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A B S T R A C T

Predicting the path followed by the viewer’s eyes when observing an image (a scanpath) is a challenging
problem, particularly due to the inter- and intra-observer variability and the spatio-temporal dependencies of
the visual attention process. Most existing approaches have focused on progressively optimizing the prediction
of a gaze point given the previous ones. In this work we propose instead a probabilistic approach, which
we call tSPM-Net. We build our method to account for observers’ variability by resorting to Bayesian deep
learning and a probabilistic approach. Besides, we optimize our model to jointly consider both spatial and
temporal dimensions of scanpaths using a novel spatio-temporal loss function based on a combination of
Kullback–Leibler divergence and dynamic time warping. Our tSPM-Net yields results that outperform those
of current state-of-the-art approaches, and are closer to the human baseline, suggesting that our model is able
to generate scanpaths whose behavior closely resembles those of the real ones.
1. Introduction

Understanding and predicting human visual attention has been an
active research area in computer vision for decades [1–7]. Tradition-
ally, those works have resorted to predicting saliency as a measure
of where attention is going to be directed to. Such prediction usually
builds upon spatial, bottom-up analyses of the image, leading to the
determination of salient areas represented as saliency maps, which are
topographical representations by a scalar quantity of the conspicuity at
every location in the visual field [1–3].

Although this representation may suffice for certain applications,
saliency maps fail to capture the spatio-temporal dependencies of visual
behavior [8,9]. This information is relevant in a varied number of
scenarios, ranging from marketing and product placement, webpage
design or scene design, to analysis of visual pathologies or realistic eye
motion simulation (e.g., for avatar animation). To take into account
such temporal information, a number of works have tackled the prob-
lem of scanpath prediction (see [10] for a review). We formally define
a scanpath as a sequence of consecutive eye movements (i.e., fixations
and saccades) through time and space [11]. As such, for a conven-
tional 2D image 𝐼 , a scanpath is a sequence of gaze points or image
coordinates, {𝑠0,… , 𝑠𝑡}, 𝑠𝑖 ∈ R2.

Previous works either resort to heuristics and hand-crafted fea-
tures [12,13], or to data-driven methods [6,14,15] to perform scanpath
prediction. However, most of the existing methods are designed to
optimize the prediction of a single fixation point 𝑠𝑡 given the previous
points {𝑠0,… , 𝑠𝑡−1} [6]; thus the scanpath is progressively built by
concatenating successive single-point solutions. While this strategy can
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useful for several applications such as foveated rendering [16,17], it
may lead to increasing deviations from actual human viewing behavior
and scanpath plausibility [18], and falls short to model the large inter-
and intra-observer variability [19,20].

In this paper we present tSPM-Net, a method to predict full, plausible
scanpaths given an input image 𝐼 (see Fig. 1). We leverage the fact that,
despite the inter- and intra-observer variability, common patterns and
behaviors do emerge when humans observe certain content [21,22].
Thus, we focus on modeling a distribution of scanpaths within this
common behavioral space. This distribution can then be sampled to
generate individual scanpaths, where every sampled scanpath rep-
resents a different, yet plausible, potential observer that maintains
human behavioral patterns. To handle spatio-temporal information,
and as is common in related problems, we rely on convolutional
long short-term memory networks (ConvLSTM) [23]: Their recurrent
architecture is well suited to capture the temporal dependency of
each predicted point in a scanpath, while their convolutional nature
has proven to be successful handling problems with both spatial and
temporal dependencies.

Different from previous works, to obtain the distribution of plau-
sible scanpaths we explicitly incorporate the inherent uncertainty of
the problem into our model, and build our ConvLSTM module upon
Bayesian deep learning [24], which has already been shown to be
effective in related problems like head trajectory prediction in om-
nidirectional images [25]. Consistent with this explicit modeling of
uncertainty, we do not learn gaze points for each temporal instant, but
rather probability distributions, representing scanpaths as a sequence
of what we define time-evolving scanpath probabilistic maps (tSPMs, see
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Fig. 1. Overview of this work. We present a convolutional recurrent approach to scanpath prediction. Our model relies on Bayesian deep learning, a spatialized representation
f scanpaths, and a novel loss function. We propose a spatio-temporal loss function based on a combination of the Kullback–Leibler divergence and dynamic time warping and
redict time-evolving scanpath probabilistic maps (tSPM), well suited to the stochastic nature of human scanpaths. Our generated scanpaths maintain the spatial and temporal
haracteristics of human scanpaths and outperform previous state-of-the-art approaches. An overview of the model is shown in Fig. 2.
ig. 1). Some previous approaches have already shown the benefits of
sing such a spatialized representation [26]. Additionally, we introduce
novel loss function for joint spatio-temporal optimization, which

ombines the benefits of the Kullback–Leibler divergence and dynamic
ime warping (DTW). The loss is computed over the full set of tSPMs
hat form a scanpath.

Our resulting trained model is able to generate a distribution of
lausible scanpaths for a given input image, where each scanpath
imics the visual behavior of a different human observer. We have

alidated our model both qualitatively and quantitatively, including
n exhaustive set of existing metrics accounting for different scanpath
haracteristics [18]. Our model outperforms the state of the art over-
ll, being closer to the human baseline. We also validate our design
hoices (Bayesian deep learning approach and loss function) through
blation studies. We will make our code and model publicly available
o encourage future research.

. Related work

.1. Saliency prediction

First approaches towards modeling human attention were based on
aliency, as a measure of how much each part of a scene attracts human
ttention. The seminal work by Itti et al. [1] established the basis
f visual attention prediction in images, by extracting hand-crafted
eatures to generate a saliency map. This work inspired many posterior
pproaches (e.g., [27,28]) which were also based on the computation
f conspicuity maps for different visual features (such as color, inten-
ity, orientation of edges, or faces), which were then combined into

final saliency map. Other approaches included multiple semantic
egmentation and surroundness analysis [29], or known human priors
uch as center bias or horizon line detectors [30], to improve saliency
rediction.

With the proliferation of deep learning techniques and the ap-
earance of public datasets [20,31,32], data-driven methods emerged,
ielding impressive results. These methods were mostly based on con-
olutional neural networks (CNN) that extract latent features from
hich to infer saliency [33–36]. Other approaches also leveraged the
dvances of generative networks [37,38] and recurrent neural net-
orks [39,40]. None of these works, however, take into account the
ynamic nature of gaze behavior, not being able to model the temporal
imension of human attention.

.2. Scanpath prediction

Scanpath models usually aim to progressively build a scanpath by
oncatenating single-point predictions, which may be partially based
n the previous points of the path. Ellis and Smith [21] presented a
ramework based on Markov stochastic processes. Later, other works
roposed approaches that included known human biases, (such as the
enter bias, or human oculomotor constraints) [12,13,41,42]. Data-
riven methods provide faster and more precise approaches, for in-

tance using existing saliency prediction methods as a proxy to scanpath

2

prediction, by means of winner-takes-all and inhibition-of-return strate-
gies [6], by sampling heuristics [15,43], or simply leveraging deep
features from neural networks [34].

Scanpath prediction methods can be roughly categorized into (i)
biologically inspired, (ii) statistically inspired, (iii) cognitively inspired,
and (iv) engineered models [10]. Biologically inspired models take
into account the importance of low-level features [1,44,45], visual
working memory [46], attention and inhibition-of-return [47], or neu-
ropsychology [48]. Statistically inspired models try to mimic certain
statistical properties of human scanpaths [19,38,49–51]. Cognitively
inspired models assume that other cognitive processes besides low-
level features can drive observers’ attention, and therefore implement
different human mechanisms such as low-level saliency, semantic and
spatial effects [41] or region-of-interest and inhibition-of-return [6].
Finally, engineered models exploit the ability of data-driven techniques
to fit to given data [7,14,43,52–54].

With this surge of data-driven approaches, and motivated by the
temporal dependencies that human viewing behavior presents, some
works have resorted to recurrent neural networks (RNN), which are
capable of encoding previous information, and leveraging it to formu-
late a prediction [17]. However, scanpath prediction requires handling
temporal and spatial information. To account for both, some recent
approaches have built their models following ConvLSTM strategies [6,
55–57], where convolutional operators handle spatial features while
LSTM architectures enable learning temporal information.

However, the aforementioned works either resort to saliency (which
is not usually available as ground truth) [1,6,15,19,54], or are trained
to optimize single-point predictions, by means of direct losses such as
MSE [52] or BCE [6], and thus do not concern themselves with the
plausibility of the scanpath as a whole. Closer to our work, Kum-
merer et al. [26] recently presented DeepGaze III, a DL-based approach
for scanpath prediction. However, they optimize each predicted point
based on a conditional probability on the previous history, rather than
optimizing the whole scanpath with respect to the whole distribution of
plausible scanpaths. Recently, the work of Martin et al. [9] presented
a scanpath generation method for 360◦ content, where the model was
optimized by means of a dynamic time warping loss function on the
whole distribution of ground-truth scanpaths, rather than on a single-
point solution, and was hence able to learn and mimic latent behaviors
in its predictions.

In this work, and endorsed by previous literature, we resort to con-
volutional recurrent networks, but overcome the limitations of single-
point prediction approaches by combining a novel loss function that
combines dynamic time warping and Kullback–Leibler divergence, and
a probabilistic approach. The loss function enables focusing on both
the temporal and spatial aspects of the whole scanpaths, and optimizes
our model over the whole distribution of real scanpaths, while our
probabilistic approach accounts for the inherent human variability.

3. Our model

Our model, coined as tSPM-Net, performs probabilistic scanpath

prediction given a single 2D image as input. The model, based on
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Fig. 2. Overview of our model. We represent our scanpaths as Gaussian maps to enhance spatial learning (see Section 3.1). We leverage a pretrained VGG19 and a pretrained
semantic segmentator based on ResNet50 to extract meaningful visual features from the image. We then combine those features and the spatialized scanpath with a CoordConv
layer, to facilitate the learning of spatial features. This input is fed to a multi-layer convolutional LSTM module that iterates over the scanpath and predicts the next fixation, until
a scanpath of the target length is generated. We compute a loss based on dynamic time warping and Kullback–Leibler divergence (see Section 3.3) to optimize our model in a
joint spatio-temporal fashion. The outcome of our model is a tSPM sequence (see also Fig. 4).
a
d
a
g
r
w
T
c
t

3

r
t
t
c
l
B
b
v

i
r
a
m
t
c
n

Fig. 3. An example of our spatialized scanpath representation. The top left image
shows a RGB image with a sample ground-truth scanpath overlaid. For that sample
ground-truth scanpath, we transform each fixation point into a Gaussian map centered
at that particular point (see Section 3.1).

recurrent neural networks, is described in detail in this section: we
introduce the representation we employ for the scanpaths (Section 3.1),
a novel loss function that is able to optimize our scanpaths in a joint
spatio-temporal fashion (Section 3.3), and our model architecture in
depth (Section 3.4).

3.1. Scanpath representation

Scanpaths have been traditionally defined as a sequence 𝑠 = {𝑠0, 𝑠1,
.., 𝑠𝑁−1} of gaze points,1 where 𝑠𝑖 = (𝑥𝑖, 𝑦𝑖), and (𝑥𝑖, 𝑦𝑖) are the image
oordinates of that particular gaze point.

However, there is no single ground-truth scanpath for an image [1];
canpaths exhibit both inter- and intra-observer variability. Despite
haring some behavioral patterns [12], not all observers will explore
he image in exactly the same way, thus resulting in many different, yet
lausible scanpaths for the same image. Indeed, an observer watching
he same image twice may follow slightly different scanpaths, and,
ven if asked to follow a certain path, there is a ballistic or noisy

1 In our case, and following common practice [6,14,34], the points in a
canpath correspond to fixation points.
 a

3

component in ocular movements (e.g., saccades or post-saccadic oscil-
lations [58]), that results in different gaze points. As a result, scanpaths
are non-deterministic.

Additionally, the aforementioned representation usually falls short
for problems where it is necessary to establish a relationship between
those coordinates and the position of features within an image. Indeed,
convolutional networks are trained to be shift-invariant [59], and
forcing them to explicitly learn the relation between a sequence of
gaze point coordinates and the actual positions of image features is
challenging and hinders the training process.

Given this variability, and in order to facilitate the spatial learn-
ing of the network, instead of representing each gaze point with its
coordinates, 𝑠𝑖 = (𝑥𝑖, 𝑦𝑖), a more adequate representation for gaze at

time instant is a Gaussian distribution 𝑔𝑠𝑖 centered in (𝑥𝑖, 𝑦𝑖), and
efined over the whole image. In each distribution 𝑔𝑖, there is thus
value 𝑔𝑖(𝑥, 𝑦) per pixel (𝑥, 𝑦), which represents the probability of a

aze point falling at pixel (𝑥, 𝑦) at time step 𝑖. A scanpath 𝑠 is therefore
epresented as a sequence 𝑔𝑠 = {𝑔𝑠0, 𝑔

𝑠
1, ..., 𝑔

𝑠
𝑁−1} of Gaussian maps 𝑔𝑠𝑖 ;

e term a scanpath represented in this way a spatialized scanpath.
his representation facilitates spatial learning by providing a direct
orrelation between a scanpath and its corresponding image. We depict
his representation in Fig. 3.

.2. Overview of the model

Our model (see Fig. 2) is based on ConvLSTMs [23], a type of
ecurrent cell. ConvLSTMs maintain the recurrent nature of tradi-
ional LSTMs, processing data in a sequential manner, learning the
emporal features of the data. Additionally, they are provided with
onvolutional operators that handle visual information and facilitate
earning spatial features in the input sequence. Further, we resort to a
ayesian approach when modeling the ConvLSTM module, in order to
etter incorporate the uncertainty driven by inter- and intra-observer
ariability.

As explained in Section 3.1, we model gaze behavior using probabil-
ty maps. Thus, the output of our ConvLSTM module is not a point, but
ather a probability map (see Fig. 2). Our whole model predicts, given
n input image, a sequence of time-evolving scanpath probabilistic
aps (tSPM) (see Fig. 4). Each tSPM represents the probabilities of

he next gaze fixation point falling on each pixel of the image at a
ertain time instant. We build our model leveraging pretrained neural
etworks on image classification tasks to facilitate feature extraction,

nd CoordConv layers to improve learning of spatial features.
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Fig. 4. We show, for two given test images, the evolution of our predicted time-
evolving scanpath probabilistic maps (tSPM, see Section 3.2) over time. Our Bayesian
approach enables a probabilistic weight selection for the next fixation, and allows our
model to be stochastic, while the ConvLSTM module allows taking into account the
previous fixations (see Section 3.4).

3.3. Loss function

As stated in Section 2, previous deep learning-based approaches
have designed their models either to predict a saliency map (which
neglects the temporal dimension of gaze) or to optimize the prediction
of a gaze point at each time step, with element-wise loss functions,
such as mean squared error (MSE) or binary cross-entropy (BCE), that
penalize the prediction for each point in isolation (which neglects the
nter- and intra-variability of viewing behaviors).

In contrast, we propose a novel loss function based on the Kullback–
eibler divergence and dynamic time warping, computed over the
hole scanpath. The former allows our model to account for the spatial

elations between gaze points, while the latter ensures a realistic and
lausible temporal behavior of the predicted scanpaths.

Kullback–Leibler Divergence (KL-Div) KL-Div is a well-known measure
f how different a probability distribution is from another one, and
s one of the most commonly used losses in saliency prediction prob-
ems [55,60–62]. The Kullback–Leibler divergence (𝐷𝐾𝐿) is defined as:

𝐷𝐾𝐿(𝑃 ∥ 𝑄) =
∑

𝑗
𝑃 (𝑗)𝑙𝑛

𝑃 (𝑗)
𝑄(𝑗)

, (1)

where 𝑃 and 𝑄 are the probability distributions to be compared, and
𝑗 refers to each point of the distribution. In our particular case, each
gaze point is represented in a spatialized manner, hence KL-Div is able
to give a quantitative measurement on how different two gaze points
are based on their probability maps.

Dynamic Time Warping (DTW) DTW is a measure of similarity be-
tween two time series that may differ in length or speed [63]. The
DTW algorithm attempts to find the optimal match between the points
of two temporal sequences, 𝑟 and 𝑠, by matching each point in one
of them with at least one point in the other, without forcing a one-
to-one correspondence between both sequences. The optimal match
is found by minimizing a cost function: a distance matrix 𝛥 stores
the cost (Euclidean distance) for each possible pair of points, and the
optimization searches for the matching (alignment) between 𝑟 and 𝑠
such that the total cost is minimized. This can be written as:

𝐷𝑇𝑊 (𝑟, 𝑠) = min
𝐴

⟨𝐴, 𝛥(𝑟, 𝑠)⟩, (2)

where 𝐴 is a binary alignment matrix between two time series 𝑟
and 𝑠, 𝛥(𝑟, 𝑠) = [𝛿(𝑟𝑖, 𝑠𝑗 )]𝑖,𝑗 is a matrix containing the distances 𝛿(⋅, ⋅)
between each pair of points in 𝑟 and 𝑠, and ⟨⋅, ⋅⟩ denotes the inner
product between both matrices. Since the minimum function is not
differentiable, a soft version has been proposed [64]:

𝐷𝑇𝑊 𝛾 (𝑟, 𝑠) = min
𝐴

𝛾
⟨𝐴, 𝛥(𝑟, 𝑠)⟩, 𝛾 > 0 (3)

The soft-min function min𝛾 is defined as:

min𝛾 (𝑎1,… , 𝑎𝑁 ) = −𝛾 𝑙𝑜𝑔
𝑁
∑

𝑒𝑥𝑝
(

−
𝑎𝑖
)

, (4)

𝑖=1 𝛾

4

with the 𝛾 parameter adjusting the similarity between the soft version
and the original DTW algorithm, both being the same when 𝛾 = 0.
Eq. (3) has been used successfully as a loss term in related contexts,
such as scanpath generation for virtual reality [9] or weakly supervised
action alignment and segmentation in videos [65].

Our Joint KL-DTW Loss While KL-Div accounts for the spatial similar-
ity of two distributions, and DTW focuses on the temporal dimension,
none of them suffices on its own in our particular case. We therefore
propose a novel loss function, based on a combination of both KL-Div
and DTW, and defined as follows:

𝐾𝐿−𝐷𝑇𝑊 (𝑟′) =
∑𝑆

𝑠=1 𝐷𝑇𝑊 𝛾 (𝑟′, 𝑠)
|𝑆|

, (5)

here 𝑟′ is a predicted sequence of tSPMs (see Section 3.2), and 𝑠 is a
round-truth scanpath from the set of ground-truth ones 𝑆 for a given
mage 𝐼 . 𝐷𝑇𝑊 𝛾 is computed as given by Eq. (3). However, we modify
he computation of the distance matrix 𝛥(𝑟′, 𝑠) = [𝛿(𝑟′𝑖 , 𝑠𝑗 )]𝑖,𝑗 such that,
nstead of 𝛿 being an Euclidean distance, we have:

(𝑟′𝑖 , 𝑠𝑗 ) = 𝐷𝐾𝐿(𝑟′𝑖 ∥ 𝑔𝑠𝑗 ), (6)

here 𝑟′𝑖 is the 𝑖th predicted tSPM, 𝑔𝑠𝑗 is the spatialized representation
f point 𝑠𝑗 as described in Section 3.1, and 𝐷𝐾𝐿 is the Kullback–Leibler
ivergence (Eq. (1)).

This formulation allows our model to be optimized to find an
lignment that minimizes both the spatial and the temporal differences

between each predicted scanpath and the ground-truth ones, therefore
predicting scanpaths that follow a similar distribution as the ground
truth. To our knowledge, we are the first to propose such a combination
of metrics.

Bias Regularization Term Human gaze data in 2D images is known
to be strongly biased towards the center of the images [12]. Although
inherent to human nature, such bias hinders the learning process of the
network, which can easily overfit to that behavior. Based on this, we
include a regularization loss term that penalizes scanpaths whose points
tend to stay in the center of the image for a long time, hence eliciting
a more exploratory behavior that better reflects ground truth data.
Our regularization term is included in the pairwise cost computations
𝛿(𝑟′𝑖 , 𝑠𝑗 ) for the distance matrix 𝛥, modifying Eq. (6) as follows:

𝛿(𝑟′𝑖 , 𝑠𝑗 ) = 𝐷𝐾𝐿(𝑟′𝑖 ∥ 𝑔𝑠𝑗 ) + 𝜆𝐶𝐵 ∗ 𝑅𝑒𝑔(𝑟′𝑖) (7)

𝑅𝑒𝑔(𝑟′𝑖) =
1

𝐷𝐾𝐿(𝑟′𝑖 ∥ 𝑔𝑐 )
, (8)

where 𝑔𝑐 is a Gaussian map representing the aforementioned center
bias, computed following the representation introduced in Section 3.1
for a point 𝑐 in the center of the image, and 𝜆𝐶𝐵 is a regularization
weight to mimic human center bias behavior, which penalizes scan-
paths that tend to stay in the center of the image for a long time.
In order to set the relative weight of 𝜆𝐶𝐵 , we analyzed the datasets
used throughout this work (see Section 3.5), and found that this center
bias behavior diminishes over time, with fixations being more widely
spread over the image in later time instants. We measured the standard
deviation of fixation positions in the ground-truth data, and found them
to increase logarithmically over time (𝑅2 = 0.855); we hence increase
𝜆𝐶𝐵 in the same way (see Fig. 5).

3.4. Model architecture

Our model features a recurrent neural network (RNN), which is
able to extract and maintain temporal latent information from the
scanpaths it is trained with. As introduced in Section 3.2, we choose
a convolutional long short-term memory (ConvLSTM) network [23],
which is an adaptation of classic LSTMs to work with 2D data, such
as images. This type of network has proven to be effective in many
different problems, such as weather forecasting [23], video saliency de-
tection [66], or medical image segmentation [67]. ConvLSTMs behave
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Fig. 5. We have analyzed that bias in the datasets used in this work [12] and found
hat this behavior diminishes over time. (a) Distribution of scanpath fixations in two
ifferent time instants for the whole training dataset. (b) We have computed the
tandard deviations of fixations (y-axis) over time (x-axis) for all the ground-truth
canpaths (in orange) and found they increase in a logarithmic fashion (the fitted
urve is shown in purple).

n a similar way to traditional LSTMs, working over four different gates;
owever, since they handle spatial data, they conduct convolutional
perations rather than lineal ones. The ConvLSTM used in this work
s inspired by the work of Xingjian et al. [23], and follows a similar
ormulation as the one proposed by Blundell et al. [68], so we thus
efer the reader to those works for an in-depth explanation of the used
onvLSTM architecture.

In our particular case, there is a degree of stochasticity driven by the
nter- and intra-observer variability. As a result, instead of predicting
he next point in a deterministic manner, we predict a probability
ap (i.e., the previously introduced tSPM). Further, we combine the

forementioned ConvLSTM with Bayesian deep learning [24,69]. Un-
ike traditional deep learning (DL), where the weights of the network
re deterministic, in Bayesian DL the weights of a particular layer are
ampled from a probability distribution, and thus the network itself can
ccount for the inherent uncertainty of the data [24]. During network
raining, those weight distributions are also optimized. In our case,
e substitute each convolutional operation of the ConvLSTM with a
ayesian 2D convolution.

Instead of feeding our Bayesian ConvLSTM with the raw images,
e preprocess them to facilitate the learning process and enhance
ur model’s performance. For this, we first extract the main image
eatures with a pretrained VGG19 [70,71], and a semantic segmenta-
ion mask with a pretrained ResNet50 [72], which has already been
hown to improve the overall network ability to focus on the rele-
ant features [6,73]. We show some examples of this intermediate
tep in the supplementary material. We then convolve both of them
ogether to obtain a final, comprehensive, single-channel image feature
epresentation. At each time step, this feature representation is fed
o the ConvLSTM alongside with (i) the corresponding Gaussian map
epresenting a fixation, and (ii) a CoordConv layer [59] (see Fig. 2).
oordConv layers have proven to ease spatial learning and facilitate
etwork convergence. With this input, our network is able to predict a
SPM for each time step. Then, we probabilistically sample such a map
o obtain the next fixation. We repeat this procedure until the whole
canpath is predicted. Our model is composed of approximately 185M
arameters and takes less than a second to predict a new scanpath.

.5. Datasets and training details

As stated in this section, our model predicts a tSPM (time-evolving
canpath probabilistic map) at each time step. Then, to choose the
ctual pixel where the gaze point will fall, we follow a probabilistic
eighted sampling strategy, that again accounts for the stochastic
ature of human visual exploration. We first discard all pixels with a
robability lower than a threshold 𝑡ℎ = 0.7 (see Section 4 for additional
5

details and evaluation on this), and then sample the next point based
on the predicted map’s probabilities. Once a point 𝑠𝑖 = (𝑥𝑖, 𝑦𝑖) has been
sampled, a Gaussian map centered in (𝑥𝑖, 𝑦𝑖) is again computed, and fed
o the network for its posterior predictions, until the whole scanpath is
redicted.

Following previous work [6], we train our model over the OSIE
ataset [74], which contains 700 different images with their corre-
ponding gaze information for a total of fifteen observers, yielding a
otal of approximately 10,500 scanpaths. We again follow previous
ork [6] and discard all the scanpaths with 𝑁 < 4, and generate scan-
aths of length 𝑁 = 8, which is the mean length of our ground-truth
ata.

For the rest of the scanpaths, in order to train our model, we
reprocess each to follow the representation introduced in Section 3.1.
o validate our model, and again inspired by previous approaches [6],
e use the MIT low-resolution dataset [75], which contains 168 natural

mages that were shown to 64 observers. Please refer to Section 4 for
urther details on our validation.

We trained our model using the Hydra [76] and Pytorch Light-
ing [77] frameworks for PyTorch, logging and checkpointing all the
ecessary parameters to restore the training process at any point. We
se the Adam optimization algorithm [78]. The learning rate has a
alue of 10−4, and we set batch size to 1. We trained our model on
Nvidia RTX 2080 Ti with 11 GB of VRAM until convergence, for a

otal of 22 h.

. Evaluation

We evaluate the quality of our scanpaths against measured, ground-
ruth scanpaths, as well as comparing to other existing scanpath pre-
iction methods, using a variety of scanpath similarity metrics (Sec-
ion 4.1). We also analyze the variability of our generated scanpaths
Section 4.3), whether our predicted scanpaths converge to ground-
ruth saliency, and the performance of our model for iterative fixation
rediction (Section 4.2). Finally, we include ablation studies that justify
ur model choices (Section 4.4).

.1. Comparison to other approaches

We rely on the comprehensive set of metrics proposed by Fahimi
nd Bruce [18], which includes similarity measures from string align-
ent (Levenstein distance and ScanMatch), curve similarity (Haus-
orff distance and discrete Frechet distance), time-series analysis (fast
ynamic time warping and time delay embedding), and recurrence
nalysis. Following previous literature in scanpath prediction [6], we
alidate our model with the MIT low resolution dataset [75], and we
enerate ten scanpaths per image for such test set with our method
nd with each of the methods we compare to: Itti et al. [1], LeMeur
t al. [12], IOR-ROI [6], and the recent work from Chen et al. [7].
canpath length is determined by the mean length of ground-truth
ata [6].

A qualitative comparison can be seen in Fig. 6, while Table 1 shows
he quantitative comparisons. For reference, we also include in the table
human baseline (Human BL) [38] by computing the same metrics for

ll the ground-truth scanpaths, plus a random baseline (Random BL)
enerated from random scanpaths. Our model is closest to the Human
L for seven of the ten metrics, and second in the remaining three.
he qualitative comparisons in Fig. 6 illustrate some of the problems
f other methods: models based on inhibition of return [6] or inspired
y biological mechanisms [1] can lead to an unnatural back-and-forth
ehavior in certain cases. LeMeur et al.’s method [12] is closer in
erformance to ours, but ours still yields better results, potentially
ecause their framework relies on a bottom-up saliency estimation from
hich scanpaths are then generated, while ours directly learns the

canpaths from the data. Finally, Chen et al.’s model [7] does a good job
t identifying the main salient areas, but then has a tendency to stick
o those and does not offer the rich variability present in the ground
ruth. Additional qualitative results can be found in the supplementary
aterial.
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Fig. 6. Comparison to other approaches for scanpath prediction. Each row shows representative scanpaths for a certain image; from left to right: ground truth, our method, the
IOR-ROI model from Sun et al. [6], Itti et al.’s model [1], LeMeur et al.’s method [12], and Chen et al.’s method [7]. Our model generates scanpaths that present realistic variability
and plausible exploration trajectories. Note that this figure only contains one sample scanpath per method for illustrative purposes. A more thorough analysis can be found in the
main text. Please refer to Table 1 for quantitative metrics, and to the supplementary material for additional qualitative results.
Table 1
Results of our quantitative comparisons. We first include upper (human baseline, Human BL) and lower (random scanpaths, Random BL) baselines for reference. Then, we compare
o Itti et al. [1], LeMeur et al. [19], Sun et al.’s IOR-ROI [6], and Chen et al. [7]. Boldface and underline highlight the best and second best results, respectively. Overall our
odel (𝑡ℎ = 0.7) yields the best performance across metrics, closest to the human baseline.
Model String alignment Curve similarities Time-series analysis Recurrence analysis

Lev. Dist. ↓ ScanMatch ↑ Hausdorff Dist. ↓ Frechet Dist. ↓ fast DTW↓ T. D. Emb. ↓ Recurrence ↑ Determinism ↑ Laminarity ↑ CORM ↑

Human BL 10.77 (1.61) 0.38 (0.06) 95.97 (18.40) 140.02 (26.16) 550.84 (133.71) 42.40 (8.45) 6.69 (3.74) 1.72 (1.51) 6.09 (6.01) 22.11 (7.41)
Random BL 12.31 (0.88) 0.20 (0.02) 148.01 (13.76) 199.30 (13.63) 877.15 (71.66) 69.87 (4.34) 0.73 (0.34) 0.02 (0.09) 0.19 (0.25) 3.79 (1.74)

Itti et al. 14.04 (0.80) 0.23 (0.05) 160.09 (29.31) 207.97 (27.21) 1041.16 (153.97) 63.88 (9.54) 1.02 (1.98) 0.04 (0.22) 0.62 (2.03) 5.84 (6.00)
LeMeur et al. 12.58 (0.78) 0.35 (0.04) 104.84 (12.79) 163.59 (20.52) 669.67 (108.49) 39.75 (6.53) 2.39 (1.18) 0.40 (0.48) 2.09 (2.26) 12.54 (4.45)
IOR-ROI 13.26 (0.71) 0.30 (0.05) 115.50 (20.22) 166.07 (21.69) 777.75 (119.46) 46.98 (7.18) 1.80 (0.98) 0.18 (0.31) 0.81 (1.35) 10.28 (4.43)
Chen et al. 13.04 (1.14) 0.31 (0.07) 109.18 (27.38) 149.32 (33.03) 682.80 (183.11) 46.90 (12.55) 3.29 (3.58) 0.62 (1.10) 6.10 (7.46) 11.70 (8.05)
Ours 11.47 (1.13) 0.34 (0.06) 103.44 (27.13) 144.77 (32.77) 610.02 (155.96) 43.74 (10.25) 3.52 (2.86) 0.64 (0.84) 5.05 (4.96) 13.95 (7.92)
4.2. Additional evaluation

Spatial Convergence and Saliency We have analyzed whether our
scanpaths are able to converge to saliency, i.e., whether a robust
saliency map can be computed from our generated scanpaths. We have
computed such maps by aggregating multiple scanpaths into a heatmap;
we have then compared them against the ground-truth saliency maps
computed from real observers’ data. Fig. 8 depicts this comparison for
four different images. We have also computed three well-known metrics
for saliency evaluation (CC = 0.49 ± 0.21, KLDiv = 1.88 ± 1.18, SIM

0.49 ± 0.12), showing results that closely resemble the ground truth
nd are on par with the ability to converge to saliency of previous
orks in scanpath prediction that explicitly include a module trained
ith ground truth saliency maps [6].

Step-wise Fixation Prediction As mentioned in Section 2, most existing
orks take an incomplete scanpath as input, and predict the next

fixation point. They thus build each scanpath progressively, usually
by optimizing only the prediction of that last point (e.g., by means of
MAE [53] or MSE [17] losses). Although this approach neglects the
plausibility of the full scanpath as a whole, it may be useful in some
cases. Our proposed spatio-temporal loss and probabilistic framework
6

also offer a precise alternative in these situations. Table 3 shows
quantitative results for paths of varying lengths: # represents points
from the ground-truth scanpath fed to our network, while × represents
points predicted with our model. Our method produces plausible results
from a single ground-truth point, and very quickly approximates the
human baseline with only four.

4.3. Scanpath variability

The output of our model is a sequence of probability maps (tSPMs),
which is then sampled to produce the individual scanpaths. This allows
us to adjust the variability of the generated scanpaths when doing the
sampling by using a threshold 𝑡ℎ over the probability map: probabilities
below 𝑡ℎ will not be sampled; thus, higher values of 𝑡ℎ lead to more
similar scanpaths, while lower ones allow our scanpaths to simulate
more exploratory visual behaviors. Fig. 7 illustrates this. In addition,
we have conducted a quantitative analysis (see Table 2) showing how,
even when eliciting a more exploratory behavior by decreasing 𝑡ℎ, our
scanpaths still outperform most previous works and remain close to the
human baseline.
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Fig. 7. We evaluate the ability of our model to generate scanpaths with higher variability. Our model has a stochastic nature, and generates scanpaths by probabilistically sampling
the predicted tSPM (see Section 3.2). Any point with a probability below a specified threshold 𝑡ℎ will be discarded before sampling. Here we show that varying 𝑡ℎ leads to different,
yet realistic behaviors (see also Table 2).
Table 2
Analysis and ablation studies of our model. We first include again upper (human baseline, Human BL) and lower (random scanpaths, Random BL) baselines for reference. The next
hree rows show results varying our threshold 𝑡ℎ. Arrows indicate whether higher or lower is better; boldface highlights the best result for each metric. We show how decreasing
he value of our parameter 𝑡ℎ (thus leading to more variability in our scanpaths) still leads to good results (see Section 4.3 for details). Finally, the last two rows show the effect
f our two main design decisions, our loss function and the Bayesian 2D convolutions (see Section 4.4).
Model String alignment Curve similarities Time-series analysis Recurrence analysis

Lev. Dist. ↓ ScanMatch ↑ Hausdorff Dist. ↓ Frechet Dist. ↓ fast DTW↓ T. D. Emb. ↓ Recurrence ↑ Determinism ↑ Laminarity ↑ CORM ↑

Human BL 10.77 (1.61) 0.38 (0.06) 95.97 (18.40) 140.02 (26.16) 550.84 (133.71) 42.40 (8.45) 6.69 (3.74) 1.72 (1.51) 6.09 (6.01) 22.11 (7.41)
Random BL 12.31 (0.88) 0.20 (0.02) 148.01 (13.76) 199.30 (13.63) 877.15 (71.66) 69.87 (4.34) 0.73 (0.34) 0.02 (0.09) 0.19 (0.25) 3.79 (1.74)

Ours (th = 0.7)a 11.47 (1.13) 0.34 (0.06) 103.44 (27.13) 144.77 (32.77) 610.02 (155.96) 43.74 (10.25) 3.52 (2.86) 0.64 (0.84) 5.05 (4.96) 13.95 (7.92)
Ours (th = 0.5) 11.60 (0.98) 0.33 (0.06) 103.97 (23.23) 149.37 (30.09) 636.08 (146.44) 45.46 (10.30) 3.01 (2.28) 0.50 (0.58) 3.14 (2.85) 12.96 (6.73)
Ours (th = 0.35) 13.26 (0.71) 0.30 (0.05) 102.17 (19.77) 149.99 (28.42) 639.07 (138.27) 45.77 (9.63) 2.82 (2.09) 0.44 (0.54) 2.43 (2.59) 12.88 (6.21)

DTW w/o KLDiv 13.48 (0.59) 0.13 (0.03) 169.21 (15.87) 224.89 (13.08) 1134.56 (63.00) 79.74 (4.07) 0.36 (0.25) 0.01 (0.08) 0.13 (0.30) 2.45 (1.61)
w/o DTW 11.54 (1.17) 0.32 (0.08) 115.18 (33.23) 149.12 (36.60) 639.75 (177.56) 49.66 (13.48) 3.37 (3.17) 0.58 (0.90) 4.48 (4.77) 12.88 (8.05)
w/o Bayesian 11.57 (1.08) 0.34 (0.06) 104.77 (23.76) 149.16 (29.56) 628.47 (148.55) 44.12 (10.22) 3.29 (2.60) 0.64 (0.81) 4.87 (4.92) 13.05 (7.84)

a 𝑡ℎ = 0.7 for the last two rows.
Fig. 8. We evaluate the spatial convergence of our predicted scanpaths: Our model
generates scanpaths that focus on salient regions, and whose aggregation closely
resembles ground-truth saliency maps.
7

Table 3
We have evaluated the ability of our model to complete sequences of scanpaths whose
first 𝑛 points are known: # represents such 𝑛 points from the ground-truth scanpath
(i.e., points that are already known), and × the points predicted with our model.
Each row is computed by completing every scanpath on our test set 10 times (see
Section 4.2). The first and last rows show a random baseline and the human baseline,
respectively.

Scanpath SCAM↑ HAU↓ fDTW↓ REC↑

Random BL 0.21 192.96 703.19 0.72

# × × × × 0.42 131.02 421.72 5.16
# # × × × 0.44 129.52 407.57 6.32
# # # × × 0.46 128.81 393.83 6.99
# # # # × 0.47 129.03 381.93 7.24

Human BL 0.49 126.73 387.75 7.17

4.4. Ablation studies

We have analyzed the effectiveness of the different elements that
compose our model, and in particular of our main contributions: the
loss function and the Bayesian convolutions. We (1) train our model
on a loss function based only on KL-Div (and thus not using DTW, as
indicated in Section 3.3), and (2) on a version with DTW using a basic
MSE. Besides, we (3) train another variant using traditional convolu-
tions instead of Bayesian ones in our ConvLSTM module (Section 3.4).
Quantitative results of the three aforementioned studies can be found
in the last three rows of Table 2: the combination of DTW and KL-Div
and the Bayesian approach are key to the performance of our model.

5. Discussion and future work

Our work is not free from limitations and offers interesting avenues
for future work. Since we rely on an intermediate segmentation process,
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Fig. 9. When the visual features of an image are complex or too abstract, our model’s
performance diminishes: It sometimes fails to localize the areas of interest, or remains
within the same areas for several fixations. Feeding our model with larger datasets
with more varied images would probably make it more robust to these cases.

performance decreases when the input image is too abstract or complex
(see Fig. 9). The inclusion of additional cues, such as depth information,
could potentially improve the results in such situations.

Using a larger dataset and more ground-truth data would also likely
ameliorate this. Adding more behavioral priors may also be helpful,
although the difficulty resides in finding out which priors would apply
in the presence of complex visual content. A more comprehensive un-
derstanding and modeling of viewing behavior uncertainty still remains
an open problem. Further investigating how Bayesian deep learning
could alleviate this remains an interesting avenue. Finally, our model
has been shown to yield scanpaths with better spatial behavior than
previous approaches; adding explicit modeling of the duration of the
fixations and finding suitable loss functions could further enhance its
performance.

6. Conclusion

We have presented a novel method for scanpath prediction in 2D
images, generating a distribution of scanpaths whose behavior resembles
that of real observers, while maintaining the inter- and intra-variability
that exist amongst different viewers. To achieve this, we resort to
Bayesian deep learning, and follow a probabilistic approach. Besides,
we introduce a novel loss function tailored to the spatio-temporal par-
ticularities of scanpaths, based on a combination of dynamic time warp-
ing and Kullback–Leibler divergence. We have evaluated our model
and compared it to state-of-the-art methods on a large set of metrics
that analyze different aspects of scanpaths, showing that our model
outperforms previous approaches.
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