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Figure 1: Starting from stereoscopic video content with a static observer in a moving train (Left), our method detects regions where
motion parallax acts as an additional depth cue (Center, white color) and uses our model to redistribute the disparity depth budget from such
regions (the countryside) to regions where it is more needed (the train interior) (Right).

Abstract

Binocular disparity is the main depth cue that makes stereoscopic
images appear 3D. However, in many scenarios, the range of depth
that can be reproduced by this cue is greatly limited and typically
fixed due to constraints imposed by displays. For example, due to
the low angular resolution of current automultiscopic screens, they
can only reproduce a shallow depth range. In this work, we study
the motion parallax cue, which is a relatively strong depth cue, and
can be freely reproduced even on a 2D screen without any limits.
We exploit the fact that in many practical scenarios, motion parallax
provides sufficiently strong depth information that the presence of
binocular depth cues can be reduced through aggressive disparity
compression. To assess the strength of the effect we conduct psycho-
visual experiments that measure the influence of motion parallax on
depth perception and relate it to the depth resulting from binocular
disparity. Based on the measurements, we propose a joint disparity-
parallax computational model that predicts apparent depth resulting
from both cues. We demonstrate how this model can be applied in
the context of stereo and multiscopic image processing, and propose
new disparity manipulation techniques, which first quantify depth
obtained from motion parallax, and then adjust binocular disparity
information accordingly. This allows us to manipulate the disparity
signal according to the strength of motion parallax to improve the
overall depth reproduction. This technique is validated in additional
experiments.
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1 Introduction

Perceiving the layout of a scene is one of the main tasks performed
by the human visual system. To this end, different depth cues [Cut-
ting and Vishton 1995] are analyzed and combined into a common
understanding of the scene. Not all cues, however, provide reliable
information. Pictorial cues, such as shadows, aerial perspective or
defocus, can often be misleading. Other cues, such as occlusion,
provide only a depth ordering. There are also very strong cues, such
as ocular convergence and binocular disparity, which provide a true
stereoscopic impression. These, however, can only be reproduced in
a limited fashion due to significant limitations of the current display
technology. The first problem is the lack of a correct accommoda-
tion cue in most of the current stereoscopic displays, which leads to
visual discomfort [Hoffman et al. 2008; Lambooij et al. 2009] when
a large disparity range is shown to observers. The limited range
of displayable disparity that does not cause such issues defines the
depth budget of the display suitable for practical applications. While
current research tries to address this problem with new light-field
displays [Masia et al. 2013b], these solutions have even stronger
requirements regarding the depth range. This is due to the apparent
blur for objects that are located at a significant distance from the
screen plane [Zwicker et al. 2006; Wetzstein et al. 2012]. Because of
the aforementioned reasons, it is crucial to take any opportunity that
allows us to improve depth reproduction without using additional
disparity range.

One of the strongest monocular depth cues is motion parallax. It
arises when the location of features at different depths results in
different retinal velocities. The strength of this cue is relatively high
when compared to other monocular cues and also when compared
to binocular disparity [Cutting and Vishton 1995]. This fact has
been exploited in several applications, such as wiggle stereoscopy
[Wikipedia 2015b] where motion parallax is used as a metaphor for
stereoscopic images, or parallax scrolling [Wikipedia 2015a] used
in games where, by moving foreground and background at different
speeds, a depth sensation is evoked. Striking examples of motion
parallax efficiency are species that introduce subtle head movements
to enable motion parallax [Kral 2003]. This mechanism has been
incorporated into cameras where apparent depth is enhanced by
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subtle motion of the sensor [Proffitt and Banton 1999; v3 c© Imaging
2015]. Interestingly, motion parallax is not limited to observer
motion, but also provides depth information whenever local motion
in the scene follows a predictable transformation [Ullman 1983;
Luca et al. 2007] (Fig. 2). These facts suggest that motion parallax
is a very strong source of depth information for the human visual
system (HVS), but it has never been explored in the context of
stereoscopic image manipulations.

In this work, we address this opportunity and propose a compu-
tational model for detecting motion parallax and quantifying the
amount of apparent depth it induces together with binocular dispar-
ity. To this end, we conduct a series of psychovisual experiments
that measure apparent depth in stereoscopic stimuli in the presence
of motion parallax. This is done for simple, sinusoidal corrugation
stimuli. Based on the measurements, we propose a computational
model that predicts apparent depth induced by these cues in complex
images. Furthermore, we demonstrate how the model can be used
to improve depth reproduction on current display devices. To this
end, we develop a new, motion-aware disparity manipulation tech-
nique. The key idea is to reallocate the disparity range from regions
that exhibit motion parallax to static parts of the scene so that the
overall depth perceived by observers is maximized. To evaluate the
effectiveness of our manipulations, we perform additional validation
experiments which confirm that by taking the motion parallax depth
cue into account, the overall depth impression can be enhanced with-
out extending the disparity budget (Fig. 1). More precisely, we make
the following contributions:
• we design and perform psychovisual experiments quantify-

ing the joint contribution of binocular disparity and motion
parallax to depth perception,

• propose a computational model that predicts apparent depth
induced by these cues for complex scenes, and

• develop new motion-driven disparity manipulations for stereo-
scopic and multiscopic content.

2 Related work

Motion parallax is a depth cue that results from observer movement.
As we move, objects closer to us move in the visual field faster than
objects that are farther away. This relative velocity is used by the
HVS to recover the distance between different points in the scene.
Motion parallax can also be triggered when two points in the scene
undergo a rigid transformation, e.g., translation (Fig. 2). In this sec-
tion, we provide background information about this mechanism, and
discuss previous work on modeling it. In particular, we concentrate
on the relation of motion parallax to binocular disparity, as well as
the interaction between these two cues.

Motion parallax modeling Binocular disparity is usually parame-
terized as a difference in vergence angles of the point of interest and
the fixation point (refer to Fig. 2). Motion parallax can be parameter-
ized in equivalent disparity units, which enables a direct comparison
to binocular disparity [Rogers and Graham 1982; Ono et al. 1986;
Bradshaw and Rogers 1996]. Equivalent disparity is defined as the
binocular disparity in orthostereoscopic viewing of the shape that
generated such motion parallax [Rogers and Graham 1982].

Modeling motion parallax by means of the equivalent disparity
makes an assumption about the absolute scale of depth in the scene.
As motion parallax is a purely relative depth cue, we can choose
an arbitrary scaling factor and apply it to both the scene geometry
and motion. This will still lead to the same 2D image sequence,
and hence, the same motion parallax. However, assuming that
human inter-ocular distance is fixed, each of these scenes would
have different disparities. Similarly, there will be multiple possible
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Figure 2: Motion parallax mechanics [Nawrot and Stroyan 2009].
Translation of a pair of points A and B to the right (or equivalently
observer translation to the left) produces motion parallax. Assuming
that A is the fixation point, its retinal position does not change, due
to the pursuit eye rotation α at angular velocity dα/dt, while at
the same time the retinal position of B changes with respect to A
by the angular distance θ producing retinal motion with velocity
dθ/dt. The relation dθ/dα ≈ ∆f/f = m approximately holds,
which, given the fixation distance f , enables recovery of depth ∆f
from motion parallax. The right side of the figure shows the relation
of motion parallax to the angular measure of binocular disparity
d = |Dd(A)−Dd(B)| [Howard and Rogers 2012, Fig. 14.5] for
the asymptotic case of f →∞ as derived by Stroyan [2010].

parallax values for each disparity distribution. This ambiguity can
be resolved by directly measuring the relative depth as m = ∆f/f
[Nawrot and Stroyan 2009] (Fig. 2). This particular form prevents
division by zero for flat surfaces and restricts possible values to the
range from 0 to 1.

Note that as a static scene description the relative depth is not a defi-
nition of motion parallax itself. A necessary condition for existence
of motion parallax is the presence of rigid motion, which requires a
dynamic definition. Nawrot et al. [2009] show that the perception of
motion parallax follows the ratio of the retinal motion velocity of
distractor B (dθ/dt) and the eye motion velocity during a pursuit
of the fixate A (dα/dt) (Fig. 2). These two signals allow the HVS
to derive the relative depth, as it can be shown that dθ/dα ≈ ∆f/f
[Nawrot and Stroyan 2009].

Perceived depth from motion parallax While processing of
depth from disparity and motion parallax seem to engage common
neural mechanisms [Rogers and Graham 1982; Bradshaw et al.
2006], there are also notable differences between them. The HVS
sensitivity to motion parallax as a depth cue has been measured in
the equivalent disparity experiment where static sinusoidal depth
corrugations have been used as the reference for perceived depth
[Rogers and Graham 1982; Bradshaw and Rogers 1996; Bradshaw
et al. 2006]. The respective sensitivity function has a shape similar to
the disparity sensitivity function (DSF) [Bradshaw and Rogers 1999]
with a maximum around 0.4 cpd; however, the threshold magnitudes
are 2 to 10 times higher than for disparity.

Unlike for binocular disparity, depth constancy was found to be
rather poor for motion parallax, as the estimated depth increased
with the square of a feature’s distance [Ono et al. 1986]. When
geometrically equivalent depth is presented through motion paral-
lax or binocular disparity as the only depth cue, foreshortening of
25%-125% has been observed for the motion parallax presentation



[Durgin et al. 1995]. Nawrot et al. [2014] performed a matching ex-
periment, where the perceived depth as induced by motion parallax
has been compared to equivalent depth resulting from binocular dis-
parity, and observed a near-tenfold depth foreshortening. Such depth
foreshortening should be understood as a perceived distance reduc-
tion for a given object with respect to the fixated point. Nawrot et al.
found that to model perceived depth due to motion parallax, com-
pressive nonlinearities (transducers) need to be applied in the ratio
θ/α (Fig. 2).We extend the model of Nawrot et al. [2014], which
was derived for monoscopic 2D moving stimuli, to stereoscopic
stimuli with binocular disparity. This enables modeling perceived
depth for different combinations of motion parallax and disparity,
which is relevant for stereo 3D applications. Moreover, the model
by Nawrot et al. does not account for the relative velocity on the
display which directly translates into retinal velocity. Such relative
velocity is characterized by its own detection thresholds [Campbell
and Maffei 1981], which affect the ability to detect motion parallax
as well. Therefore, our model accounts for relative velocity in the
presence of binocular disparity.

Disparity vs. motion parallax on 3D displays Both the reduced
threshold sensitivity and depth foreshortening for supra-threshold
depth ranges indicate that motion parallax is a weaker depth cue
compared to binocular disparity. However, since in stereoscopic dis-
plays disparity is usually strongly compressed to maintain viewing
comfort [Lang et al. 2010; Masia et al. 2013a; Chapiro et al. 2014],
the apparent depth from motion parallax becomes comparable, as
it always refers to the original, uncompressed depth. In Sec. 5 we
seek the opportunities of disparity range compression in regions
where depth perception is well supported by motion parallax. Note
that disparity is constrained by the fixed interocular distance, while
motion parallax can still be detected at far distances, given that the
observer velocity is sufficiently high. An additional advantage of
motion parallax is that in contrast to disparities which may cause
diplopia on certain 3D displays, motion parallax always leads to
physically plausible scene interpretations without additional effort.

Disparity and motion parallax cue fusion Different classes of
tasks combining motion parallax and disparity depth cues lead to
different models of cue fusion. In a surface detection task from
random dots, Turner et al. [1997] did not observe the performance to
increase when the two cues were present, and noticed that disparity
was dominant when contradicting cues were shown. Young et al.
[1993] have looked into perceived depth from a combination of
(inconsistent) motion and texture cues through perturbation analysis
and argued for a weak fusion model, i.e., a weighted linear combi-
nation with weights decreasing if a cue is contaminated by noise.
Such a strictly modular approach to both cues is not supported by ex-
perimental evidence that arises, for example, in surface recognition
tasks involving motion parallax and disparity, where cooperative and
facilitative interactions have been identified [Howard and Rogers
2012, Ch. 30.2.6]. Landy et al. [1995] presented a modified weak
fusion model for cue combination, which can handle such interac-
tions through cue promotion when they are in agreement with other
cues. Domini et al. [2006] proposed an intrinsic constraint model
for describing cue fusion. It assumes that families of possible depth
layouts are derived for both the disparity and motion parallax cues
up to an arbitrary affine transformation, and then their unique best
intersection is chosen using a maximum likelihood decision rule. In
the following section, we propose a model, which is derived in a
perceived-depth matching task, where cue interactions are explicitly
measured for various combinations of geometrically correct mo-
tion parallax and compressed or expanded disparity values. Our
model is fully empirical and does not contradict either of the two
aforementioned models. The range of motion parallax and disparity

magnitudes modeled fully covers the requirements of stereoscopic
image manipulation (Sec. 5).

Kinetic depth effect (KDE) An object structure can be recovered
from its rotating motion; this is referred to as the kinetic depth effect
(KDE) [Wallach and O’Connell 1953]. Durgin et al. [1995] demon-
strated that, as for motion parallax, the recovery of quantitative depth
information from object rotation in monoscopic images is weaker
than from binocular disparity. Recently, Bista et al. [2016] proposed
an approach for KDE triggering from a pair of photographs, where
first a rough scene geometry (mesh) is reconstructed, then an optimal
location for the scene rotation axis that is parallel to the screen is
derived, and finally a swinging rotation of the camera around this
axis is introduced. In this work we consider motion parallax, which
is inherent for an animation, rather than artificially generated rota-
tions as in [Bista et al. 2016]. Also, we focus on the binocular vision
and disparity manipulation, rather than monocular images and mesh
deformation, to bring the relative velocity between rotating scene
elements into desirable ranges as proposed by Bista et al. [2016].

3 A joint motion parallax and disparity model

In contrast to previous work, we assess the joint influence of motion
parallax and binocular disparity on depth perception. To this end, we
propose a model which describes a relation between the strength of
these cues and the depth impression they induce. A direct advantage
of such an approach is that the cue fusion is an integral part of
the model, and it does not need to be modeled separately. The
model will allow us to identify combination of motion parallax and
disparity values that result in a similar depth impression. We will use
this equivalence in our applications to reduce binocular disparity in
regions where depth perception is well supported by motion parallax.

3.1 Methods

To acquire data for building our model, we conducted a perceptual
experiment where subjects were asked to match two stimuli accord-
ing to the depth they provided. One of the stimuli contained both
motion parallax and binocular disparity, while the other had only a
disparity signal. The matches provided by users allowed us to find
the disparity signal that is equivalent to a given parallax-disparity
combination.

Stimuli The stimuli were random-dot stereograms with sinusoidal
corrugations in depth. Both disparities and luminance-contrast val-
ues were windowed by a Gaussian function (Fig. 3, left). The spatial
depth corrugation frequency was 0.4 cpd — the peak sensitivity of
the HVS to both binocular disparity and motion parallax [Rogers
and Graham 1982]. The luminance pattern was a random pattern
with a uniform intensity distribution, which was additionally filtered
using a low-pass filter with the cutoff frequency of 10 cpd. To
avoid texture depth cues that could provide additional information
about the presented shape, the pattern was flatly projected on the
surface. Stimuli also included a central black spot of 0.01 degrees
to aid fixation. In our experiment, we used two types of stimuli:
dynamic stimuli with both motion parallax and disparity, and static
stimuli with disparity but without motion parallax. The dynamic
stimuli were translated horizontally across the screen (Fig. 3, right)
at different speeds.

We parameterize the stimuli using their relative depth from motion
parallax m = ∆f/f , binocular disparity d = |Dd(A)− Dd(B)|,
and retinal velocity V = dθ/dt (Fig. 2), i.e., (di,mi, Vi). A static
stimulus is a special case of the dynamic one, i.e., (di, 0, 0). Two
possible parameterizations can be considered for the velocity: the



absolute ocular velocity of the stimuli pursuit on the screen ν =
dα/dt, or the relative retinal velocity of peaks and troughs in the
stimuli V = dθ/dt (both expressed in arcmin/s). We use V in the
stimuli parameterization as it more directly relates to the visibility
of motion parallax.

Note that stimuli can express different combinations of motion par-
allax and binocular disparity through the experiments, which do not
need to be consistent. We specifically seek to measure the effect
of non-consistent combinations, namely compressed and expanded
disparity, which is important for applications such as those shown in
Sec. 5.

Luminance Motion

Depth pattern

Figure 3: Stimulus used in our experiment. Left: Luminance
and depth of our stimuli. Right: Anaglyph version of the same. For
the dynamic stimulus variant, translating horizontally as indicated
by the large arrow, motion parallax results in the flow depicted by
the small arrows.

Equipment Stimuli were presented on a Zalman ZM-M240W
polarized-glasses 3D display, with a screen size of 24′′ and a spatial
resolution of 1920×1080 pixels, at a viewing distance of 60 cm.

Participants Twenty-seven subjects (5 F, 22 M, 24 to 27 years of
age), who had normal or corrected-to-normal vision and passed a
stereo-blindness test, took part in the experiment.

Procedure During each trial, subjects were given a pair of static
and dynamic stimuli. They were instructed to fixate onto the marked
central spot and adjust the disparity of the static stimulus until the
perceived depth matched the one of the dynamic stimulus. This was
done by pressing left and right arrow keyboard keys. The stimuli
were displayed sequentially and subjects could switch between them
at will by pressing a key. A 500 ms-blank screen followed each
switch. When switching to a dynamic stimulus, visibility was en-
forced for at least 1000 ms before switching back to a static stimulus
to guarantee that the subject had time to observe the motion and
did not judge depth based on binocular disparity alone. For each
dynamic stimulus each subject performed two trials. Performing the
complete set of measurements took around 45 minutes per subject.

The three-dimensional stimulus space was covered by a set of sam-
ples combined from two subsets: In the first one, five regular steps
of disparity and motion parallax were chosen from a typical range
of values: d ∈ [0..20] arcmin and m ∈ [0..0.1], resulting in 25
samples. Stimulus translation velocity of 500 arcmin/s was chosen
as it was observed to be safely supra-threshold in a pilot experiment.

Since the existence of detectable motion is a necessary condition
for the perception of depth from motion parallax, five additional
samples with stimulus translation velocity that varied from 0 to
300 arcmin/s were added for three disparity and motion parallax
combinations (0, 0.025, .), (10, 0.075, .), and (5, 0.100, .). These
points were chosen to lie in the part of the sampling space where the

disparity is smaller than it would be in the real world for an object
defined by the given motion parallax. This way the contribution of
parallax to the estimated depth can potentially be significant. This
helps us to derive the threshold velocity required for motion parallax
detection. As a result, 15 additional samples are measured, and for
two repetitions, the experiment totals 80 samples per subject.

3.2 Data analysis and model fitting

The data from the experiment was used to derive an analytical model
of perceived depth due to a combination of motion parallax and
disparity. The model maps a joint stimulus involving both the motion
and disparity cues to the matching depth that is perceived using only
disparity. We call this the matching static disparity. Please refer to
the supplemental materials for detailed results of our measurements.

We seek a function Φ : R4 → R of an equivalent static disparity for
a combination of motion parallax m, binocular disparity d, velocity
V , and angular distance s as a separation between neighboring peaks
and troughs of our 0.4 cpd depth corrugation stimulus. We obtain
the function by fitting an analytic expression to our experimental
data. This is done in two steps: First, we fit a 2D supra-threshold
velocity model Φ(m, d, .) form and d as two free parameters, while
the angular distance s stays fixed and the relative velocity V is
maintained supra-threshold for all stimuli (Fig. 4a). Second, we
model the effect of near-threshold velocities V using an additional,
separable, multiplicative 2D function Ψ(V, s) which depends only
on V and s (Fig. 4c). Effectively, we assume that the two steps are
separable, i.e., the velocity influence is independent of the rest of
the parameters. We express the full 4D model by introducing Ψ into
Φ as a scaling factor which can be efficiently pre-computed.

Supra-threshold velocity For supra-threshold velocity V̂ , a spe-
cific stimulus angular distance x = 1.25 arcmin and each constant
d, we express perceived depth as a function of m by fitting a linear
function to our data:

Φd,V̂ (m, .) = am+ b. (1)

To obtain a model for varying d we interpolate the scale a and
bias b. For b we use linear interpolation, as it follows the identity
prediction for depth perception as a function of disparity. A linear
interpolation of the slope a would result in unreliable predictions in
extrapolated regions. Instead, we use a normalized sigmoid function
λ. Additionally, we enforce that in the absence of both motion
parallax and binocular disparity, the perceived depth remains zero,
i.e., ΦV̂ (0, 0) = 0. The resulting function describing the perceived
depth at supra-threshold levels is given by:

ΦV̂ (m, d) = (c1 · λ(d) + c2) ·m+ c3 · d, (2)

λ(d) =
2

1 + e−dβ
− 1, (3)

where c1 = −50.88, c2 = 68.56, and c3 = 1.006 (DOF-adjusted
R2 = 0.98) are the fitting parameters to our experimental data and
an integral part of the model used in our application (Fig. 4a). We set
β = 0.25 to guarantee that the sigmoid saturates for the maximum
disparity considered in the experiment (d = 20 arcmin) so that no
extrapolation beyond our measurements occurs. The slope in the
m-axis direction for d ≥ 20 arcmin is then constant and equal to
the sum c1 + c2. This determines the contribution of parallax to the
total perceived depth for high disparity magnitudes. The value c2
determines the slope of ΦV̂ (m, d) as a function ofm for d = 0, that
is, the effect of motion parallax as the only available depth cue in
the absence of binocular disparity. The value of c3 determines the
slope in the d-axis direction for d ≥ 20 arcmin. As its value is close
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Figure 4: a) Data acquired from our experiment (gray dots) and our model showing the matched static disparity (vertical axis) as a function
of binocular disparity and relative depth from motion parallax (x and y axis). The red line shows the points corresponding to real-world
observation conditions (d = m), plotted in b). b) Comparison of measured points (gray dots), our model (red line) and the theoretical identity
(blue line) for real-world observation conditions (d = me). Dashed lines mark deviation from identity within the disparity discrimination
thresholds for a given disparity [Didyk et al. 2011]. Difference under the threshold range confirms that our model does not predict more depth
for a moving stimulus than for a static stimulus if conflict of cues is avoided. c) Perceived depth as a function of retinal velocity of motion V for
three selected points from the two-dimensional space in a). Dashed lines are fitted separately for each sequence while full lines were fitted
jointly to build our model in Eq. 4. Corresponding points for the maximum velocity marked in a). Vertical line is the 95th percentile threshold
value.
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Figure 5: Our measured data for the case of d = 0 and our fitted
model (blue) compared to data of Nawrot et al. [2014, Fig. 6] for
dα/dt = 3.3 deg/s and viewing distance 54 cm (orange). Our
model is clamped for m > 0.1 to avoid extrapolation beyond the
measurement points.

to one, our model provides safe extrapolation for larger disparities
by matching each d to itself.

The comparison in Fig. 5 shows that our measurements covered a
lower range of m values than those of Nawrot et al. [2014]. The ob-
servations are comparable for 0.05 < m ≤ 0.10, while a potential
non-linearity was observed by Nawrot et al. [2014] for m = 0.20.
Therefore, an extrapolation of our model for motion parallax mag-
nitudes outside of the range we measured (m > 0.10) would be
dangerous, as no conclusions about further behavior of the function
can be made based on our measurements. For our applications, we
clamp m to the range 0 to 0.10, which conservatively prevents a
possible exaggeration of the contribution that larger parallax has to
the depth perception.

Given the knowledge of absolute depth, we can convert m to the
equivalent disparity me in arcmin and then find orthostereoscopic
points where me = d. Such conditions remove depth cue conflicts,
and therefore should create similar perception as the static stimulus.

Fig. 4b shows that the deviation between our measured model and
identity to a static reference is within the range defined by dispar-
ity discrimination thresholds at different disparity levels for depth
corrugation stimuli of 0.4 cpd [Didyk et al. 2011].

Near-threshold velocity Fig. 4c demonstrates the results of depth
matching task between a static disparity signal and a stimuli con-
taining motion parallax for three points in our stimuli space. The
measurements show the inability of the HVS in perceiving depth
from motion parallax for very low values of relative motion V . In
such cases, binocular disparity acts as the only depth cue. Once
a certain value of V is reached, motion is perceived, and motion
parallax depth cue is triggered contributing to the perceived depth.
We model this effect using a coefficient function Ψ(.) that describes
visibility of motion parallax. It scales its effect between zero (per-
ceived depth is determined by binocular disparity alone) and our
supra-threshold model:

Φ(m, d,Ψ(.)) = d+ Ψ(.) · (ΦV̂ (m, d)− d) (4)

We first approximate Ψ(.) by fitting a sigmoid function to our mea-
surements (Fig. 4c) as:

Ψ0(V ) =
2

1 + e−V ·c4
− 1 (5)

with c4 = 1.553 (DOF-adjusted R2 = 0.98). Our velocity model
saturates for V > 3.0 arcmin/s, which is similar to differential
motion thresholds of 3.2 arcmin/s as measured for moving bars in the
fovea [McKee and Nakayama 1984, Fig. 2]. As speed measurements
close to zero are unreliable, the sigmoid function could lead to an
overestimation of perceived depth for a near-static stimulus. To
address this, we threshold the sigmoid at the 95th percentile and
obtain:

Ψ1(V ) =

{
1 when V ≥ vc,
0 otherwise

(6)

where vc ≈ 2.36 (Fig. 4c).

Because our matching experiment was performed for sinusoidal
depth corrugations with spatial frequency of 0.4 cpd, function Ψ1 is
valid for the angular separation of s = 1.25 deg. In order to extend
the model to arbitrary values of s, we assume that the detection



threshold of relative motion for a pair of targets is proportional to
their angular separation. This is inspired by the study on discrim-
inating separation differences between two dots [Yap et al. 1989].
Consequently, we model the velocity dependency as:

Ψ(V, s) = Ψ1

(
1.25

s
V

)
, (7)

and state Ψ(.) = Ψ(V, s).

3.3 Discussion

We compare our measurements to those in the existing literature
that have analyzed perceived depth induced by motion parallax in
the absence of binocular disparity (d = 0), and find that they are
consistent. In particular, Nawrot et al. [2014] report a foreshortening
of perceived depth in the presence of motion parallax for similar
viewing conditions. Similarly, Durgin et al. [1995] describe fore-
shortening of depth from motion parallax in the absence of binocular
disparity, albeit using a substantially different procedure.

The part of the space between d = 0 and d = m (the left side
with respect to the red line in Fig. 4a) corresponds to the region
where binocular disparity is compressed with respect to the geo-
metrically correct motion parallax; in this region, depth induced
by motion parallax increases the perceived depth. This perceived
depth enhancement can be used to reallocate the binocular disparity
budget, which is typically limited in practical applications, as shown
in Sec. 5. When we express the relative depth from motion parallax
m by means of equivalent disparity me (the gray labels in Fig. 4a)
we see that in an extreme case with zero binocular disparity (d = 0),
motion parallax me = 40 arcmin alone induces depth correspond-
ing to a static disparity of 7.5 arcmin or 40/7.5 ≈ 20% of veridical
(geometric) depth.

The rest of the space, between d = m andm = 0 (the right side with
respect to the red line in Fig. 4a), depicts the case when disparity
is expanded with respect to its original magnitude. In this case,
motion parallax reduces perceived depth. Note that since motion
parallax corresponds to the actual geometric configuration, it always
drives the perceived depth towards its veridical value, irrespective of
how binocular disparity is distorted. This is in accordance with the
modified weak fusion model [Landy et al. 1995], in which relative
weights of interacting cues are dependent on their reliability.

4 Motion parallax for points and pixels

The model presented in the previous section measures the contri-
bution of motion parallax to the perceived depth of a scene in the
presence of binocular disparity. In this section, we describe how this
model, which was derived from simple stimuli, can be applied to
obtain perceived depth between image pixels. The input is a single
animation frame I : N2 → R3, and as the output we seek a measure
of perceived depth between pixels always assuming an observer fix-
ation on the currently processed pixel. We demonstrate the method
for computer-generated content, for which all scene information
is available. The generalization of our technique to natural video
streams is discussed in Sec. 7.

Motion parallax is well-defined for a pair of points (Fig. 2). However,
its definition is usually limited to cases where the viewing position
changes, yielding a globally-consistent motion of the scene. We
extend this definition by observing that motion parallax introduces
a depth impression in all regions of the scene that exhibit rigid
motion. Therefore, to compute depth from both motion parallax
and binocular disparity in our image I , we first need to determine
whether two pixels, and thus two points in the scene, follow the
same rigid transformation.

To detect whether two image pixels, xA and xB , undergo the same
rigid transformation, we first obtain for each pixel x its 3D world
position P(x), and a transformation matrixM(x) describing its
change in position over time. For the computer generated content,
this can be easily done by storing a position buffer and transfor-
mation matrices for all pixels. For natural content, one needs to
perform 3D scene reconstruction. In the following text, we as-
sume that for each pixel in the image, we have given the two func-
tions P : N2 → R4 expressed in homogeneous coordinates, and
M : N2 → R3×4 providing an affine transformation matrix over
time between frames for each pixel.

Rigidity of the transformation of the two points xA and xB can
be checked by comparing transformation matrices M(xA) and
M(xB). However, a direct comparison of the two matrices is
usually unstable and not robust due to small inaccuracies. Inspired
by work of Braunstein et al. [1990], we propose a different measure
of rigidity. Given two pixels xA and xB , we compare the results of
applying their transformation matricesM(xA) andM(xB) to a set
of n different pixelsN = {xi ∈ R2 : 1 ≤ i ≤ n}, and compute:

γ(xA,xB) =
1

|N |
∑

xi∈N

‖M(xA)P(xi)−M(xB)P(xi)‖2.

(8)
To reliably measure the difference between two transformations, N
should contain at least three points that are not co-linear. In our case,
we use a 3× 3 pixel neighborhood of xA asN . We assume that the
two matrices correspond to the same rigid motion if γ(xA,xB) is
small, thus defining the final rigidity measure for the pixels as:

Γ(xA,xB) =

{
1 when γ(xA,xB) < ε,

0 otherwise.
(9)

This measure allows for a small amount of non-rigid motion, but in
general, ε should be small to tolerate only small differences between
the two transformations. In our applications, we use ε as 0.001 times
the diameter of the P value domain bounding sphere.

Once we have determined rigidity Γ, in order to apply our model
to the pixels, we need to know their velocities and spatial distances
as well as their depth and pixel disparity. For the pixel disparity we
are interested in the per-pixel angular measure (i.e., vergence angles,
Fig. 2) Dd : N2 → R. This is computed taking into account the
viewing distance, and the interocular distance of a standard observer
(6.4 cm). For velocities, we compute absolute velocities,Dv : N2 →
R2, measured in visual angles, and similarly we express the angle
between screen-space locations of both points Ds : N4 → R. The
linear depth Dm : N2 → R is only used to express the motion
parallax m and thus needs only to be known up to a factor.

Given these, we can apply our parallax visibility model to a pair of
pixels to obtain the contribution of motion parallax between them to
perceived depth as:

ζ(xA,xB) = Ψ(Γ(xA,xB) ·∆Dv,∆Ds), (10)

and our full model to obtain the perceived depth between them as:

Θ(xA,xB) = Φ (∆Dm,∆Dd, ζ(xA,xB)) , (11)

where:

∆Dm =
|Dm(xA)−Dm(xB)|

max (Dm(xA),Dm(xB))
,

∆Dd = |Dd(xA)−Dd(xB)|,
∆Dv = ||Dv(xA)−Dv(xB)||,
∆Ds = Ds(xA,xB).

(12)



Note that, according to the definitions above, ∆Dd is the disparity
between xA and xB (with d in the model as given by Eq. 4), ∆Dm
is our measure for motion parallax between both pixels (m in the
model), the relative velocity ∆Dv between them (V in the model)
is a difference of per-pixel optical flow vectors and ∆Ds between
them (s in the model) is directly their angular distance.

With the definition in Eq. 11 we can compute the relative depth
between any two pixels of the input image sequence. The application
of this to complex images for disparity manipulation is presented in
the next section.

5 Parallax-aware disparity manipulations

Many solutions exist for manipulating disparity signal in stereo-
scopic content. [Lang et al. 2010; Didyk et al. 2011; Didyk et al.
2012b; Masia et al. 2013a]. Some methods aim specifically at en-
hancing apparent depth without expanding overall disparity range
[Chapiro et al. 2015; Didyk et al. 2012a]. Despite of the similar goals
of our technique, none of the previous works accounts for motion
parallax cue which, as shown in our experiment, greatly contributes
to the perceived depth. The contribution is especially significant for
compressed disparities where the contribution of motion parallax
and binocular disparity to perceived depth is comparable. To ex-
ploit this observation, we propose a new disparity mapping operator
(Fig. 6) which takes advantage of our motion parallax model. The
goal of the technique is to compress disparity range for regions that
are supported by motion parallax, and use the additional disparity
budget in static regions. As our goal is only to reallocate disparities,
the technique can be easily combined with other existing disparity
mapping approaches by applying them to our input disparity map
Dd(x) beforehand.

5.1 Overview

The input to our technique is a stereoscopic sequence with disparities
mapped to fit a desired range. In the first step, we extract optical
flow and 3D transformation matrices for each pixel of the input
S3D sequence (Fig. 6a) either by means of computer vision or by
directly dumping necessary information from the rendering pipeline
(Fig. 6b). Second, we detect whether the transformation between
neighboring pixels is both rigid and sufficiently fast according to our
velocity model. This way, the visibility of motion parallax for each
pair of neighboring pixels is predicted (Fig. 6c). Next, we use our
model to estimate the contribution of the parallax to the perceived
depth, and redistribute the depth budget by scaling local disparity
gradients accordingly and storing them in a histogram (Fig. 6d). We
then reconstruct a global disparity mapping curve from the histogram
(Fig. 6e). As the last step, we remap the input disparity, and use an
image warping technique to generate a new S3D sequence (Fig. 6f).
In the following subsection, we describe details of each of these
steps.

5.2 Parallax map

The parallax map encodes the relative visibility of motion parallax
for a pair of pixels (Fig. 6c). Such pixels must have both a rigid mu-
tual transformation and a relative motion speed above the visibility
threshold.

For the purpose of this technique, we consider all effects in a single-
scale fashion, and process local disparities and local parallax as both
horizontal and vertical gradients ∆x between neighboring pixels
xA and xB . Consequently, we refer to differential measures from
Eq. 12 using a short notation ∆D = ∆D(xA,xB). We process

both vertical and horizontal gradients in the same way, and omit this
information further on.

The rigidity of two neighboring pixels can be directly evaluated as
Γ(∆x) = Γ(xA,xB) (Eq. 9). However, the visibility of motion
between the two neighboring pixels may be too small to qualify for
a visible parallax according to ΨV (V ). This, however, is not in
line with motion perception of larger objects. The largest sensitivity
for differential motion was detected for targets of 1 visual degree
size [McKee and Nakayama 1984]. Therefore, instead of evaluating
rigidity only for neighboring pixels, for each pixel x, we search a
local neighborhood (1 visual degree) for a rigidly connected location
x′ with the highest visibility of motion parallax ζ (x,x′) (Eq. 10):

x′ = max
x′

ζ
(
x,x′

)
. (13)

The parallax map M at location x is then a product of both the
local rigidity between neighboring pixels and the maximum motion
parallax visibility (Fig. 6c):

M(x) = Γ(∆x) · ζ
(
x,x′

)
. (14)

5.3 Disparity scaling

We seek a disparity manipulation that provides images such that
when both binocular disparities and motion parallax information
are combined, they give depth perception specified by the input dis-
parities ∆Dd(x). This can be formally expressed by the following
constraint:

∀x ∆Dd(x) = Φ
(
∆Dm(x),∆D′d(x),M(x)

)
, (15)

where ∆D′d are disparities of the output image. Although enforc-
ing this constraint compresses only disparities that are supported
by motion parallax, this increases the part of the disparity range
dedicated to static parts. It is, therefore, sufficient to rescale the
resulting disparity range to the original one at the end of the process.
We use Eq. 15 to compute the target output gradients ∆D′d(x). As
the function Φ is monotonic and all other variables are fixed, this
can be done by numerically inverting it. The reader may refer to the
supplemental materials for a numerical example of the described
algorithm.

5.4 Curve construction

Once the constraint in Eq. 15 is enforced, a new vergence map
D′d can be recovered from disparities ∆D′d by solving a Poisson
equation in a similar way as was done in [Fattal et al. 2002] for
luminance. However, such a solution does not guarantee depth
ordering preservation and temporal coherence. To address these
issues, we propose to construct a global mapping curve based on
∆Dd and ∆D′d using a custom histogram of gradients. To this end,
we construct a histogram H : I→ R that contains n = 1024 bins
which split the range of Dd. We found that a lower number of bins
does not provide a measurable performance improvement and a
higher number does not yield a perceptible quality increment. Each
bin Hi stores information about values between vergence ai and bi
where:

ai = min(Dd) +
i

n
· [max(Dd)−min(Dd)]

bi = ai +
1

n
· [max(Dd)−min(Dd)].

(16)

We construct the histogram H by distributing each gradient ∆D′d to
all bins covered by the interval between values Dd(x) and Dd(x) +
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Figure 6: Our disparity mapping algorithm. Optical flow and 3D transformations (b) are extracted for the input S3D sequence (a) and used
together with our relative motion model to predict perceptibility of motion parallax in the X and Y directions (c). Our model of perceived
depth is then sampled to estimate necessary scaling of each disparity gradient (d). Scaled gradients are accumulated in a histogram (e) and
integrated to construct a new mapping curve that is applied to produce the final S3D content (f).

Step Time [ms]
Rendering 1.5
Parallax map (Sec. 5.2) 24.5
Gradient scaling (Sec. 5.3) 0.9
Curve construction (Sec. 5.4) 4.3
Image warping 3.9
Total 35.1

Table 1: Performance break down of our non-optimized implemen-
tation computing a single frame at 720p resolution on a computer
with Intel Xeon E5 and GeForce GTX 980 Ti.

∆Dd(x):

H[i] =
∑

x∈R(i)

∆D′d(x)

∆Dd(x)
, i ∈ 0, 1 . . . |∆D′d| − 1, (17)

such that:

R(i) = {x : Dd(x) < bi and Dd(x) + ∆Dd(x) ≥ ai}.

Effectively, we add to each of these bins the slope of the future
mapping curve ∆D′d(x)/∆Dd(x). For each gradient, we also accu-
mulate weights w into an equivalent histogram W : I→ R. They
correspond to the sensitivity of the HVS to the changes in disparities.
This favors preserving small gradients. Formally, to each gradient
∆Dd, we assign the following weight :

w(∆Dd) =
1

thr(∆Dd)
, (18)

where thr(d) is a disparity discrimination threshold for pedestal dis-
parity d [Didyk et al. 2011, Sec. 4]. The idea is that compression of
large disparities has a smaller effect on the overall depth perception
as these are likely to stay noticeable. For our method this also gives
additional freedom for redistributing depth between distant objects.

After all gradients are accumulated in H , we normalize the value in
each bin by the accumulated weights in W . Then, we compute the
remapping between input pixel disparities Dd and new disparities
D′d (both expressed in vergence angles) as a cumulative sum of the
histogram, which is normalized to the range of input disparities Dd.
Formally, the remapping function R can be defined as follows:

R(d) = [max(Dd)−min(Dd)]·
∑h(d)
i=0 Hi/Wi∑n−1
i=0 Hi/Wi

+min(Dd), (19)

where the function h(d) provides the index of the bin that corre-
sponds to the value of d. Please note that if no gradients were
overlapping in the histogram, the mapping constructed in such a
way would provide ∆D′d that fulfill our initial constraint (Eq. 15).

However, due to a large number of gradients which overlap, the map-
ping only tries to satisfy all of them. After the vergence information
is remapped according to the above equation, we recompute pixel
disparity information and use it for modifying the input frames. This
last step is done by using image-based warping technique to generate
new stereoscopic images [Didyk et al. 2010]. The result examples
are presented in Fig. 7. The entire algorithm in our non-optimized
implementation is executed in real-time for the input resolution of
1280× 720 pixels. A breakdown of times for individual steps in Ta-
ble 1 reveals that a naı̈ve implementation of neighborhood sampling
from Eq. 13 is a major bottleneck and a candidate for optimization.

Although histogram-based approaches typically feature better tem-
poral coherence than local processing, we noticed that minor depth
oscillation may be observed due to the normalization step. The
coherence is also affected by objects leaving the scene. We improve
the temporal coherence by an additional filtering of the remapping
curves over time. Usually, a window of the ten last frames is used.
Similar techniques have been applied before in a similar context
[Oskam et al. 2011; Didyk et al. 2012b].

5.5 Application to autostereoscopic displays

One of the main drawbacks of current autostereoscopic displays is a
significant angular aliasing when a large depth range is shown on
such a screen [Zwicker et al. 2006]. The aliasing originates from the
limited angular resolution of the display, and it reveals itself as an
unfavorable ghosting artifact which breaks the stereoscopic effect
(Fig. 8a). We can utilize our disparity manipulation technique to
improve the image quality on such screens. To this end, instead of
reallocating disparity signal as proposed before, we simply remove
it from locations where motion parallax sufficiently supports depth
perception. This reduces the required disparity range and thus the
amount of visible aliasing. We follow the same algorithm as before
with the exception of the final histogram construction. We do not
map the resulting curve into the fixed depth range, but directly use
the accumulated gradient values that encode the disparity just needed
to deliver perception equivalent to a static image. We then construct
the mapping curve directly as:

Ra(d) = [max(Dd)−min(Dd)] ·
h(d)∑
i=0

Hi/Wi + min(Dd). (20)

We have tested our approach on a Full HD display Tridelity
MV2600va that utilizes a parallax barrier to deliver 5 views. Please
refer to Fig. 8 and the supplementary video for a captured screen
comparison. We compared a linear mapping without and with our
manipulation on top. Disparities of both results are centered around
the screen to minimize the aliasing of the display [Zwicker et al.
2006]. While the reference footage suffers from aliasing in the front
and far parts of the scene, our output was able to convey a very
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Figure 7: Results of our parallax-aware disparity manipulation applied to four video sequences used in our user study (Sec. 6). The
mapping curves along with the output disparity maps are shown in the insets. The blue color marks crossed disparity, yellow uncrossed
disparity and white zero disparity. The arrows show the local motion direction.

similar depth impression without violating the usable depth range
and introducing visual artifacts due to severe aliasing.

6 Evaluation

Our experiment in Sec. 3 accounts for the combination of motion par-
allax and disparity cues but omits other depth cues that are present in
complex images [Cutting and Vishton 1995]. To test the applicabil-
ity of our model in such conditions we have performed a validation
user study. We check if our method increases the 3D appearance of
stereoscopic content by showing complex video sequences to study
participants.

6.1 Method validation

Stimuli Four short video sequences (5-10 seconds) with a camera
or scene motion (see Fig. 7) were used as stimuli. The stereoscopic
videos that had disparities processed by our technique and the origi-
nal input videos were played in a loop simultaneously side-by-side
in a random order.

Task Participants were given unlimited time to compare both
videos and answer the question “Which sequence is more 3D?”
Each pair was shown twice, resulting in 8 trials.

Equipment The stimuli were presented using the polarized glasses
technology on a 24′′ Zalman ZM-M240W display with a resolution
of 1920×1080 pixels, at a viewing distance of 60 cm under normal,
controlled office lighting. We used this display technology as it does

not introduce temporal disparity artifacts potentially caused by a
time-sequential presentation as described by Hoffman et al. [2011].
A chin rest was employed to prevent the participant from moving
away from the optimal viewing angle.

Participants 12 participants (3 F, 9 M, 20 to 30 years old) took
part in the study. All of them had normal or corrected-to-normal
vision and passed a stereo-blindness test by describing the content
of several random dot stereograms (RDS). The subjects were naı̈ve
to the purpose of the experiment.

Results The results of the study are presented in Fig. 9a. We
observe a statistically significant (binomial test, p < 0.05) 60.0%
preference of the 3D reproduction in our manipulated results. This
confirms that our method succeeds in providing more depth impres-
sion by redistributing the same disparity budget. The results are
affected by the poor performance in the City flight scene (Fig. 7, 1st
row). We suspect that the relatively small screen coverage of the
plane and great attention given to the city in the background caused
many people to ignore the depth extension of the plane completely,
and instead, focus on detecting small differences in the city. As our
method aims to redistribute the disparity but does not change the
parallax, the total sum of both cues is indeed smaller in the moving
part if investigated in isolation, which was further facilitated by
side-by-side presentation of the stimuli. A saliency predictor could
possibly tackle this problem, but we decided not to include it into
our pipeline to keep it clear and focused.
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Figure 8: Example of disparity compression for autostereo-
scopic displays. a) The original linear compression with the corre-
sponding disparity map and mapping curve shown in the inset. b)
Our manipulation applied on top of (a) to compress stronger regions
that benefit from motion parallax. c) A photo of our display. Aliasing
artifacts are pronounced in the content with only linear mapping
(insets).
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Figure 9: Results of the first validation study comparing a linear
mapping and our proposed method (Sec. 6.1). Confidence intervals
are shown by the error bars and a significance in binomial test for
p < 0.05 by star symbols.

6.2 Modification

Next, we tested the significance of the role of our model in the
proposed method by experimentally reducing its effect. As the
mapping curve predicted by our method forced some regions of
the scenes to be almost flat, we wanted to validate whether such
behavior is appropriate. The goal of the following experiment was
to see whether the scene can benefit if a small amount of disparity
information is present everywhere. To this end, we repeated the
validation study with a modified version of our method. Inspired by
Larson et al. [1997], we adapted their iterative histogram adjustment
algorithm, and used their constraint to guarantee that our mapping
curve will never be less steep than a linear mapping to a target
disparity range of 2.3 arcmin. This choice was motivated by the
fact that most people (97.3%) have stereoacuity below this value
[Coutant and Westheimer 1993]. This effectively guaranteed that
most participants of our experiment should experience at least some
stereo impression for such stimuli. In practice, a small disparity
gradient was added to originally flat regions (Fig. 10).

Stimuli, Task, Equipment and Participants Stimuli presenta-
tion, task and equipment stayed the same as in Sec. 6.1 up to the
modification to our method described above. A partially overlapping

a) b)

Figure 10: Comparison of our proposed algorithm (a) and its
modification evaluated in Sec. 6.2 (b).

group of 12 participants (4 F, 8 M, 20 to 30 years old) took part in
the study.
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Figure 11: Results of the second validation study comparing a
linear mapping and the gradient adjusted mapping (Sec. 6.2). No
significance was observed according to a binomial test for p < 0.05.

Results The results are closer to chance level than previously
(Fig. 9b). This demonstrates that the very small amount of disparity
present in some of our stimuli in the original experiment was jus-
tified. For most of the scenes, the depth impression was reduced
when the just-noticeable disparity was added to some regions, which
effectively reduced this information in other parts of the scene and
limited the effect of our approach. The differences with respect to
the reference became too small to detect. This suggests that motion
parallax not only enhances the perceived depth, but also elevates
detection thresholds. Our model could capture the balance between
motion parallax and disparity well, and therefore, we recommend
our original method (Sec. 6.1) for practical applications.

7 Discussion and limitations

Our experiment in Sec. 3 was performed for isolated motion parallax
and disparity cues, while we apply its outcome for complex images.
Following the modified weak cue integration theory [Landy et al.
1995], which conforms well with many experimental data involving
motion parallax [Howard and Rogers 2012, Ch. 30.2], the agreement
of motion parallax cue with 2D pictorial cues should result in its
possible promotion. This makes our model conservative in the sense
of predicting the minimal amount of perceived depth enhancement
due to motion parallax. The dependency on luminance contrast
was previously integrated into the disparity model of Didyk et al.
[2012b]. The validity of a similar relation for motion parallax still
needs to be investigated.

Our model is also conservative with respect to our strong assumption
on the transformation rigidity (Sec. 4), which ignores any motion par-
allax that can arise from non-rigid relative object motion [Luca et al.
2007]. We relegate to future work the extension of our experimental
model (Sec. 3) to handle such non-rigid relative motion.

Motion parallax is just one of many monocular cues used by the HVS
to estimate depth. In future work, similar depth equivalency models



could be derived for each of them, allowing for a more efficient
disparity allocation. Additionally, this work is only concerned with
the most common lateral motion parallax. Other parallax types have
been described [Howard and Rogers 2012, Sec. 28.1.3] and their
contribution to depth perception should be evaluated.

The City flight scene used in our user study (Sec. 6) demonstrated
that enhancing the disparity gradient in non-salient regions at the
cost of salient regions may not lead to an increase in the overall
perceived depth. A possible extension of our method could account
for this finding by integrating a saliency estimate into the weighting
function in Eq. 18.

We described our method for detection and modeling depth from
motion parallax for cases where all information about the scene is
provided as an input. It is also possible to apply our technique to
natural stereoscopic video sequences, which requires deriving all
needed information using computer vision methods. For example,
pixel disparity can be estimated using standard stereo correspon-
dence methods such as [Brox et al. 2004; Zimmer et al. 2011].
Computing other information, such as depth, positions, a motion
flow, is related to structure-from-motion techniques. While com-
puting this information is non-trivial, a number of techniques exist
which could be used to estimate the information [Szeliski 2010]. We
leave a deeper investigation of the suitability of such methods for
our purposes for future work.

Our model has been measured assuming a perfect match between the
virtual camera and actual observation setups in terms of the field of
view, the observer distance, and so on. In case of significant depar-
tures from such measurement conditions, e.g., in cinematographic
applications, our model might not optimally predict the magnitude of
perceived depth, and possibly new measurements would be required
to accommodate relevant view configurations as well as disparity
and motion parallax ranges in such conditions. Nevertheless, as dis-
cussed in Sec. 3.2, our model is protected against such out-of-range
queries and should always lead to predictable behavior.

8 Conclusions and future work

We presented a method for predicting the impact of motion paral-
lax on scene layout perception. To this end, we first conducted a
psychovisual experiment in which we measured depth induced by
motion parallax and related it directly to depth obtained from binoc-
ular presentation of static stimuli. Based on these measurements,
we proposed a computational model that predicts the induced depth
for complex image sequences. To our knowledge, this is the first
work that tries to analyze and quantify structure perception from mo-
tion parallax for complex image sequences. A big advantage of our
model is the compatibility with previously proposed image and video
processing techniques. As a result, it can be easily incorporated into
those techniques. We demonstrated this on several examples. Our
model is also a significant step towards better understanding of per-
ception for new output devices such as head-mounted or lightfield
displays where motion parallax is an inherent cue obtained from
observers’ head movements.
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