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Abstract Plenty of complex image editing techniques
require certain per-pixel property or magnitude to be
known, e.g., simulating depth of field e↵ects requires
a depth map. This work presents an e�cient interac-
tion paradigm that approximates any per-pixel magni-
tude from a few user strokes by propagating the sparse
user input to each pixel of the image. The propaga-
tion scheme is based on a linear least squares system
of equations which represents local and neighbouring
restrictions over superpixels. After each user input, the
system responds immediately, propagating the values
and applying the corresponding filter. Our interaction
paradigm is generic, enabling image editing applica-
tions to run at interactive rates by changing just the
image processing algorithm, but keeping our proposed
propagation scheme. We illustrate this through three
interactive applications: depth of field simulation, de-
hazing and tone mapping.

Keywords User interaction, image processing,
computer vision, dense label propagation

1 Introduction

Advanced image editing techniques often rely on spe-
cific per-pixel information about certain magnitudes,
in addition to each pixel intrinsic RGB coordinates.
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Fig. 1 Image editing examples using the proposed generic
interaction paradigm. From a few user strokes our approach
estimates a per-pixel magnitude that enables the advanced
editing of (a) depth for a depth of field e↵ect (focus point is at
the middle scene elements); (b) transmittance for a dehazing
e↵ect; (c) luminance and brightness for tone mapping.

For instance, simulating blur due to depth of field [23]
requires a per-pixel estimation of depth information,
while dehazing (removal of fog, water, smoke or any
participating medium) requires per-pixel information
about the transmittance or density of the medium [16].

This extra per-pixel information may come from ad-
ditional knowledge or control over the capture process.
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For instance, depth can be estimated from sensor mo-
tion, either intended [43] or accidental [46]. Alterna-
tively, advanced heuristics and priors may lead to a
plausible (but not necessarily accurate) additional in-
formation that can be used for filtering purposes. Ex-
amples of these include heuristics to obtain depth from
a single image [26], or transmittance priors for dehaz-
ing [16]. These heuristics and priors typically involve as-
sumptions that work very well in situations that meet
them. However, we typically find specific cases when
they are broken, which leads to poor performance on
the editing results.

Taking advantage of user interaction is another op-
tion for gathering additional per-pixel information, which
does not impose any restriction regarding control of the
image capture or advanced heuristics that could not be
generic enough. On one hand, traditional generic user
interaction paradigms (such as geometric primitives,
lassos or color-aware magic wands) are not practical for
complex information editing. On the other hand, other
specialized editing tools define interaction paradigms
that are very practical but tailored to specific appli-
cations, such as light field editing [21], intrinsic image
decomposition [9] or intrinsic video decomposition [8].

We work towards a more general approach for ad-
vanced user interaction paradigms. Whenever certain
filter needs additional per-pixel information, it is densely
generated by our approach from very sparse and intu-
itive user interaction. Our paradigm is oblivious to the
internal design of the filter, i.e., we treat each filter as
a black box, with two simple requirements:

1. The filter must rely on additional information per-
pixel which is a continuous magnitude (such as depth).

2. The filter must run at interactive speed (preferably in
less than one second) so that the interaction paradigm
runs at practical frame rates.

Our approach covers a wide range of applications.
Some of these applications, as demonstrated in this
work (see Fig. 1), include synthetic depth of field simu-
lation, dehazing and tone mapping from HDR images.
Our paradigm is modeled as a propagation problem, in
which the user sets some seed values, with one or more
strokes, which are propagated throughout all the pixels.
This propagation results on a per-pixel estimation of
the target continuous magnitude (continuous in value,
not in image space ). The propagation is formally rep-
resented as a least-squares linear system of equations
over a set of superpixels. This provides us a great con-
trol over the accuracy vs. propagation time trade-o↵.

Contributions

1. A very simple and intuitive interaction paradigm,
inspired and distilled from previous specific image edit-

ing applications, which is generic and oblivious to the
underlying image operator. It is based on simple user
strokes that provide seed values and value relations,
which can be interactively refined.
2. A propagation strategy that involves superpixels and
a linear system of equations, which enables propagation
of continuous magnitudes at interactive speed rates.
3. A set of applications, extensions of several state-of-
the-art image filters, that now benefit from our inter-
action scheme.

2 Related Work

In order to achieve interactive versions of sophisticated
image editing filters, our work combines two common
steps in image processing and computer vision: super-
pixel image segmentation and label propagation. We
briefly describe the state of the art of these common
steps, as well as the image editing techniques we make
interactive with our approach.

Superpixels. Previous research has shown how group-
ing pixels into superpixels can turn computationally
complex problems into tractable ones. They have been
used for estimating depth from multiple panoramic im-
ages [30], decomposing images into their intrinsic shad-
ing and reflectance components [18] or assigning seman-
tic and geometric labels in conventional images [41]. A
more extensive survey on applications using superpixel
segmentation can be found here [38]. While using su-
perpixels (rather than individual pixels) implicitly in-
troduces an accuracy penalty due to suboptimal super-
pixel segmentations, it also reduces computational com-
plexity. In our work, this is key for keeping interactive
frame rates regardless of image resolution.

Propagation. Certain applications rely on value prop-
agation across pixels, i.e., they spread a sparse set of
seed values from certain pixels to the rest of the image
pixels. Markov Random Fields (MRF) are a common
ingredient on solutions for propagation problems [39]
but they still present high computational cost. To re-
duce the execution time of these solutions, we find MRF
superpixel-based approaches [30,34,41] or strategies to
optimize MRF solver optimization [13]. Reducing the
execution time is the goal as well of our work. However,
our formulation is less restrictive than related works
and our experiments prove that we achieve a faster re-
sponse.

E�cient approaches to solve propagation problems
model the propagation scheme as a linear optimization,
as we do, which can be solved through linear systems of
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equations. Random Walker (RW) algorithm [19] com-
putes the probability of each pixel in the image for each
seed value given by the user. Unfortunately, when there
is a high number of seed values and high resolution im-
ages are used, this algorithm can become slow. We find
multiple improvement towards more e�cient RW prop-
agation. These improvements can be based on o✏ine
pre-computation [4], or, as our work, on the use of su-
perpixels [17]. The RW algorithm has been adapted to
multi-view depth estimation for image based naviga-
tion [12].

A common drawback of the techniques described so
far is that none of them is able to deal with a continuous
magnitude. While the continuous magnitude could be
discretized into a set of potential values, some discrete
propagation techniques (such as the Random Walker)
propagate just the values they have been seeded with
(and no other value) which works poorly with sparse
inputs. Complex MRF modifications [37,45] are able to
deal with continuous magnitudes, unfortunately they
are still not e�cient enough for interactive use. Further-
more, the Random Walker probability has been used
also as a continuous magnitude [32] but can only be
seeded with two probability values (0 and 1). In con-
trast, our approach can be seeded with any potential
value but does not restrict the range of output values.

Image editing techniques. In this work we illustrate
our interaction paradigm through three applications:
depth of field e↵ects [23,46], dehazing [16,6] and tone
mapping [33,29]. These applications are described in
Section 5.

Related to our work, there is previous research on
interaction to propagate complex magnitudes: color for
black and white images or video [24,28,14], light field
edits [5], image segmentation [31], shading and reflectance
in images [9] or video [8] and depth [27,20,48] . How-
ever, the interaction at each of these techniques is tai-
lored to the specific application itself, and in some cases
it does not reach interactive rates. In contrast, our work
presents a global propagation technique that is oblivi-
ous to the underlying filter, is more flexible and works
at interactive speeds.

Interactive editing. Examples of interactive image
editing applications include transferring edits between
di↵erent views through a�ne transform estimation [47],
multiview depth transfer through shortest path algo-
rithm [12], appearance transfer using simplex optimiza-
tion for reducing parameter space [3], or material edit-
ing on a linear space using a GPU [15].

Our propagation paradigm is closely related to other
image editing techniques which propagate continuous

magnitudes. Lischinski et al. approach [25] solves sys-
tems at di↵erent image resolutions to show a progres-
sive result (which otherwise would not be interactive).
Chen et al. [14] propose a linear system over feature
space. SteroBrush [42] also uses a linear system for
propagating stereo disparities while preserving pleas-
antness, which becomes interactive by taking advantage
of the GPU. Such linear optimizations are per-pixel,
while our approach works at superpixel level, therefore
becoming more e�cient. The AppProp approach [2]
propagates exposures through a per-pixel linear sys-
tem, but it is done faster by identifying a subset of
representative columns in the matrix. Instead of col-
umn sampling, previous work [44] has reduced the pa-
rameter space by clustering it into a KD tree. Still, in
both cases matrix operations (inversions, products) are
needed before solving the system. Our approach is in-
spired by such approaches, reducing the linear system
by working in superpixel space, but improves over them
by building the linear system matrix on the fly.

Iizuka et al. [20] propose propagation through op-
timization based on geodesic distances over superpix-
els (with some additional filtering), with a propaga-
tion speed that matches our work. However, their edits
are limited to such distances, while our formulation is
more flexible and enables more global edits (see Sec-
tion 3.1.2).

Our work builds on top of a previous technique
for propagating depth values throughout an image [11]
by generalizing the formulation to any filter based on
one (or more) magnitudes. First, we show more de-
tailed analysis of the depth of field application sug-
gested there. Additionally, we demonstrate two other
applications requiring estimation of participating media
transmittance (for dehazing) and brightness and con-
trast (two magnitudes for tone mapping). These magni-
tudes fit perfectly into our interactive editing paradigm.
We also show how the editing results achieved with
our approach are comparable to state-of-the-art e↵ect-
specific techniques.

3 Interactive propagation

This section describes the interactive propagation sys-
tem.

3.1 System

Our proposed system is built upon prior work [11], to
propagate per-pixel user information, which is summa-
rized in Figure 2. This diagram shows how the di↵erent
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steps are divided into initialization, if they can be com-
puted just once when the input image is loaded, and
interactive, if they are re-calculated every time the user
performs an interaction with the system.

Initialization
1. Superpixel segmentation

Input: image

Propagation System

2. Generate precomputed 
equations

Output:  
processed image

Interactive

4. Solve linear system

3. Generate interactive equations

User 
input

5. Apply filter

Fig. 2 Interactive propagation system. Steps 2 and 3 build
the equations and step 4 solves the system to get the best
propagation given the input image and the user interaction.
Each user edition (user input) creates new interactive equa-
tions, and the output is updated, i.e., steps 3 to 5 are run, in
less than 1 second.

3.1.1 Initialization.

When the input image is loaded, we initialize the prop-
agation system. This involves two steps: superpixel seg-
mentation and linear system construction. Even if this
initialization involves some pre-computation, it is not
computationally very expensive. It takes a few seconds
at most (depending on processor speed and image reso-
lution), which is within a reasonable time for an initial-
ization of an interactive application. For superpixel seg-
mentation we use the standard SLIC algorithm [1] with
its single configuration parameter, number of superpix-

els which depends on the image size. We estimate a
superpixel size around 10⇥10 but the number of super-
pixels is limited to 1000. This algorithm is reasonably
fast, although our propagation technique could use any
other segmentation algorithm. This segmentation helps
us to control the e�ciency of the solver independently
of image resolution.

Our propagation assigns a single value to each su-
perpixel (which is equivalent to assigning the same value
to all pixels inside the superpixel). The propagation is

modeled as a linear system of equations Ax = b where
x (the unknowns) are the superpixel propagated val-
ues, and the equations (represented by the matrix A

and the vector b) are the restrictions that model the
propagation. The number of equations is greater than
the number of unknowns (the number of superpixels)
so the system is over-constrained. Therefore our prop-
agation actually solves the least squares minimization
minx ||Ax� b|| through the equivalent linear system:

(AT
A)x = A

T
b. (1)

Binary equations. These equations establish binary
relationship between values of connected superpixels.
We consider that two superpixels are connected fol-
lowing 8-neighbors connectivity. Given two connected
superpixels p and q, their binary relationship is repre-
sented as

wb(xp � xq) = 0, (2)

where xp and xq are the unknown values of superpixels
p and q respectively. The preconditioning factor wb pri-
oritizes the connections whose border is similar in the
CIE-Lab color space. If the distance between the fron-
tier pixels average CIE-Lab values (of both superpixels)
is greater than a threshold of 0.05, wb is

1

#b . Otherwise,

it is equal to 0.01
#b . The denominator #b is the total num-

ber of binary connections, and helps to keep a similar
linear system behaviour regardless of the number of su-
perpixels. As CIE-Lab values are normalized between
0 and 1, the threshold of 0.05 represents a percentage
over Euclidean distance between those values.

Linear system construction. With all the super-
pixels and the corresponding connecting binary equa-
tions, we build the square matrix (AT

A) and vector AT
b

from (1). The dimension of the square matrix and the
vector is N , where N is the number of superpixels. By
calculating and storing both the matrix and the vector
during initialization, we avoid doing the matrix product
(potentially time consuming) during user interaction.

3.1.2 Interactive propagation.

The interactive propagation includes three steps: the
addition of equations that correspond to user interac-
tion, the value propagation itself (by solving the linear
system) and the application of the image filter that uses
the corresponding propagated magnitude.
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MRF BP-M [40] RW [19] Ours

Input image Dense input (13.30 s / 0.02 err) (0.2 s / 0.12 err) (0.002 s / 0.06 err)

Ground truth Sparse input (24.4 s / 0.14 err) (0.5 s / 0.13 err) (0.002 s / 0.06 err)
(a) (b) (c)

Fig. 3 (a) Input image and ground truth disparity map used in both experiments. (b) Input data used to initialize the
propagation in the two experiments: dense automatic input (top row) or using a sparse user input (bottom row). (c) Dense
propagation obtained in the two experiments. Each column shows the propagation obtained with a di↵erent method: two
reference methods (MRF BP-M and RW) and our approach (Ours). Each result includes between parenthesis the execution
time (s) and ratio of mislabeled pixels with each method (err).

Unary equations. The unary equations link user in-
put with superpixel values and are built during the in-

teractive steps. The user chooses a brush that corre-
sponds to a specific value of the magnitude of interest
v. For each pixel a↵ected by the stroke inside superpixel
p, we include the following equation into the system:

wuxp = wuv, (3)

where xp is the (still) unknown magnitude value of su-
perpixel p and wu = 1

#u (where #u is the number of
unary equations) is a preconditioning factor that en-
sures stability on the behavior of the system no matter
the number or length of user strokes. We interactively
add (3) both into the pre-computed matrix (AT

A) and
the vector (AT

b), as only one of the cells of the matrix
and the vector is a↵ected by the equation. Therefore,
there is no need to recalculate the matrix product.

Depending on the user strokes, the user may include
contradictory equations for the same superpixel. This is
expected and supported by the approach, because the
solver is a linear least squares minimization that will
find the optimal xp that minimizes the contradiction.
Furthermore, larger strokes may include many equal
unary equations that a↵ect the same superpixel, which
in practice increases the overall weight of the equation
in the minimization. This is expected and desired as
well.

Equality equations. While unary equations set spe-
cific superpixel values, equality equations establish sim-
ilarity relationships between superpixels through user
strokes. Those superpixels are not necessarily contigu-
ous. Such equations are set during the interactive step.

Given two superpixels p and q, their binary relationship
is represented as

we(xp � xq) = 0, (4)

where xp and xq are the unknown values of superpix-
els p and q respectively and we = 1

#e (where #e is
the number of equality equations) is the precondition-
ing factor. Such equations are useful where specific su-
perpixel values are rather unintuitive (rendering unary
equations useless) but similarity can intuitively be spot-
ted. For example, for dehazing the specific transmit-
tance is rather confusing to identify, but it is easier to
relate regions with same fog (Fig.9).

Linear system solving. After the unary and/or equal-
ity equations are stored we solve the equation system
in (1). The (AT

A) matrix is symmetric by definition
and positive semi-definite. Therefore, the system can
be solved applying Cholesky decomposition, specifically
LDLT decomposition, with the advantage of being fast
and numerically stable. Note that all preconditioning
factors (wb, wu and we) are global parameters which
help to control the e↵ect of each equation type. In or-
der to keep such global weights constant, each precondi-
tioning factor is related with the number of equations,
so each new equation gradually reduces the influence
of all the equations of the same type. This is intended
and helps to preserve the stability of the global e↵ect
of each user stroke.

For each superpixel value xp obtained from the lin-
ear system, we propagate it to every pixel in the su-
perpixel p. This final propagated values are used as
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Dehazing without bilateral filter.

Dehazing with bilateral filter.

Fig. 4 E↵ect of applying a bilateral filter to the transmit-
tance map (left column) used in our interactive dehazing ap-
plication. Bilateral filter avoids artifacts caused by the super-
pixel segmentation in the processed image.

input to the corresponding image filter. Due to super-
pixel segmentation, the final propagated values could
be locally coarse and cause artifacts in processed image
when the corresponding image filter is applied. To avoid
this possible artifacts (similarly to related work [20]),
we apply a bilateral filter to the propagated values.
The bilateral filter is controlled by three parameters: d,
�color and �space. d represents the diameter of each pixel
neighborhood that is used during filtering. The range
parameter �color and the spatial parameter �space con-
trol edge preservation when applying the filter. In our
work, they are set to 15, 100 and 100 respectively.

Figure 4 shows the e↵ect of applying such bilateral
filter in our dehazing application. Note that, the prop-
agation technique is oblivious to the underlying seman-
tics of the propagated magnitude, while the image fil-
ter is application-specific. In our work we test three
di↵erent image filters for three di↵erent applications
(see Section 5). Each of them relies on di↵erent mag-
nitudes (depth, transmittance and local brightness and
contrast) that are propagated exactly the same way, as
detailed in this section, and become input of the corre-
sponding filter to the specific application.

4 Validation.

This section presents a numerical validation of our in-
teractive propagation system. We validate the proposed
propagation strategy considering only step 4 (see Fig. 2),
since it is the only common step to all the considered
approaches. We perform this validation using a spe-
cific magnitude (disparity) for which there are public
datasets available with ground truth [35] [36]. These
datasets are designed to evaluate stereo algorithms, which
obtain a disparity map that represents the disparity re-
lation between corresponding pixels from two images.

We run the experiments with two very di↵erent in-
puts: a dense but unreliable (noisy) input labeling ob-

Method
Dense Input User input
time err time err

Pixel-based
ICM [7] 0.96 0.12 N/A N/A
Expansion [10] 9.68 0.03 N/A N/A
Swap [10] 7.28.94 0.03 N/A N/A
TRW-S [22] 93.94 0.03 N/A N/A
BP-S [40] 10.42 0.03 N/A N/A
BP-M [40] 68.76 0.02 31.23 0.14
BCD [13] 1.72 0.11 - -
RW [19] 0.40⇤ 0.16 0.60⇤ 0.14

Superpixel-based
Expansion [10] 5.21 0.08 6.17 0.10
Ours .004 0.08 .004 0.05
�: the method did not converge to a solution
⇤: execution time is measured in Matlab.

Table 1 Execution time (seconds) on a standard desktop
machine (Intel Core i5 2,5 GHz) and mean error (err) for
propagation obtained for all dataset images with automatic
input and user input initialization.

tained automatically from two stereo images, and a
sparse (but reliable) input labeling obtained from a
few user strokes. We compare our results against well
established propagation approaches: Markov Random
Fields (MRF) strategies [39] and a Random Walk (RW)
approach [19]. RW is the most di↵erent approach with
respect to the way to formulate the linear equation sys-
tem. The rest of methods (MRF strategies) are based
on the same equations and weights than our approach.
Figure 3 shows the final disparity estimation obtained
by the evaluated methods for one of the test images,
Tsukuba-test from the public dataset [35,36]. For each
method evaluated, Table 1 summarizes the execution
time and error for all images in the dataset. We mea-
sured the error obtained in each solution as the mean of
the di↵erences (err) between each pixel in the solution
and the same pixel in the ground truth. Note that both
MRF and RW implementations are based on pixel-wise
formulations, while our work is superpixel-based. More
detailed experiments about numerical comparisons of
the presented approach and other propagation meth-
ods can be found in previous work [11].

Our experiments validate two main hypotheses: our
approach is faster but of comparable quality to the
best existing methods using dense input data; our ap-
proach is significantly better than related approaches
using more realistic sparse user input data.

Using dense input, the proposed approach obtains
comparable results to related approaches, while being
orders of magnitude more e�cient. Apparently, the use
of superpixels enables extra e�ciency without a re-
markable penalty on accuracy. Note that the execution
time comparison with RW implementation is somehow
unfair as the RW available code is implemented in Mat-
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(a) (b) (c)

Fig. 5 Interactive depth of field application. (a) Input image.
(b) Processed image after applying the depth of field e↵ect.
(c) Depth map used to apply the e↵ect (estimated by our
application from user interactions).

(a) (b) (c)

Fig. 6 Interactive dehazing application. (a) Input image. (b)
Processed image after applying the dehazing e↵ect. (c) Trans-
mittance map used to apply the e↵ect (estimated by our ap-
plication from user interactions).

lab, while the rest use C++. In an optimistic scenario,
an optimized RW could potentially be almost as fast as
our approach, but its results are significantly worse.

However, user interaction is expected to be sparse.
Our experiments show that neither MRFs nor RWs are
suboptimal with sparse input: MRFs are focused on a
more dense noisy input, while RWs are not well suited
for this problem because they only propagated the as-
signed input values, therefore neglecting all potential
intermediate ones.

5 Applications

We illustrate the versatility of our interactive propa-
gation scheme through several applications described
next. The supplementary video (available on-line 1) demon-
strates the real time execution and the behavior of each
application.

5.1 Depth of field

In photography, control over in-focus and out-of-focus
elements is an important artistic and expressive tool.
Depth of field e↵ect consists of the blurring of out-
of-focus objects on a single image from a depth map as
software post-processing. This depth can be estimated
from camera motion, either accidental [46] or fixed to

1
https://www.youtube.com/watch?v=Fps5SasG9v4

(a) (b) (c) (d)

Fig. 7 Interactive HDR tone mapping application. (a) Input
HDR image. (b) Output LDR image after applying the tone
mapping using the estimated local brightness map (c) and
local contrast map (d).

capture two images (stereo) and then estimate depth
from them [43].

In our work, depth is obtained from the user by
means of our propagation approach, as simple user strokes
(using four di↵erent brushes associated with di↵erent
depths in the range [0, 1]). Then, we obtain the depth
of field e↵ect by applying a set of convolutions (blurs)
of di↵erent radius according to the di↵erence between
depth at each pixel and focal distance, following previ-
ous work [23]. The blurs are applied up to a maximum
radius defined by the user. The focal distance is set by
the user.

Figure 5 shows an example of this application, where
the focal distance is fixed at the front scene elements.
Therefore, elements from the back of the scene (ac-
cording to the estimated depth map) become blurred
after the processing. Figure 8 includes several interme-
diate outputs while processing another example image.
The output is automatically refined as additional sam-
ple depth strokes are provided by the user. The user
can also change the desired focal distance by clicking
on the desired focus point.

5.2 Dehazing

As light interacts with small particles suspended in air
(or water), fog, smoke or the aerosols in the atmosphere
become visible. Repeated interactions across such me-
dia reduce the visibility by creating a translucent layer
of ambient light. Dehazing consists on removing such
ambient light from a single image. For that purpose, al-
gorithms estimate the medium’s transmittance (visibil-
ity) through heuristics and priors such as interpreting
albedo as locally constant (color lines) and transmit-
tance as smooth [16] or globally identify the haze-free
colors along haze lines [6]. This previous work models
haze as:

I(x) = t (x) J (x) + (1� t (x))A, (5)
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Depth of field simulation output
By default, the foreground is in focus

Interactive User Input

Nearest depth

Sample user strokes
Furthest depth Close depth Nearest depth

Refocused image

Focus point selected

X
X

Fig. 8 Behavior of the interactive depth of field application with user interactions. Left: the user marks a few strokes (di↵erent
colors for di↵erent depths) to represent object positions. Each new edition interactively propagates depth estimation and applies
a depth of field e↵ect. Right: the user changes the focus point.

Dehazing simulation output
By default, a medium level of transmittance is selected

Interactive User Input

Equal levels 1

Sample user strokes
Minimum level Equal levels 2 Maximum level

Transmittance level changed

Input image

X
X

Fig. 9 Behavior of the interactive dehazing application with user interactions. Left: the user marks a few strokes (di↵erent
colors for di↵erent transmittance levels) to represent the level of fog. Each new edition interactively re-estimates transmittance
values and applies the dehazing e↵ect. Right: the user can adjust the level of the dehazing e↵ect.

HDR Tone mapping simulation output
 Global brightness  

and contrast

Interactive User Input

Darken

Sample user strokes
Input Light up Preserve

The local brightness and local contrast can be selected by the user.

Reduce contrast Increase contrast

Fig. 10 Behavior of the interactive HDR tone mapping application with user interactions. Left: the user can adjust global
parameters. Right: the user marks with strokes that regions need to be darken or illuminated and how the contrast of the
regions should increase or reduce. Each color represents a di↵erent action.
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where x are the 2D pixel coordinates, I(x) is the in-
put hazy image, J(x) is the dehazed image (what we
want to obtain), t(x) is a scalar transmittance map (un-
known, 0  t(x)  1) and A is the ambient light (a
RGB vector, unknown).

In our case, the transmittance map t(x) is prop-
agated from user strokes using our technique, and A

is approximated as the average of all pixels x where
t(x) > 0.9 (the most occluded pixels). Then the image
is easily obtained from (5) as

J(x) =
I(x+ (t (x)� 1)A

t(x)
. (6)

Figure 6 shows an example of this application, where
the fog is removed from the scene according to the es-
timated transmittance map. Figure 9 illustrates incre-
mental output results, which are refined interactively as
the user provides additional strokes to mark the level
of fog in di↵erent parts of the image.

5.3 Tone mapping

The potential range of luminance in the real world is
rather large, while devices can only capture or repro-
duce two orders of magnitude within that range. How-
ever, High Dynamic Range image formats can represent
(with floating point representation) all potential lumi-
nance values, and can be composed from several images
or generated synthetically. Tone mapping is the pro-
cess of converting a High Dynamic Range (HDR) image
into Low Dynamic Range (LDR), representable by any
device. Their e↵ect can be either global (equal to every
pixel) or local (often adapting global algorithms with
convolution kernels) [33]. For our tone mapper we follow
the following tone curve [29] that compresses the lumi-
nance of the HDR image LHDR into the luminance of
the LDR image LLDR:

L

0 = log (LHDR)� b

LLDR =
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(7)

where dl and dh are the lower and higher midtone ranges
(set up to the recommended values of 2 and 1, respec-
tively) and b (brightness) and c (contrast) are the tone
mapper parameters of the tone curve. In our case, for
the sake of simplicity, we do not apply color correction.
Also, we apply this curve per-pixel, where brightness
and contrast are obtained from propagation: the user

(a) (b)

Fig. 11 Superpixel segmentation of (a) HDR image and (b)
LDR image.

can set, in the image local values for brightness and
contrast, that are propagated through the whole image
in two magnitudes (as opposed to previous applications,
that propagated just one).

Figure 7 shows an example of this application, where
the input HDR image is converted to a LDR output
image. Figure 10 illustrates incremental output results.
The user can adjust the global image levels of brightness
and contrast, but the user strokes define local values
of brightness and contrast for di↵erent regions in the
image.

Note that the algorithm we use for superpixel seg-
mentation is not particularly well suited to work with
HDR images. It does generate a superpixel segmen-
tation, but as shown in the example from Fig. 11(a),
the superpixel boundaries do not correspond well with
scene objects. This limitation is accentuated in regions
with very few or contradictory user input values. Then,
the propagated magnitude su↵ers strong transitions be-
tween close superpixels creating artificial visual bound-
ary artifacts. This could sometimes be solved with ad-
ditional user input. However, a simpler solution is to
apply this filter in two steps. First we get an initial
(noisy) superpixel segmentation on the HDR image,
used to apply an initial tone-mapping filter that gener-
ates an intermediate LDR image. Then, we propose to
re-compute the superpixel segmentation over this inter-
mediate LDR image, where we obtain a better super-
pixel segmentation that can be used to obtain a better
final result without artifacts (see Fig. 11(b)).

6 Results

In previous Section 4, we have formally validated that
our scheme can propagate interactively a few sparse
sample values of a continuous magnitude to all im-
age pixels. It is e�cient while obtaining comparable
quality with respect to related approaches. This sec-
tion presents a set of representative results obtained us-
ing the three interactive applications presented (Sec. 5),
which are based on our propagation scheme (Sec. 3), in
order to analyze di↵erent situations, limitations and ad-
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Input image Processed Images
with Artifacts Fixed

Using too few superpixels (130) Using more superpixels (693)

Fig. 12 Example where superpixel segmentation issues produces artifacts in the processed images of our interactive depth of
field application. Artifacts are caused when the superpixel boundaries do not correspond with the object boundaries. When
superpixel segmentation is improved, these artifacts are not visible in the processed image.

vantages on three real applications. The supplementary
material includes more additional examples obtained
with our three interactive applications.

Execution time. E�ciency is a key contribution of
the proposed interaction paradigm, as it guarantees re-
sponse time requirements for applications that inter-
act with a user. The number of superpixels defines the
number of unknowns in the linear system and as con-
sequence, it determines the propagation speed. We can
adjust the number of superpixels depending on the im-
age resolution in order to keep the interactive execution
time. For example, in a typical image of 2000 ⇥ 1340
(with 950 superpixels), our system can propagate the
user information in 0.20 seconds. This time includes the
time for generating the user equations, solving the sys-
tem and building the dense map solution. Table 2 shows
a more detailed analysis of the execution time of each
of the steps.

Table 2 Typical execution time per step with an image of
2008x1340. In this particular case, the dehazing filter had
been applied as image operator (step 6). Note that, other
image operators may require di↵erent execution time.

Step Time
(seconds)

Initialization

1. Superpixel segmentation 2.39

(950)

2. Add binary equations 0.08

(2725)

Interactive propagation

3. Add all user equations 0.015

(819)

4. Solve linear system 0.20

5. Bilateral filter 0.45

6. Image operator 0.53

Note that, with each user stroke, the propagation is
calculated and the filter is applied. The cost of our three
filter algorithms is linear with respect to the number of
pixels. In typical images, it can be applied in around a
second . The three implemented applications are avail-

able online 2 and work at interactive rates in a regular
desktop computer (Intel Core i5 2,5 GHz).

Limitations. Superpixel based approaches are faster
to compute but typically less accurate than pixel based
methods. E�ciency is achieved at a small sacrifice on
accuracy of the final propagation and therefore, it af-
fects the result obtained when the filter is applied to
specific images. Figure 12 shows an example of the
depth of field application. The focused object is the
red can. As we can see, in the processed image with ar-
tifacts, part of the box is incorrectly focused (the box is
behind the red can and therefore should be defocused).
This artifact is produced by insu�cient or incorrect su-
perpixel segmentation, i.e., there is a misalignment be-
tween superpixel and actual object boundaries. These
artifacts can be easily eliminated increasing the number
of superpixels used.

Comparison with previous work. An important ad-
vantage of our system is that the proposed paradigm is
generic, i.e., the same system works for di↵erent ap-
plications. In Section 5, we have presented three inter-
active image processing applications that use our pro-
posed system. This section presents a set of represen-
tative visual results from all of them, comparing our
solution with well known ad-hoc methods for each ap-
plication. The following results validate that our generic
system can achieve comparable quality in the visual ef-
fects than specific ad-hoc methods for each of the ap-
plications.

Figure 13 shows two examples from the results of
our depth of field application side by side with the re-
sults obtained with a well known approach from Yu et

al. [46]. Both the depth map and output images are
similar, but our approach works with a single image
instead of a sequence.

Figure 14 compares our results for dehazing against
state-of-the-art single image dehazing methods [16,6].

2
https://github.com/anacambra/app_lensblur/tree/

TVCJ



A generic tool for interactive complex image editing 11

Input & Strokes Processed Depth
Image Map

Yu et al. [46]

Our approach

Yu et al. [46]

Our approach

Fig. 13 Comparison of our results and a well known algo-
rithm for depth of field e↵ect. Depth map estimated and final
processed image are similar, but our method works with a sin-
gle image and very simple input (strokes), as opposed to Yu
et al. work, which requires a sequence of images.

Note that our transmission maps may look less fine-
grained than the other methods, because our propaga-
tion system is a superpixel based approach. However,
the final visual e↵ect in the dehazed images are of sim-
ilar quality.

Figure 15 compares our results for tone mapping
against a global tone mapping operator to adjust the
luminance and contrast in the image. Our local tone
mapping operators allow the user to obtain better so-
lution than global operators. With a few strokes, the
user can point which regions need to be illuminated
or darken and adjust each region contrast. Figure 16
shows an example of the results of our HDR tone map-
ping application and the interactive tool proposed by
Lischinski et al. [25]. Both provide the user an intu-
itive and local control of the region brightness but our
method is faster and also provides the adjustment of
the image contrast.

7 Conclusions

The main contribution of this work is a generic paradigm
to propagate sparse information across all image pixels.
The proposed paradigm is particularly useful to model
continuous magnitudes, which is not feasible with many
of the existing propagation techniques. Besides, our pre-
sented implementation of this paradigm has the advan-
tage of running at interactive rates. This means our

Input & Strokes Processed Transmittance
Image Map

Fattal [16]

Berman et al. [6]

Our approach

Fattal [16]

Berman et al. [6]

Our approach

Fig. 14 Comparison of our results and state-of-the-art single
image dehazing methods. Our approach obtains a less fine-
grained transmittance estimation but similar dehazing visual
results.

paradigm enables the development of any interactive
application to apply image post processing techniques
that require the estimation of continuous magnitudes
per pixel.

While the interactivity of our approach is guaran-
teed because our paradigm is formulated as a linear sys-
tem of equations over superpixels, the accuracy of our
approach is also limited by the superpixels. However,
we have shown that our results are accurate enough
for many real applications. In particular, to demon-
strate the suitability of our approach, we have imple-
mented three interactive applications to apply complex
well-known filters and e↵ects: depth of field, dehaz-
ing and tone mapping. The three applications use the
same propagation scheme presented in this work, and
their results demonstrate that our generic propagation
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Input & Processed Luminance &

Strokes Image
Brightness

Maps
Global operator - Constant maps

Our approach

Global operator - Constant maps

Our approach

Fig. 15 Comparison of our HDR tone mapping application
results. We can see that, with a few user strokes, the bright-
ness and contrast adjusted locally work better than global
operators.

(a) (b)

Fig. 16 Tone mapping produced by (a) Lischinski et al. ap-
proach [25] and by (b) our interactive application.

system achieves comparable image e↵ects than related
methods which are ad-hoc for a single specific problem.
Besides, thanks our paradigm, these applications can
run as interactive tools, with very low computational
requirements. This opens the opportunity to bring this
type of editing tools to mobile and embedded devices.

We believe our work can inspire both new inter-
active editing applications, as well as future research
on interactive editing tools. Potential lines of future
work that can be inspired from the combination of the
presented work and previous work are multiview ap-
proaches for transferring edits between views [47] or
for depth editing and navigation [12]. Besides, instead

of plain images, our approach could be extended for
material appearance [15] or even material transfer [3]
applications, given the adequate adaptation and iden-
tification of the involved magnitudes to material space.
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