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Figure 1: Example frame from the movie The People’s House produced by Felix & Paul Studios used to study how people explore
professionally edited 360° movies. For analyzing how users behave across movie cuts, we start from head orientation data (left),
and we take into account visual attention priors in order to compute saliency maps (right) describing users’ gaze.

ABSTRACT

Virtual Reality (VR) has grown since the first devices for personal
use became available on the market. However, the production of
cinematographic content in this new medium is still in an early ex-
ploratory phase. The main reason is that cinematographic language
in VR is still under development, and we still need to learn how
to tell stories effectively. A key element in traditional film edit-
ing is the use of different cutting techniques, in order to transition
seamlessly from one sequence to another. A fundamental aspect
of these techniques is the placement and control over the camera.
However, VR content creators do not have full control of the camera.
Instead, users in VR can freely explore the 360◦ of the scene around
them, which potentially leads to very different experiences. While
this is desirable in certain applications such as VR games, it may
hinder the experience in narrative VR. In this work, we perform a
systematic analysis of users’ viewing behavior across cut bound-
aries while watching professionally edited, narrative 360◦ videos.
We extend previous metrics for quantifying user behavior in order
to support more complex and realistic footage, and we introduce
two new metrics that allow us to measure users’ exploration in a
variety of different complex scenarios. From this analysis, (i) we
confirm that previous insights derived for simple content hold for
professionally edited content, and (ii) we derive new insights that
could potentially influence VR content creation, informing creators
about the impact of different cuts in the audience’s behavior.

Index Terms: Human-centered computing—Human computer
interaction (HCI)—Interaction paradigms—Virtual reality;

1 INTRODUCTION

Virtual Reality (VR) offers a new medium to tell stories, with un-
precedented immersion capabilities. With the recent technical devel-
opments in immersive video technologies (such as better and more
affordable capture devices), 360◦ video is becoming an increasingly
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popular format for storytelling. However, little is known about user
behavior and expectations in this new environment; while traditional
cinematography has been in constant development for over a century,
leading to a well established cinematographic language, storytelling
in VR is still undergoing an initial process of experimentation, in
which both content creators and researchers are trying to create a
new narrative language that can be effective and leverages all the
potential of the medium.

In traditional cinema the director chooses how to compose the
different shots and edits, and which parts of the scene are going to
be shown to the viewer. However, in VR viewers can fully and freely
explore the 360◦ of the scene that surrounds them, so they may not
follow the filmmaker’s intentions. As a result, key narrative aspects
may not be perceived. Directing and retaining users’ attention to
ensure that all important parts of the narrative are being watched is a
difficult task. Some attempts have been made to ensure they observe
the important areas of the scene at the right time, but they are usually
overly intrusive. Common approaches may grey-out uninteresting
areas (interfering with the viewer’s free immersion [4]), or trigger
events only when the user is watching (interfering with the flow of
the narrative). Moreover, the process of creating situational conti-
nuity across movie cuts (continuity editing) differs from traditional
cinema. When applying continuity editing techniques, scenes are
edited in such a way that suggests to the viewer a sequence of events
that have a narrative continuity [2]. In VR, this may be hindered
by the additional freedom of users to create their own individual
experience by controlling the interaction with the camera in 360º.

Given the rapid democratization of VR, it is crucial to understand
how editing techniques in VR affect the audience’s ability to follow
a given narrative. In order to understand how viewers consume VR
films and whether continuity editing is still possible in VR, previous
works have focused on analyzing users’ behavior in narrative 360◦
footage. Recently, Serrano et al. [32] showed that continuity editing
techniques seem to hold in VR scenarios, and proposed the first
attempt at a systematic analysis of viewing behavior across movie
cuts and perceived continuity in narrative VR content. Although a
valuable contribution, their stimuli consists of simple videos specif-
ically designed for their intended analysis, limiting the scope and
applicability of their results. Such videos lack the complexity of real
footage edited by professional filmmakers, and were not designed
for storytelling.

In our work, we address these issues and propose the first analysis



based on a large-scale collection of user behavioral data watching
professionally edited 360◦ video content distributed in commercial
platforms (such as GearVR, Oculus Rift, or Daydream). We investi-
gate user behavior across movie cut boundaries for 18 scenes from
the VR movie The People’s House, created by Felix & Paul Studios1

in 2017 (an example frame is shown in Fig. 1). In the film, the
former US president Barack Obama and his wife Michelle Obama
guide the audience in a tour of the White House. These scenes
are significantly more complex than those of Serrano et al. since
they have been created for storytelling by professional filmmakers,
and users watched the scenes outside laboratory conditions (in an
unconstrained manner, and without any particular task). Specifically,
our contributions are as follows:

• We analyze complex scenes edited by professional filmmakers,
which have been viewed by 3259 users in an unconstrained
manner, outside laboratory conditions. This is two orders of
magnitude larger than previous studies. We carry out an in-
depth analysis to validate previous findings under significantly
more complex scenarios.

• We extend the type of scenes used in previous works and
include in our analysis scenes without a clear region of interest
(ROI). We propose to use the Inter-Observer Congruency [13]
for identifying different types of scenes and cuts. Identifying
the different nature of scenes (designed with strong ROIs, or
just exploratory scenes, without any explicit ROI) allows us
to measure behavior in complex artistic footage rather than
simple hand-crafted content [32].

• We adapt a number of user behavior metrics introduced in
previous work to measure attention without the explicit need
of eye-tracking data. This can be useful for future research
since eye-tracking is not usually available and head orientation
is easier to gather, even for commercial applications. Addition-
ally, we introduce two metrics for measuring users’ behavior
in exploratory scenes.

• Based on our analysis, we derive insights with potential impli-
cations to 360◦ cinematic content creation.

We believe that our work is the first to attempt a precise analysis
of professionally edited 360° movies based on a large-scale samples
of users’ behavioral data. Our analyses reveal some findings that
can be relevant for VR content creators and editors. For instance,
how the nature of the scene previous to a cut influences the user’s
behavior after such cut. We have found patterns in users’ behavior
for different types of cuts which in turn may help to identify them
automatically, without the need to manually label scenes. In addition
to this, we give quantitative measurements of users’ exploration of a
scene.

2 RELATED WORK

Attention in VR. Static omnidirectional panoramas are one of
the most widespread distribution formats for 360° content. Several
works have attempted to analyze [17,26] and predict [1,10,21,39,40]
user behavior and gaze scanpaths in such content. In the absence of
eye-tracked gaze data, which is not typically accessible in VR de-
vices, other works have analyzed head movements instead, showing
that head orientation is a valuable proxy of gaze behavior [34, 38].
We leverage these works and use head orientation for analyzing our
videos, which allows to gather large amounts of user data without
relying on explicit eye-tracking information.

The way in which users explore 360° video may be fundamentally
different from the way they explore static imagery. Therefore, recent
research has focused on predicting saliency and visual scanpaths for

1https://www.felixandpaul.com/

360° videos [3, 41]. To further support this line of research, several
tools have been proposed for improving user behavior visualization
[29, 31]. Gutierrez et al. [8] propose a VR platform to evaluate
and compare the performance of different saliency and prediction
models of user behavior, both for static and dynamic content. Rossi
et al. [27] propose a graph-based method for classifying users who
pay attention to the same regions of the scene for a long time. One
of the main implications in VR video content is that, since the field
of view is limited and users do not explore the elements of the scene
with the same probability, users may miss the most relevant elements
of the video. To address this issue, Tang et al. [37] propose a joint
video stabilization and redirection, in which smooth camera motion
is introduced in order to reorient important events to the front view
of the user. Pavel et al. [24] propose a reorientation technique so that
viewers can choose to quickly reorient to the main area of interest of
the film and not loose detail about the narrative. Stebbins et al. [36]
proposed a technique that automatically rotates the virtual world
in seated conditions to help redirect the viewer’s physical rotation
while viewing immersive narrative experiences and reducing the
amount of necessary physical turning.

There are several works that focus on investigating different tech-
niques for directing users’ attention. Speicher et al. [35] gather
insights on several visual guidance methods, in particular diegetic
(including cues that are part of the narrative), and non-diegetic (in-
cluding external cues, such as blurring the unimportant regions of
the scene). Nielsen et al. [22] analyze the effect of directing users’
attention by encouraging them to follow a firefly with their gaze,
aiming for a less intrusive method than using forced rotation. Rothe
et al. [28] study the effect of using flickering in cinematic VR to
guide users’ attention, concluding that it improves the recall of de-
tails but decreases the enjoyment. The use of lights, movements and
sounds has been also studied for directing users’ attention, conclud-
ing that diegetic cues are useful for guiding the attention of viewers
in cinematic VR [30].

Datasets. To support research in these directions, during the
last years several works have introduced datasets consisting of
recorded data from users watching 360◦ footage [5, 7, 12, 15, 25].
Unfortunately, all these datasets are limited to the order of 50 users
per video, and typically under controlled laboratory conditions. In
contrast, the scenes analyzed in our work have been visualized by
3259 users, which allow us to extend the generality of our insights.

Cinematic VR. The filmmaking process has evolved over the
years. Since the first cinematographic productions, different editing
techniques have been developed and refined in order to contribute to
the creation of a robust cinematographic language (for a compilation
and analysis of different techniques we refer to the reader to the work
of Henderson [9]). In order to bridge the gap between traditional and
360° cinematography, Mateer [18] discusses how different existing
film directing techniques could be applied in this new emerging
field. Focusing on the field of cinematography for 360° content,
Knorr et al. [12] and Fearghail et al. [23] analyze users’ behavior
while watching 360◦ movies by taking into account the intended
viewing orientation designed by the director, to verify whether users
follow this intended path when watching the film. Fearghail et al. [6]
use the same dataset to identify the scene elements attracting users’
attention. They analyze how cuts affect storytelling and derive some
insights about how to redirect users’ attention to the main action
of the scene, such as using graphical elements and matching the
orientation of interesting parts of the story across transitions. Closer
to our approach is the work of Serrano et al. [32], who introduce
a set of metrics for quantifying user behavior in the context of
continuity editing in VR content. Despite their valuable insights, the
authors use very simple video scenes, specifically recorded for their
work. These videos lack the complexity of real footage edited by
professional filmmakers, and thus they are not designed for actual
storytelling. In contrast, we propose a systematic analysis of user
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Figure 2: Examples of each cut type in the form Sb→ Sa. For each cut, we include a frame of the scene previous to the cut and a frame of the
scene after the cut. Scenes with no explicit ROI elicit to a exploratory behavior while scenes with a defined ROI make user fixate on it.

behavior in story-based, professionally edited narrative VR, and
derive insights with potentially direct implications in 360◦ cinematic
content creation.

3 DATA SET

Our data has been gathered from 3259 users watching the VR movie
The People’s House, created by Felix & Paul Studios. In the film, the
former US president Barack Obama and his wife Michelle Obama
guide the audience in a tour of the White House (Fig. 2 shows
some representative frames2). Data was anonymously collected
in the wild, from users watching the movie at their own personal
setups, therefore, they could be either sitting or standing. There
were no particular goals or instructions, other than viewing the
provided content. Our data contains users watching the movie in two
different systems (computer and mobile), and four different devices
(Oculus Rift, Oculus Go, Gear VR, and Daydream). Demographic
information was not collected. Every ten frames, we record, for
each user, the 2D position in the panorama (UV coordinates) that
such user is visualizing. This position is obtained by intersecting
the forward camera vector, which can be directly obtained from
the HMD tracking system, with the spherical geometry in which
the panorama is projected for 360 visualization. Then, this per-
user information is aggregated for each scene, which facilitates the
analysis. In order to be able to consistently analyze user behavior
along time, we only take into account those users who fully watched
all the scenes analyzed. Note that since the experience contains
recorded content, only three degrees-of-freedom (head rotation, and
not translation) are supported. Since the movie is played at 60 frames
per second, these head orientation points are then interpolated to
obtain per-frame information.

Given that our data only consists of head orientations, we do
not have any information about the actual eye gaze of users. We
leverage the existing strong correlation between head movement
and gaze behavior in order to obtain an estimation of fixations. In
particular, it has been recently shown that eye fixations usually occur
with low longitudinal head velocities (under 19.6°/s) [34], while
saccadic movements between fixations correspond to higher head
velocities, therefore we use this threshold to estimate fixations in
our data. Then, we create saliency maps by blurring these estimated
fixations with a Gaussian kernel of 11.7° of visual angle, to take into
account the mean eye offset while fixating [34], since gaze points
are likely to fall within this region for a given head orientation. We

2Frames displayed for illustrative purposes with permission from the
creators.

use this information for our analysis in Section 4.
Similar to Serrano et al.’s work [32], we manually label the region

of interest (ROI) in each scene as the area in the 360° frame in which
the action takes place, usually in the form of Barack or Michelle
Obama speaking to the user, or an item that stands out from the scene,
such as the White House (example frames of all labeled ROIs can be
found in the supplementary material). According to this, scenes with
a ROI are tagged as ROI scenes. Scenes without an obvious ROI
are tagged as nROI scenes, usually consisting of outdoor or indoor
scenes which the user explores freely, without any main character
addressing the viewer. Since we are estimating gaze from head
orientations, we follow a conservative methodology and consider
that a user is fixating on a given ROI if it overlaps with the estimated
saliency map.

Our goal is to analyze user behavior across movie cut bound-
aries; we thus introduce two variables to classify the scenes: Sb =
{ROI,nROI} for the scene before the cut, and Sa = {ROI,nROI} for
the scene after the cut. Each cut can thus be expressed as Sb→ Sa,
which yields four possible types; see Fig. 2 for example frames
before (Sb) and after (Sa) the cut. Following the previous methodol-
ogy introduced by Serrano et al., we consider for our analysis the
six seconds previous to the cut boundary, and the six seconds after
such boundary. The movie has a total of 27 cuts, from which we
select the 18 most representative of our proposed parametrization,
distributed as follows: ROI→ ROI: five cuts, nROI→ ROI: four
cuts, nROI→ nROI: five cuts, ROI→ nROI: four cuts.

4 ANALYZING THE INFLUENCE OF CUTS

We first compute saliency maps for each scene by taking into ac-
count estimated fixations and the mean eye offset while fixating,
as described in Section 3 (Fig. 4 shows an example). In the rest
of this section, we first analyze users’ viewing congruency for our
two types of scenes {ROI,nROI}, then we analyze users’ behavior
across cuts for all four possible combinations Sb→ Sa.

4.1 Analyzing users’ congruency
From the saliency information, we first analyze the consistency be-
tween users’ viewing behavior by computing the Inter-Observer
Congruency (IOC) [14]. In order to understand the influence of the
cut in users’ viewing consistency, we compute this metric consid-
ering six seconds after the cut boundary [32], for each of our cuts.
Following previous work, we use a leave-one-out-approach: we
leave out the ith subject and aggregate all other users’ fixations by
accumulating one-second windows; then we compute the percentage
of fixations of the ith user that fall within the k% most salient regions



Figure 3: Left: IOC (Inter-Observer Congruency) computed for each of the four types of cuts. It shows the evolution of the IOC value along
time, by varying the k percent of most salient regions of the scene. Intuitively, this metric can be seen as an estimation of users’ agreement on
the most salient regions of the scene. A high IOC value (1 being perfect agreement) indicates similar viewing behavior across users. (a): IOC
for a ROI→ ROI cut. This configuration presents a high and constant IOC due to the single ROI present in the scene before and after the cut.
(b): IOC for a nROI→ ROI cut. During the first few seconds there is a low IOC since users were scattered across the scene before the cut;
once users have fixated on the new ROI, the IOC increases. (c): IOC for a nROI→ nROI cut. This configuration shows a low and constant
IOC because users are scattered across the scene due to the lack of a ROI. (d): IOC for a ROI→ nROI cut. During the first few seconds there is
a high IOC because users come from a ROI scene before the cut and are concentrated in the same regions, however, when the scene after cut
starts, users start scattering due to the lack of ROI after the cut, and the IOC decreases. Right: Temporal evolution of the Area Under the Curve
(AUC) computed from the IOC curves for each analyzed cut. Changes in the IOC value along time are easily seen using the AUC.

Figure 4: Example saliency map of a 360° frame.

predicted by the aggregated saliency map, varying k ∈ [0%..10%]
in 2.0 increments. We repeat this process for all users and compute
the mean value, which is an indicator of users’ viewing behavior
agreement for a given cut. Intuitively, the IOC gives an estimation of
how well other users’ data approximate the behavior of the ith user.
A high value of this metric indicates that most of the users are view-
ing the same region of the scene, while a low value indicates that
users are scattered all over the scene watching different regions of
it. Fig. 3 (left) illustrates results for a cut of each type: ROI→ ROI,
nROI → ROI, nROI → nROI, and ROI → nROI (IOC curves for
all analyzed cuts can be found in the supplementary material). In
the presence of a ROI in the scene after the cut, the IOC rapidly
approaches a high value. This is clearly not the case for nROI scenes
after the cut. This is a consequence of the free-exploration behavior
that a nROI scene after the cut elicits. We can also observe this
behavior in the saliency map of the scene (see Fig. 5 for an example),
where ROI scenes after the cut retain users’ attention, while nROI

scenes lead to a more exploratory behavior. To provide an easier
interpretation of the evolution of the IOC along time, we have addi-
tionally computed the Area Under the Curve (AUC) comprised under
the previously computed IOC curves. Following the interpretation
of the IOC curves, the AUC takes values between 0 (no congruency
between users) and 100 (total congruency). The resulting curves are
shown in Fig. 3 (right). It can be seen how nROI scenes after the cut
display lower AUC values than ROI scenes, specially in the first few
seconds after the cut, indicating that post-cut nROI scenes clearly
affect users’ congruency. This is to be expected, since there is no
explicit ROI that draws users’ attention, exploration patterns differ
in a more pronounced way.

One of the drawbacks of using this metric for analyzing the
temporal evolution of users’ congruency is that computing saliency
maps using a leave-one-out-approach for every user is very costly
for large datasets like ours. We have observed that similar results
can be obtained by relying on the entropy of the saliency maps. We
first compute the entropy as the Normalized Shannon Entropy [34]
as follows:

H(t) =−
N

∑
i=1

S∆t log(S∆t)

log(N)
(1)

where N is the number of pixels of the panorama, and S∆t cor-
responds to the saliency map computed by aggregating all users’
saliency in a temporal window ∆t = 1 second. For facilitating inter-
pretation, we compute the reverse entropy such that Hr(t)= 1−H(t)
(see Fig. 7), in order to match the behavior of this curve to the AUC
curves. A low reverse entropy indicates that there are a large number
of similarly salient objects distributed throughout the scene, causing
users’ fixations to be scattered all over the scene; a high reverse en-
tropy results from a few salient objects that capture all the viewer’s
attention. From these curves, we can observe several interesting
behaviors. First, we can confirm that this metric also supports the



Figure 5: Evolution of users’ gaze through a ROI and nROI scene, represented as a saliency map. Top: The ROI, a person playing with a dogs,
is able to retain the users attention along the scene. Bottom: Since there is no explicit ROI, users explore the different parts of the room.

Figure 6: Example of users’ behavior (head orientation) for a scene
with a static ROI (a speaker’s podium). Top: The ROI quickly
attracts users’ attention at the beginning of the scene. Bottom: After
a few seconds, gaze scatters leading to low congruency between
users.

insights derived from the AUC curves. Second, we have included in
our dataset several scenes where the ROI is not a human speaking
to the user, but a salient static feature in the form of a speaker’s
podium or the White House. In these cases, we have noticed that
the ROI catches users’ attention at the beginning, displaying a high
reverse entropy, however, reverse entropy drops significantly after
a few seconds, indicating that users’ attention gets scattered, as the
corresponding ROI→ ROI curves in Fig. 7 shows. Fig. 6 shows two
representative frames of the podium scene, illustrating this effect.
We can further distinguish between two types of static ROIs, those
which contain a considerable amount of details to be explored by

users (Fig. 7, White House inset), and those which can be considered
as containing less interesting features (Fig. 7, podium inset). In order
to quantify the attention of users to the ROI over time we propose
the following metric, which we term Attention Retention, computed
as the normalized integral of the Hr(t) curve along time:

Attention Retention =

∫ T
1 Hr(t)dt

T −1
(2)

The Attention Retention metric takes values between 0 (the ROI does
not consistently catch all users’ attention) and 1 (the ROI retains all
users’ attention). We have computed the 6 first seconds after the cut
(T = 6) for those cuts which meet Sa = ROI (Fig. 7 bottom). Our
results suggest that static ROIs with fewer details catch briefly the
users’ attention, while ROIs with more interesting features are able
to retain users’ attention for longer times. Finally, some of our ROIs
include dynamic content, i.e., they featured moving actors relevant
to the narrative, instead of static important elements of the scene. An
example of this is shown in Fig. 7 (top), where we can see Obama
talking to the audience. We can observe that these dynamic ROIs
are able to retain users’ attention more consistently along time.

4.2 Analyzing users’ behavior

In order to analyze users’ behavior in a quantitative manner, we
make use of five different metrics:

Frames to reach a ROI (framesToROI). Number of frames after
the cut before the user fixates on a ROI. Intuitively, this metric is an
estimation on how long it takes users to converge to the main action
after a cut.

Percentage of total fixations inside the ROI (percFixInside). This
metric computes the percentage of fixations inside the ROI with
respect to the total amount of fixations (inside or outside the ROI)
after the user finds the ROI after the cut (i.e., it is independent of
framesToROI). It gives an estimation of the viewer’s interest in the
ROI.

These two metrics were introduced by Serrano et al. [32], and
are limited to scenes in which a ROI can be explicitly defined (ROI
scenes in our terminology); therefore they can only analyze cuts
in the form {ROI, nROI} → ROI. To solve this problem, we have
adapted another metric proposed by Serrano et al. (nFix) and we
have introduced two additional novel metrics (traveledDistance and
percSceneWatched) that capture the user behavior for cuts in which



Figure 7: Top: Reverse entropy for each of our analyzed cuts, com-
puted during six seconds after the cut. The behavior of this metric
is similar to the AUC metric: when there is a strong ROI present
in the scene, the metric value increases indicating that most users’
fixate on the ROI; when there is not an explicit ROI, users gaze is
scattered across the scene, resulting in a low metric value. Insets
show representative frames of different types of ROIs which meet
Sa = ROI. Bottom: Mean of the Attention Retention metric com-
puted for cuts that meet Sa = ROI. Static ROIs with few interesting
details fail to retain users’ attention, while ROIs presenting more
interesting details are able to retain users’ attention longer. ROIs
that catch attention for a more prolonged time are those which are
dynamic and contribute to the film narrative. Error bars correspond
to a 95% confidence interval.

the scene after the cut does not have an explicit ROI ({ROI, nROI}
→ nROI):

Number of fixations (nFix). In this metric we compute the ratio
between the number of samples that correspond to estimated fixa-
tions, and the total number of samples after the cut (as opposed to
Serrano et al. that only considered the time after the user had fixated
on the ROI, we consider all the six seconds after the cut). A higher
value indicates that the user has been fixating most of the time while
a low value suggests a more exploratory behavior, meaning that the
user has been performing saccades.

Total distance traveled (traveledDistance). This metric measures
the accumulated orthodromic distance (or great-circle distance) trav-
eled after the cut (refer to Appendix A). It is an indicative of how
much users have roamed through the scene, and it is independent of
the number of fixations, since it is computed taking into account all
samples.

Percentage of the scene watched (percSceneWatched). This met-
ric computes the percentage of the 360° environment watched. Note
that a region of the scene is considered watched if the user has fix-

ated on it. A high value indicates that a user has been observing
different parts of the scene, and thus can be used as an indicative of
how much of the scene content the user has actually explored.

Since we can not assume that our observations are independent,
and our data does not follow a normal distribution for any of our
metrics (p < 0.001 for the Smirnov-Kolmogorov normality test for
large data samples) we employ a Generalized Linear Mixed Model
in which we model the influence of each particular user as a ran-
dom effect. Then, for each of our metrics, we choose the distribu-
tion that better fits our data (poisson distribution for framesToROI,
gamma distribution for percFixInside, nFix, traveledDistance and
percSceneWatched). Since we have categorical variables among our
predictors, we re-code them to dummy variables for the regression.
We establish our significance level to p = 0.01 for all our analyses.
Note that for our first two metrics (framesToROI and percFixInside)
we can not analyze the influence of Sa since they can not handle
scenes without an explicit ROI (Sa = nROI scenes). In the rest of
the section we describe the main findings of our analyses by taking
into account 6 seconds of the scene after the cut [32].

Influence of Sb in framesToROI. For analyzing the dependent
variable framesToROI we include in the regression our factor Sb as
a predictor. Our analysis suggests that it takes users significantly
longer (p < 0.001) to reach the ROI in the scene after the cut when
the scene before the cut does not have an explicit ROI (Sb = nROI).
This can be seen in Fig. 8a. We hypothesize that, since the scene
before the cut does not have an explicit ROI (i.e., it is an scene
intended for exploration), users are scattered looking at different
locations of the scene when the cut occurs, and therefore it takes
them longer to converge to the main action after the cut. This
behavior seems consistent with the findings of Serrano et al., in
which users took longer to find the ROI when ROIs were misaligned
before and after the cut. The notion of aligning ROIs for facilitating
transitions across cuts is also in line with previous research on editing
in cinematic VR [11], and the technique of match on attention
advocated by practitioners such Jessica Brillhart 3.

Influence of Sb in percFixInside. For analyzing the dependent
variable percFixInside we include in the regression our factor Sb as
a predictor. Interestingly, there is a significantly (p < 0.001) larger
percentage of fixations inside the ROI (after the ROI is found after
the cut) when the scene before the cut does not have an explicit ROI
(Sb = nROI). This can be seen in Fig. 8b. This effect is not highly
pronounced, however the mean difference is enough to suggest that
introducing a scene of a more exploratory nature (nROI) before the
cut leads to an increasing interest in the ROI after the cut, while a
ROI before the cut elicits a more exploratory behavior after it.

Influence of Sb and Sa in nFix, traveledDistance and percSce-
neWatched. In order to analyze these dependent variables, we have
included in the regression the factors Sa and Sb and their interaction
(Sb ∗Sa) as predictors. The first effect we notice is that, as expected,
a scene without an explicit ROI after the cut (Sa = nROI) increases
the traveled distance (Fig. 8e) and the percentage of scene watched
(Fig. 8g), and decreases the number of fixations (Fig. 8c). This is
to be expected, since users do not have a clear area of interest to
fixate into. We have found that a scene with a ROI before the cut
(Sb = ROI) seems to elicit a more exploratory behavior after the
cut: users perform less fixations (Fig. 8d) and roam more (Fig. 8f).
However, this does not have a strong effect in the percentage of
scene watched (Fig. 8h). This is in accordance with the previous
two metrics: even though users roam more through the scene, they
perform less fixations, so they do not necessarily fixate on more
regions of the scene. We have also found a significant effect of
the interaction Sb ∗Sa: When the scene after the cut does not have
an explicit ROI (Sa = nROI) it will elicit an exploratory behavior
regardless of the type of scene before the cut (Sb). However, when

3https://medium.com/the-language-of-vr
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Figure 8: (a): Mean framesToROI for the cuts {ROI,nROI}→ ROI. Users require more time to fixate when they have been exploring in the
previous scene. (b): Mean percFixInside for the cuts {ROI,nROI} → ROI. The ROI in the scene after the cut captures the attention of the
users more strongly if there is no ROI before the cut. (c): Mean nFix grouped by type of scene after the cut (Sa). Users perform more fixations
when there is a ROI in the scene. (d): Mean nFix grouped by type of scene before the cut (Sb). Users perform more fixations if there is a nROI
scene before the cut. (e): Mean traveledDistance grouped by type of scene after the cut (Sa). As expected, users roam more if the scene after
the cut has no ROI. (f): Mean traveledDistance grouped by type of scene before the cut (Sb). Users roam more if they come from a scene in
which there is a ROI. (g): Mean percSceneWatched grouped by type of scene after the cut (Sa). When there is no explicit ROI in the scene,
users observe more different parts of the scene than if there is a ROI on it, because it catches the users’ attention limiting their exploration.
(h): Mean percSceneWatched grouped by type of scene before the cut (Sb). Users approximately explore the same proportion of the scene
regardless of the scene before the cut. Error bars correspond to a 95% confidence interval.

the scene after the cut has a clear ROI (Sa = ROI), the type of scene
before the cut (Sb) becomes relevant: in these cases our results sug-
gest that it is more effective to place an exploratory scene before the
cut (Sb = nROI) in order to retain users’ attention in a single ROI
after the cut. This insight is supported by our three metrics, users
perform more fixations (Fig. 9a), roam less (Fig. 9b) and explore
less in different parts of the scenes (Fig. 9c) when the scene before
the cut corresponds to an exploratory scene (Sb = nROI) and the
scene after the cut is a ROI scene (Sa = ROI).

Additional analyses. Our data has been collected from users
watching the footage in two different systems: computer (Oculus
Rift), and mobile (Oculus Go, Gear VR, and Daydream). We have
repeated our analysis by including the system as a factor (see Section
E in the supplementary material). Even though there are significant
differences across devices, all the insights described in this section
hold. A detailed analysis on the influence of the device has been
proposed by previous works [16, 33], and it is outside the scope of
this paper. Additionally, there are some brief moments during the
footage in which the narrator suggests viewers to watch a part of the
scene through gestures or auditory cues. To ensure the robustness of
our results, we have also repeated our analysis eliminating all cuts
exhibiting any minimal gestural or auditory cue that may alter user
behavior, resulting in a subset of 11 cuts. We provide this analysis in
Section D in the supplementary material, showing that our insights
hold.

5 DISCUSSIONS AND CONCLUSIONS

To our knowledge, our work is the first to attempt a systematic anal-
ysis of professionally edited, narrative 360◦ video. Our analyses
are based on a large-scale collection of 3259 users’ behavioral data,
which is orders of magnitude larger than existing datasets. Ana-
lyzing professionally edited videos is very challenging due to two
main reasons: (i) this footage is hard to parametrize since it was not
created for research purposes; and (ii) users have watched the videos
in an unconstrained manner, outside of laboratory conditions, and
without any particular task or instructions. We have adapted existing
metrics for quantifying user behavior under more complex and real-
istic footage, and without the need of eye-tracking. Additionally, we
have introduced two new metrics that allow us to measure the degree
of users’ exploration without the explicit need of defining potential
regions of interest. Finally, we have also shown how both the Inter-
Observer Congruency (IOC), and the entropy of the saliency map
could be leveraged to classify scenes and cuts automatically, without
the need for manual labeling, and we have explored the possibility
of using these metrics to measure how much a ROI can retain users’
attention over time, showing that ROIs that engage with the user
(such as a character narrating the story) retain more attention than
static ROIs.

Our results are consistent with previous works on simpler scenes,
suggesting that certain behaviors are shared across users regardless
of the complexity of the content and the conditions in which this



Figure 9: (a): Mean nFix metric for each type of cut. Users perform slightly more fixations in a ROI scene after the cut (Sa = ROI) if there is
no explicit ROI before the cut (Sb = nROI). (b): Mean traveledDistance metric for each type of cut. When the scene after the cut has a ROI on
it (Sa = ROI), users roam less if the previous scene encourages exploration (Sb = nROI). (c): Mean percSceneWatched for each type of cut.
For scenes with a ROI after the cut (Sa = ROI), a lower percentage of the scene is explored if there was no single ROI previous to the cut
(Sb = nROI). Error bars correspond to a 95% confidence interval.

content is visualized. For example, Serrano et al. [32] analyzed the
influence of the misalignment of ROIs between cuts, concluding that
users require some time to adapt to the new visual content once a
misalignment has been introduced. Our analyses seem to point in the
same direction: when the scene before the cut is an exploratory scene
(nROI) users take longer to converge to the main ROI after the cut,
since they are scattered and potentially misaligned with respect to the
new ROI appearing after the cut. Quantitatively, we have observed
that users require more time to reach the main ROI after the cut: this
could be due to the increased complexity of our videos. In the work
of Nasrabadi et al. [20], users’ attention is grouped in clusters [27],
concluding that in scenes where there is an interesting ROI, there are
less clusters because most users are watching the ROI. We have also
observed this effect in the analysis of the IOC, in which for scenes
without an explicit ROI (Sa = nROI), users do not seem to converge
to the same regions of the video. We have also observed new effects
that could potentially influence VR content creation, informing
creators about the impact of different cuts in the audience’s behavior.
For instance, if the content creator wants to better attract the user’s
attention when there is an important narrative element (a ROI), one
option would be to design the previous scene as an exploration scene
(without an explicit ROI). This scene configuration seems to make
the user more focused when an interesting element appears after
the cut. This configuration would match with the establishing shot
technique used in traditional cinema where the scene before the cut
gives a context of the environment, and then the main narrative and
ROIs are resumed after the cut.

Limitations and future work. Similarly to other studies of the
same nature, although we have analyzed a large-collection of user
data under an unconstrained scenario, our results may not extrap-
olate to conditions outside of our study, since the footage and the
editing techniques studied are not representative of all existing 360°
movies. We have analyzed a film of documentary nature, which
implies that the action is scarce: there are no conversations between
characters and there is little movement on stage. It would be interest-
ing to analyze how our insights would extrapolate to content of other
nature. In this footage, fade-to-black is used for transitions between
scenes. In the context of teleportation, Moghadam et al. [19] did
not find significant differences between instant and fade-to-black
transitions in terms of spatial awareness and sickness. However,
the technique used for transitioning between scenes may have an

impact in the context of narrative VR and remains to be further
explored. We have analyzed user behavior for 360° footage that
only supports three degrees-of-freedom (head rotations), which is
the main distribution format for VR cinematic content. Computer
Generated (CG) experiences that allow for six degrees-of-freedom
(head rotations and translation) favor a more interactive behavior,
and therefore our insights may not apply in such cases. Many other
parameters could be analyzed in future work, such as more complex
editing techniques, or the influence in users’ attention when the ROIs
are dynamically moving through the scene. Moreover, our work is
targeted towards the development of a cinematographic language
through the establishment of editing techniques, however, more ex-
perimental techniques leveraging VR immersive capabilities could
be investigated. This could include existing techniques in related
fields such as immersive theater, or narrative-based videogames
(ranging from simply placing viewers at the center of the action to
techniques where users’ actions and decisions play a role in the story,
such as polychronic narratives). This intrinsic increased interaction
may incur in different viewing behaviors and engagement levels, and
could be an interesting avenue for future work. We have manually
classified our scenes in two types, scenes either containing a strong
region of interest (ROI), or scenes without an explicit region of
interest (nROI). Our analysis of the AUC and entropy curves along
time seems to support this as a reasonable choice, nevertheless, other
parametrizations could be possible. We have created two new met-
rics (traveledDistance and percSceneWatched) that can measure user
exploration without the explicit need of defining ROIs. However,
these metrics are limited to quantifying exploration assuming that
the potential regions of interest remain relatively fixed in the field of
view: for ROIs moving across the scene, high values of these metrics
could be potentially due to the user following the ROI, instead of ex-
ploring. These metrics could be easily adapted to such cases by only
taking into account the metric value when the user is not fixating
inside the ROI. In the future, more general metrics for quantifying
user behavior could be potentially explored and analyzed in order to
detect consistent changes in attention patterns.

We believe that our findings are one step forward towards build-
ing a cinematographic language for VR. We hope that our work
helps guiding some design decisions for content creators, and ex-
pect follow-up research to continue exploring this emerging field of
narrative VR.
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A COMPUTING FIXATIONS

To compute fixations giving only head orientation data in equirect-
angular coordinates (u and v), we first transform our coordinate
space to spherical coordinates, in order to have correctly measured
distances between points (instead of computing distances in image
space, where they may be distorted to the equirectangular projec-
tion). In this new coordinate space, head orientation is represented
as latitude and longitude. We compute this by using the Equation 3,
where equirectangular coordinates are normalized (values between
0 and 1).

latitude = v∗π− π

2
longitude = u∗2π−π

(3)

Once we have head orientation defined in spherical coordinates,
we can extract the distance between two points using the great circle
distance as described in Equation 4. In this equation, ∆d is the
distance for a sphere with unitary radius; φ is the latitude, λ is the
longitude and ∆λ = λq−λp.

∆d = arccos(sinφpsinφq + cosφpcosφqcos(∆λ )) (4)

To compute the longitudinal head velocity that is later used to
determine whether users are fixating or not, we just divide ∆d by
the time passed. When this velocity is under 19.6°/s, as Sitzmann et
al. [34] indicate, we can assume that the user is fixating. According
to this work, the fixation will likely fall within the neighboring area
of diameter 11.7° around the head orientation point, therefore, to
create saliency maps from our estimated fixations, we take into
account this area by convolving fixation points with a Gaussian
corresponding to 11.7° of visual angle.
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