some
depth gaps. In Figure 4 we can see an example where we im-
prove the result in the estimated disparity map of an stereo
pair if we combine it with the superpixel segmentation.

(a) Input image

(c) Input depth (disparity) (d) Initial superpixels depth

Figure 4: (a) The original image is segmented in (b) super-
pixels. If we combine the superpixels segmentation with the
input depth (c), disparity map, we obtain an improved dis-
parity estimation (d).

5. Depth propagation as a labeling problem

A Markov Random Field (MRF) provides a convenient way
of modeling a labeling problem. The MRF defines an undi-
rected graph G, where its nodes N represent a set of inde-
pendent variables and its edges V represent the relationships
between neighbor nodes. Given a set of labels L, a labeling
problem consists in assigning to each node p € N a label
| € L. This problem can be formulated with an energy func-
tion E, which determines the total cost of a graph labeled.
The energy equation 1 defines two costs: C(/,) denotes the
cost to assign a particular label / to a node p and C(Ip,ly)
denotes the cost related to two labels connected by an edge.

E=Y Clp)+ Y. Clply) )

peEN {patev
where [, € L denotes the label [ of the node p.

There are several techniques that deal with finding the op-
timal labeling, which minimizes this energy function. In our
work, we use the graph cuts optimization [BVZ01] to re-
solve the energy minimization for Markov Random Fields.
The code used in our experiments was provided by the au-
thors [SZS*08].

The nodes in our MRF graph are the superpixels we have
obtained. To build the connections (edges) in this graph, we
need to determine the neighborhood condition between su-
perpixels. We establish that two superpixels are neighbors
when they share pixels between their borders. The labels as-
signed to each superpixel (node) consist on depth values.
This approach favors that nearby superpixels have similar
depth.

For defining the unary cost function C(l),) there are some
specific aspects we want to take into account. We aim to fa-
vor that a superpixel preserves its initially assigned label zp,
except when this initial label is z, = 0 (no depth information
was found for that superpixel). Even so, this initial depth
value can be incomplete (unlabeled pixels inside the super-
pixel) and noisy (inconsistent values of pixel depths). We
analyze the distribution of pixel depth values within a su-
perpixel, and we consider the accuracy ap as the percentage
of pixels within the superpixel p which have a valid depth
value, and the variance 67 of its pixel depth values. This way,
we measure how reliable are the superpixel original values.
The expressions to calculate ap and o? are:

i i >0
ap— L (’11 ) )
P
62 _ 1 & (Zi*f)z 3)
2

i=1

where z; represents the depth value of pixel i and n), the num-
ber of pixels of the superpixel p. This leads to the following
unary const function:

0 1zp=0
C(ly) =
(o) { wu-ap-(1-6)-(zp—1p)* :2p>0
where wy, € [0,1] is a control factor that leverages the ef-
fect of the unary cost function over the binary cost function.
In Figure 5, we can see its effects in the depth propagation.
‘When we increase the unary weight w,, we reduce the global

blur in the image, but increase the potential number of unla-
beled or wrongly labeled superpixels.

“

With the unary cost function, we want to obtain higher
cost when the label to be assigned is very different than the
depth values that the superpixel originally had, except when
depth value is 0. This value is modulated by the accuracy
and noise of the pixel depths inside the superpixel.

(© The Eurographics Association 2014.
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(@ wy,=0.5

(b) wy = 0.9

Figure 5: Increasing the weight wy, (unary vs. binary weight)
we reduce the global blur in the image, but increase the po-
tential number of unlabeled or wrongly labeled superpixels.

For establishing the binary cost function C(Ip,l;), we con-
sider that connected superpixels have similar depths. How-
ever, we assume that high color differences mark the bound-
aries between different objects that may lay at different
depths. Therefore, we also include a measure about the ac-
tual similarity between two neighbor superpixels in the im-
age (their appearance). Given two neighbor superpixels p
and g, we compare their color histograms in the CIE-lab
space color as follows:

d(HE HE) +d(HE, HE) +d(HD, HY)
dias = ; ®

where H ,1; represents the histogram in the luminance L chan-
nel of the superpixel p (with analogous definitions for the
chrominance channels a and b and superpixel g). The color
histograms are normalized between [0, 1] and the difference
between two histograms d(H|,H>) is defined as:

¥(Hy (i)~ ) - (F) — TT)
d , = — ——
(o) = e by 6) = ) () — )

(©)

We then define the binary cost function as follows:
Clp,lg) = (1 =wa) (1 =dip)(lp—lg)* (D)

where (1 —wy) is the weight of the binary cost function
compared to the unary cost function (w, has been defined
in Equation 4).

With this binary cost equation, we want to encourage
neighbor superpixels have similar labels. To avoid a global
blur in the image, this cost depends on how similar the su-
perpixels look on the image, i.e., the color similarity dj,,
between the superpixels. This way, we manage to keep the
object boundaries, because this similarity is likely to be low
when superpixels belong to completely different parts or ob-
jects. We obtain high cost when two superpixels have differ-
ent labels but they present a similar color distribution.

6. Experiments

This section presents experiments to validate the imple-
mented pipeline, evaluate the proposed formulation for the
energy function and measure the influence of the different

(© The Eurographics Association 2014.

terms and steps in the final solution. Section 6.1 presents a
quantitative and exhaustive evaluation of the performance of
our pipeline, comparing the results against a given ground
truth. In section 6.2, we have analyzed how the different su-
perpixel segmentation parameters affect to the solution ob-
tained. Section 6.3 presents additional examples where the
input depth has been obtained from a point cloud and a RGB-
d camera respectively.

6.1. Quantitative evaluation of our approach

Our first tests are designed to evaluate the proposed cost
functions and quantify the obtained improvements.

6.1.1. Dataset used

‘We use publicly available datasets [SS03, SS02], which are
designed to evaluate stereo algorithms, where the ground
truth represents the disparity between pixels from two im-
ages. Although, the disparity and the depth are not the same
concept, they are closely related. In a stereo configuration
(Figure 6), we only have a horizontal translation (without ro-
tation) between the two cameras, and the disparity disp can
be calculated as the horizontal displacement between two
corresponding pixels:

disp = xg, — xg 8)
_ B
= disp ©)

Figure 6: In a stereo configuration the depth and disparity
are inversely proportional.

With this configuration, we know all parameters and can
see that the disparity disp and the depth z are inversely pro-
portional. Hence, the points with same disparity belong to
the same depth plane. The input depth, in this case the dis-
parity map, which is going to be improved with our ap-
proach, is the result obtained with an implementation of the
Hirschmuller algorithm [HirO8]. This algorithm computes
stereo correspondence using the semi-global block matching
algorithm.

6.1.2. Experimental set up.

To measure the improvement obtained in the depth estima-
tion, we have evaluated how different parameters affect to
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(a) Input depth (baseline) (b) Ground truth

(c) Depth propagation (d) Differences

Figure 7: We calculate the (d) difference between the (b)
ground truth values and (c) the solution provided by the (c)
MREF from the (a) input depth, in this case a disparity map.

the depth propagation. This performance, fifg_p, is mea-
sured as how much we improve the initial depth, and it is
calculated as the mean of the differences (or mean error) be-
tween each pixel in our resulting depth (after propagation)
and the same pixel in the ground truth, as follows:

N |G 1
|15 1
Z,A;["p

where lg denotes the labeling in the ground truth and l,’,
the our labeling proposed. Figure 7 shows the improvement
achieved applying our depth propagation in a superpixel dis-
parity map.

G-y = (10)

6.1.3. Results.

Figure 8 shows the improvements obtained using different
cost functions. The baseline and superpixels represent the
differences with the ground truth for the input disparity map
and the initial superpixel depth respectively. The following
bars represent variations on the parameters we use to build
the cost function: a is the accuracy, 62 is the variance and lab
means that we compare the color histogram between super-
pixels. These results in Figure 8 show that the depth propaga-
tion decreases the mean error for all the different cost func-
tions we have tried, compared to baseline and superpixels,
particularly noticeable as we increase the weight of the unary
cost.

In the Figure 9, we show the numbers of iterations that
were necessary to obtain the labeling with the minimum cost
for the different cost functions. Less iterations are needed
when we increase the weight of the unary cost. Doing so
we also obtain better results as we can see in the Figure 5.
We reduce the global blur in the image and keep the object
boundaries.

Average error

24 W baseline
W superpixels
M a_lab

23 T ER

a_o2_lab

2_lab

mean error
s
5}

05 o7 08 08

weight unary cost

Figure 8: Test-image tsukuba. The baseline and
superpixels represent the differences with the ground truth
for the input disparity map and the initial superpixel depth
respectively. The other bars represent variations on the pa-
rameters we use to build the cost function: a is the accuracy,
67 is the variance and lab means that we compare the color
histogram between superpixels. We always obtain better re-
sults if we run our depth propagation approach than with the
input depth (disparity map), particularly noticeable when we
increase the weight of the unary cost.

25

—o—a_lab
~~a_o2

iterations

a_o2_lab

~>=02_lab

0.5 0.7 0.8 0.9

weight unary cost

Figure 9: Test-image tsukuba. We show the numbers of it-
erations that were necessary to obtain the labeling with the
minimum cost for the different cost functions. Less iterations
are needed when we increase the weight of the unary cost.

The results of Figures 8 and 9 have been obtained using
the test image Tsukuba from the evaluation dataset. Tests run
with all the other dataset images are summarized in Table 1.
We can see that the depth propagation always gets lower dif-
ferences with regard to the ground truth than the input depth,
therefore we always manage to improve that input depth, ex-
cept for the test image Map. Figure 10 shows all steps of
processing this test. In this case, the input depth is already
a very good approximation, and we don’t get to improve it
with the depth propagation framework. This may be due to
the fact that the background and object superpixels have very

(© The Eurographics Association 2014.
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(b) Ground truth
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(d) Input depth (disparity)

(c) Initial superpixel depth

(d) Depth propagation

Figure 10: Test image map. This is the only test image (a)
where the depth propagation proposed in this work does not
improve the initial input depth (d).

Table 1: Mean error (between different steps of our pipeline
and the ground truth) for all dataset test images

Input Input Initial Depth
image depth superpixel | propagation
Tsukuba | 23.4555 21.4349 20.7857
Venus 17.9249 13.3355 8.8710
Cones 31.9362 25.0465 8.9230
Teddy 32.0781 25.6495 9.6206
Sawtooth | 16.0922 13.2377 9.51
Bull 12.7467 10.3099 7.4231
Poster 15.7758 11.4537 9.3676
Barnl 15.6588 12.3351 9.5196
Barn2 15.3817 12.8297 10.2926
Map 21.5471 23.2944 21.7738

similar textures, what prevents us from a good segmentation
and propagation.

Our results prove that the MRF based propagation im-
proves the obtained disparity and in most cases, it gets to
eliminate all the artifacts. However, we can see that when a
group of the black superpixels exists close to image bound-
ary, the MRF does not get to eliminate all of them correctly,
because three are not enough neighbors around the black su-
perpixels. Figure 12 shows more result with some of the test
images, showing the superpixel segmentation, the input dis-

(© The Eurographics Association 2014.

parity maps, the ground truth and the depth propagation re-
sults. These images show a clear improvement after running
our approach with regard to the input disparity map.

6.2. Superpixel extraction parameters

As explained in previous section, the parameters (size and
regularity ) of the superpixel extraction algorithm affect to
the initial depth labeling and hence, to the depth propaga-
tion. To measure their influence we have obtained superpix-
els segmentation, with different superpixel sizes and regu-
larity, and we have compared their solutions with the ground
truth.

22

Wsze=5
W Size=15
7y Size =30
g
: 214
5
@
E
2141
e
208
o 0.2s 05 07s 1
regularity
(a) Mean Error
2400 WsSize=5
M Size=15
1800 Size = 30

1200

runtime (ms)

600

01 03 05 o7 [ B:]
regularity

(b) Runtime time

Figure 11: Mean error and runtime obtained with different
superpixel extraction parameters. (a) With a large super-
pixel size, the difference mean error is higher (large sizes
hide the segmentation information in small and background
objects), while, with a small size, the numbers of superpix-
els increase and hence, (b) the runtime too. Regarding the
regularity restriction, choosing a medium value we get the
superpixels fit better to the object boundaries and we avoid
to add noise pixels in the superpixel boundaries.

In the Figure 11 we can see the difference mean error and
runtime obtained. If we use a large superpixel size, the dif-
ference mean error is higher because a large size hides the
segmentation information in small and background objects.
However, if we choose a small size, the numbers of super-
pixels increase and hence, the runtime too. Regarding to the
regularity restriction in the superpixels form, decreasing its
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value, we get the superpixels fit better to the object bound-
aries but if the value is too small, we add noise pixels to the
superpixel boundaries (Figure 3). In view of these results, to
choose medium values of superpixel size and regularity is
the best option.

6.3. Additional evaluation in different scenarios

With the following experiments we want to show the im-
provement obtained for depth maps which have poorly re-
constructed regions. The depth maps of the first experiment
have been obtained projecting a 3D point cloud into the im-
age pixels. This point cloud was computed using a multiview
stereo algorithm for 3D reconstruction of a scene from multi-
ple views [FP10]. In Figure 13, we can see examples where
we get to improve the initial depth map: the MRF fills the
depth gaps and, in the first example, we correct the wrong
superpixels in the bottom of the initial depth map.

The second experiment shows how we can improve the
input depth obtained with a RGB-d camera, in particular a
Asus Xtion PRO LIVE. These cameras usually provide depth
maps with plenty of depth gaps. The images used to the tests
belong to a publicly available dataset for activity recogni-
tion $, other application that would benefit from improved
depth estimation. Figures 14 shows some of the test images
used. In these examples we can see that the RGB-d camera
provides wrong or none information when objects are very
close to the sensor or there are shadows in the scene. Our
depth propagation approach improves the depth maps and
fills all the gaps.

7. Conclusions and Future Work

There are plenty of algorithms that provide good estimations
about the scene depth information from multiple views, and
actually good depth information can be directly obtained
from RGB-d sensors. However, most of these sources pro-
vide incomplete depth maps and in fields as 3D reconstruc-
tion, to get a perfect solution depends on these depth maps.
Superpixel segmentation provides a convenient form to com-
pute local image features and it reduces the complexity of
image processing tasks. Combining superpixel segmentation
with the depth maps we assign the same depth value to all of
superpixel pixels. Although inside a superpixel, we get to
propagate depth values, it would be better if we could share
these values between different superpixels. Then, we can be
consider it as a labeling problem. Many complex problems in
computer vision require labeling each pixel as a preliminary
step. In this work we have used superpixels instead of pix-
els. We have proposed using the depth propagation through
a Markov random field (MRF) that models how superpixel

§ https://i3a.unizar.es/es/content/wearable-computer-vision-
systems-dataset

graph. In a MRF we can decide the relation between a su-
perpixels and a label and how its neighbor superpixels affect
to it. With the results obtained in the depth propagation, we
have improved the depth map in general cases, but there are
values that it can not be correct. Then, the human interaction
will be needed to improve the proposed solution. Our work
can be useful as a previous step to user interactions. Usually,
interactive algorithms require the user to provided tedious
interactions to correct a scene. In future steps, we aim to
combine our approach with other state-of-the-art techniques
to learn from user interaction to improve the results and re-
duce the user interaction effort.
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(a) Input image

(b) Input depth (point cloud)  (c) Initial superpixel depth (d) Depth propagation
Figure 13: Improving depth obtained from a multiview 3D reconstruction. The depth propagation (column (d) ) fills the gaps

and corrects the wrong superpixels. In these examples, there are a group of wrong superpixel labeling in the bottom of the initial
superpixel depth (c). We can see how the depth propagation corrects these depth values.

(a) Input image (b) Input depth (depth map)  (c) Initial superpixel depth

(d) Depth propagation
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Figure 14: Improving depth maps obtained with a RGB-d camera. In all these examples the depth propagation improves the
input depth. The RGB-d camera provides wrong or none information when objects are very close to the sensor or there are
shadows in the scene. Our depth propagation approach improves the depth maps and fills all the gaps.
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