Stylized depiction of images based on depth perception
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Figure 1: Different stylizations based on depth perception. Left: original image, Vanitas by Pieter Claesz (1630), oil on canvas. Middle:
our dynamic lines, after relighting the scene (the window has been manually painted to motivate the new lighting scheme). Right: Color
relighting imitating the chiaroscuro technique used by old masters like Caravaggio.

Abstract

Recent works in image editing are opening up new possibilities
to manipulate and enhance input images. Within this context,
we leverage well-known characteristics of human perception along
with a simple depth approximation algorithm to creatively relight
images for the purpose of generating non-photorealistic renditions
that would be difficult to achieve with existing methods. Our real-
time implementation on graphics hardware allows the user to effi-
ciently explore artistic possibilities for each image. We show results
produced with four different styles proving the versatility of our ap-
proach, and validate our assumptions and simplifications by means
of a user study.
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1 Introduction

Whether the goal is to convey a specific mood, to highlight certain
features or simply to explore artistic approaches, non-photorealistic
rendering (NPR) provides an interesting and useful set of tech-
niques to produce computer-assisted stylizations. Most of those

techniques either leverage 3D information from a model, work en-
tirely in 2D image space, or use a mixed approach (probably by
means of a Z- or G-buffer) [Durand 2002]. We are interested in
exploring new possibilities for stylized depiction using a single im-
age as input, while escaping traditional limitations of a purely 2D
approach. For instance, the design of lighting schemes is crucial to
communicate a scene’s mood or emotion, for which depth informa-
tion is required.

Our key observation is the fact that a single photograph or painting
has richer information than we might expect. In particular, we ask
ourselves what layers of information present in an image may have
been usually overlooked by stylized depiction techniques? And
what would the simplest way to access that “hidden” information
be, in a way that allows dramatic manipulation of the look of an
image?

This paper presents a set of stylization techniques that deal with a
single photograph as input. It is well known that, when it comes
to stylized depiction, human perception is able to build complex
shapes with very limited information, effectively filling in miss-
ing detail whenever necessary, as illustrated in Figure 2 (left). The
power of suggestion and the influence of light and shadows in con-
trolling the emotional expressiveness of a scene has also been ex-
tensively studied in photography and cinematography [Kahrs et al.
1996; Alton 1945]: for instance, carefully placed shadows can turn
a bright and cheerful scene into something dark and mysterious, as
in Figure 2 (right).

With this in mind, we propose a new class of methods for styl-
ized depiction of images based on approximating significant depth
information at local and global levels. We aim to keep the origi-
nal objects recognizable while conveying a new mood to the scene.
While the correct recovery of depth would be desirable, this is still
an unsolved problem. Instead, we show that a simple methodology
suffices to stylize 3D features of an image, showing a variety of 3D
lighting and shading possibilities beyond traditional 2D methods,
without the need for explicit 3D information as input. An addi-
tional advantage of our approach is that it can be mapped onto the
GPU, thus allowing for real-time interaction.



Within this context, we show stylized depictions ranging from sim-
ulating the chiaroscuro technique of the old masters like Caravag-
gio [Civardi 2006] to techniques similar to those used in comics. In
recent years, both the movie industry (Sin City, A Scanner Darkly,
Renaissance etc.) and the photography community (more than 4000
groups related to comic art on Flickr) have explored this medium.
The goal of obtaining comic-like versions of photographs has even
motivated the creation of applications such as Comic Life'.

Figure 2: Left: The classic image of “The Dog Picture”, well
known in vision research as example of emergence: even in the ab-
sence of complete information, the shape of a dog is clearly visible
to most observers (Original image attributed to R. C. James [Marr
1982]). Right: Example of dramatically altering the mood of an
image just by adding shadows.

2 Previous Work

Our work deals with artistic, stylized depictions of images, and thus
falls under the NPR category. This field has produced techniques to
simulate artistic media, create meaningful abstractions or simply to
allow the user to create novel imagery [Strothotte and Schlechtweg
2002; Gooch and Gooch 2001]. In essence, the goal of several
schools of artistic abstraction is to achieve a depiction of a realistic
image where the object is still recognizable but where the artist de-
parts from the accurate representation of reality. In this departure,
the object of depiction usually changes: a certain mood is added or
emphasized, unnecessary information is removed and often a par-
ticular visual language is used.

In this paper, we aim to explore what new possibilities can be made
available by adding knowledge about how the human visual system
(HVS) interprets visual information. It is therefore similar in spirit
to the work of DeCarlo and Santella [DeCarlo and Santella 2002]
and Gooch et al. [Gooch et al. 2004]. DeCarlo and Santella propose
a stylization system driven by both eye-tracking data and a model
of human perception, which guide the final stylized abstraction of
the image. Their model of visual perception correlates how inter-
esting an area in the image appears to be with fixation duration,
and predicts detail visibility within fixations based on contrast, spa-
tial frequency and angular distance from the center of the field of
view. Although it requires the (probably cumbersome) use of an
eye-tracker, as well as specific per-user analysis of each image to
be processed, the work nevertheless shows the validity of combin-
ing perception with NPR techniques, producing excellent results.

Instead, we apply well-established, general rules of visual percep-
tion to our model, thus freeing the process from the use of external
hardware and individual image analysis. The goals of both works
also differ from ours: whilst DeCarlo and Santella aim at providing

Thttp://plasq.com/comiclife-win

meaningful abstraction of the input images, we are predominantly
interested in investigating artistic possibilities.

Gooch and colleagues [Gooch et al. 2004] multiply a layer of
thresholded image luminances with a layer obtained from a model
of brightness perception. The system shows excellent results for
facial illustrations. It is noted that in their approach some visual
details may be difficult (or even impossible) to recover. Although
in the context of facial stylization this counts as a benefit, it might
not be desirable for more general imagery.

Depth information has previously been used to aid the generation
of novel renditions. For instance, ink engravings can be simulated
by estimating the 3D surface of an object in the image, and using
that to guide strokes of ink [Ostromoukhov 1999]. This method is
capable of producing high-quality results, although it requires the
user to individually deform 3D patches, leading to a considerable
amount of interaction. The algorithms proposed by Oh et al. [Oh
et al. 2001] cover a wide range of image scenarios with specific
solutions to extract 3D data for each one, but also come at the ex-
pense of considerable manual input. Okabe and colleagues [Okabe
et al. 2006] present an interactive technique to estimate a normal
map for relighting, whereas in [Yan et al. 2008], painterly art maps
(PAMs) are generated for NPR purposes. While both works show
impressive results, they again require intensive, skilled user input,
a restriction we lift in our system.

In their work, Raskar and colleagues [Raskar et al. 2004] convey
shape features of objects by taking a series of photographs with
a multi-flash camera strategically placed to cast shadows at depth
discontinuities. Akers et al. [Akers et al. 2003] take advantage
of relighting to highlight shape and features by combining several
images with spatially-varying light mattes, while in [Rusinkiewicz
et al. 2006] details are enhanced in 3D models via exaggerated
shading. In contrast, our approach operates on single off-the-shelf
images, allows for new, artistic lighting schemes, and requires at
most a user-defined mask to segment objects, for which several so-
phisticated tools exist [Li et al. 2004; Rother et al. 2004].

Finally, the 2.5D approach has been explored in the context of video
stylization [Snavely et al. 2006], aiding the production of hatching
and painterly effects. This method, however, requires the specific
calibrated capture of the 2.5D video material to be processed, which
is still either cumbersome or expensive. We show that 2.5D ap-
proximations suitable for NPR can be obtained from off-the-shelf
images by applying current theories about the perception of shape.

3 Perceptual Background

At the heart of our algorithm, which will be described in the next
section, lies the extraction of approximate depth information from
the input image. Since we do not have any additional informa-
tion other than pixel values, we obviously cannot recover depth ac-
curately, and therefore the result will potentially contain large er-
rors. However, given that we are interested in stylized depictions
of images, we will show that we do not require physical accu-
racy, but only approximate values which yield pleasing, plausible
results. Our depth approximation algorithm leverages some well-
known characteristics of the human visual system. Although the
inner workings of human depth perception are not yet fully under-
stood, there exist sufficient indicators of some of its idiosyncracies
that enable us to approximate a reasonable depth map for our pur-
poses. In particular we rely on the following observations:

1. Belhumeur et al. [Belhumeur et al. 1999] showed that for un-
known Lambertian objects, our visual system is not sensitive
to scale transformations along the view axis.This is known as
the bas-relief ambiguity, and due to this implicit ambiguity



Figure 3: Different combinations of the detail and base layer yield different depictions (here shown for the halftoning technique). From left to
right: original image, base and detail layers, plus different depictions with a fixed Fy, = 1.0 and increasing Fg from 0 to 1 in 0.25 increments.

large scale errors along the view axis such as those produced
in many single view surface reconstruction methods tend to
go unnoticed.

2. Human vision tends to reconstruct shapes and percepts from
limited information, for instance filling in gaps as shown in
Figure 2, and is thought to analyse scenes as a whole rather
than as a set of unconnected features [Loffler 2008; Elder and
Zucker 1996].

3. Causal relationships between shading and light sources are
difficult to detect accurately [Ostrovsky et al. 2005]. The vi-
sual system does not appear to verify the global consistency of
light distribution in a scene [Langer and Zucker 1997]. Direc-
tional relationships tend to be observed less accurately than
radiometric and spectral relationships.

4. There is evidence that human vision assumes that the angle
between the viewing direction and the light direction is 20-30
degrees above the view direction [O’Shea et al. 2008].

5. In general, humans tend to perceive objects as globally convex
[Langer and Biilthoff 2000].

In the next section we describe our algorithm, while, in Section 6
we will show the results of a user test validating our assumptions.

4 Algorithm

We rely on prior knowledge about perception, summarized above,
to justify the main assumptions of our depth approximation algo-
rithm. In particular, the bas-relief ambiguity (Observation 1) im-
plies that any shearing in the recovered depth will be masked by
the fact that we will not deviate from the original viewpoint in the
input image [Koenderink et al. 2001]; in other words, we assume
a fixed camera. The second and third observations suggest that an
NPR context should be more forgiving with inaccurate depth input
than a photorealistic approach, for instance by allowing the user
more freedom to place new light sources to achieve a desired look,
as we will see. Finally, the combination of the first, fourth and
last observations allows us to infer approximate depth based on the
dark-is-deep paradigm, an approach used before in the context of
image-based material editing [Khan et al. 2006] and simulation of
caustics [Gutierrez et al. 2008].

The outline of the process is as follows: first the user can select
any object (or objects) in the image that should be treated sepa-
rately from the rest. Usually the selection of a foreground and a
background suffices, although this step may not be necessary if the
image is to be manipulated as a whole. We assume that such selec-
tion is accomplished by specifying a set of masks using any existing
tool [Li et al. 2004; Rother et al. 2004].

As stated before, the key process is the extraction of approximate
depth information for the selected areas of the images. Accurate
extraction of such information is obviously an ill-posed problem,

studied for decades in the vision community [Durou et al. 2008],
but for which a general-purpose solution has not been found. How-
ever, we will show how a very simple technique, which would per-
form poorly in other contexts, can actually yield excellent results
for stylized depiction of images. In the last step of the process, the
user can specify new lights as necessary (for which object visibility
will be computed), and choose from a variety of available styles.

4.1 Depth Recovery

Our goal is to devise a simple depth recovery algorithm which
works well in an NPR context and offers the user real-time con-
trol for stylized depiction. We aim to approximate the main salient
features without requiring a full and accurate depth reconstruction.
We take a two-layer approach, following the intuition that objects
can be seen as made up of large features (low frequency) defining
its overall shape, plus small features (high frequency) for the de-
tails. This approach has been successfully used before in several
image editing contexts [Bae et al. 2006; Mould and Grant 2008;
Rusinkiewicz et al. 2006], and has recently been used to extract re-
lief as a height function from unknown base surfaces [Zatzarinni
et al. 2009]. We begin by computing luminance values on the ba-
sis of the (SRGB) pixel input using L(z,y) = 0.212R(z,y) +
0.715G(z,y) + 0.072B(z,y) [L.T.U. 1990]. Then we decompose
the input object in the image into a base layer B(z, y) for the overall
shape as well as a detail layer D(x,y) [Bae et al. 2006], by means
of a bilateral filter [Tomasi and Manduchi 1998]. Additionally, as
the methods based on the dark-is-deep assumption tend to produce
depth maps biased towards the direction of the light, we smooth this
effect by filtering B(x,y) with a reshaping function [Khan et al.
2006] which enforces its convexity, producing an inflation analo-
gous to those achievable by techniques like Lumo [Johnston 2002].

The detail layer D can be seen as a bump map for the base layer B.
We decouple control over the influence of each layer and allow the
user to set their influence in the final image as follows:

where Z(x,y) is interpreted as the final, approximate depth, and
Fy and F,; are user-defined weighting factors to control the pres-
ence of large and small features in the final image respectively, both
independent and € [0, 1]. Figure 3 shows the results of different
combinations of the base and detail layer of the teddy bear image,
using the halftoning technique described in Section 5. This depth
Z is stored in a texture in our GPU implementation (lower values
meaning pixels further away from the camera). Figure 4 shows 3D
renderings of the recovered depth for an input image; it can be seen
how depth inaccuracies are more easily noticed if the viewpoint
changes, while they remain relatively hidden otherwise.

The depth map Z serves as input to the relighting algorithm. Al-
though a normal map could be derived from the depth mayp, it is not
necessary for our purposes (except for the color relighting effect
explained in Section 5).



Figure 4: Recovered depth from a given image. Errors remain
mostly unnoticed from the original viewpoint (left), but become
more obvious if it changes (right). Light and shadows have been
added for visualization purposes.

4.2 Computing Visibility for New Light Sources

The user can now adjust the lighting of the scene by defining point
or directional light sources, to obtain a specific depiction or mood
of the image. In the following, we assume a point light source at
p = (Pz, Py, pz)T. There are no restrictions on where this light
source can be placed.

Visibility is then computed on the GPU (in a similar fashion as
other techniques such as parallax mapping [Tatarchuk 2006]): for
each pixel in the framebuffer q = (z,y, z(z,y))” belonging to an
object we wish to relight, the shader performs a visibility test for the
light (see Figure 5), by casting a ray towards its position. The pixels
visited between q and p are given by Bresenham’s line algorithm.
The z-coordinate of the ray is updated at each step. Visibility is
determined by querying the corresponding texels on the depth map.
This information will be passed along to the specific NPR styliza-
tion techniques (see Section 5). Once a pixel visibility has been
established, we can apply different NPR techniques to produce the
desired stylized depiction of the image.

X

Figure 5: 3D and lateral views of the visibility computations for
each texel.

Figure 6: From left to right: Input image. Output yielded by
halftoning as described in [Mould and Grant 2008] (both images
courtesy of D. Mould). Result lit by a close point light. Another
result lit by a directional light.

5 Results

We show a variety of examples which are currently implemented in
our system. In each case, the defining difference over existing NPR

work is the ability to relight the original image on the basis of the
recovered 2.5D depth information. This adds versatility and artistic
freedom. The different effects can be combined in layers for more
complex looks, as some of our results show.

Halftoning: By simply mapping pixels visible from a light source
to white and coloring all other pixels black, a halftoned rendi-
tion of the image is achieved. Figure 6 shows two examples of
new relighting from an original input. Starting from a single im-
age, we first create a halftoned version similar to what can be
achieved with other systems (we use the implementation described
in [Mould and Grant 2008], where the authors present a method
based on segmentation from energy minimization). The remain-
ing sequence of images in this figure shows the application of two
novel lighting schemes that leverage the recovered depth informa-
tion, thereby extending the capabilities of previous approaches. In
the first one, a point light source has been placed at (165, 240, 450)
(in pixel units), whereas the second is lit by a directional light in
the x direction. The weighting between detail and base layers is
(Fy, Fq) = (1.0,0.9) for both images.

Multitoning: The spatial modulation of more than two tones (such
as the black and white used in halftoning, plus several shades of
gray) is known as multitoning or multilevel halftoning. In our im-
plementation the user sets the position of a light source, after which
a set of new lights with random positions located nearby the origi-
nal is automatically created (the number of new lights is set by the
user). This approach creates visually appealing renditions without
having to place all light sources manually. Visibility is then com-
puted separately for each light, and the results are combined in a
single output by setting the value of each pixel in the final image
to the average of the corresponding pixels in each layer. Results
are shown in the second and sixth images in Figure 11 (in reading
order) and the middle image of Figure 12 for three different input
images.

Dynamic Lines: When sketching, an artist may draw lines towards
the light source to add a more dynamic look to the scene. We
can emulate a similar technique just by direct manipulation of the
depth map. We randomly select a set of object pixels; the prob-
ability of choosing a specific pixel is set to be inversely propor-
tional to the Euclidean distance to the position of the considered
light source. The depth values of the selected pixels are altered, ef-
fectively changing the results of the visibility computations in the
image and casting shadows which are perceived as lines. The third
and ninth image in Figure 11 show final examples using this tech-
nique.

Color relighting: For each pixel belonging to the object, we com-
pute a normalized surface normal 7i(z,y) from the gradient field
Vz(z,y) [Khan et al. 2006]:

gz($7y) = [1707v12(x5y)]T (2)
—)y(m,y) = [0’17v92(x7y)}T (3)
iz, y) = ge X Gy/llFe % Gyl O]

Using this normal map as well as the 3D position of a light source,
it is straightforward to modify pixel luminances or shading as func-
tion of the angle between the normals and the lights. Figures 11, 12
and 13 show examples with Gouraud shading. More sophisticated
shaders could be easily incorporated.

6 Evaluation

In order to test our algorithm and the assumptions it relies on, we
devised a psychophysical experiment to objectively measure how



Figure 7: First row: The three rendered images used as input in our test, lit by the original, frontal and back illumination schemes respectively.
Second row: Ground truth depth map obtained from the 3D information of the scene (bumpmaps not included), plus approximate depths
recovered for each of the input images. Third row: alpha mask, plus the base and detail layers of each image, used to obtain the corresponding

depth maps.

inaccurate the recovered depth is, compared to how well these in-
accuracies work in an NPR context. The test is designed as follows:
we take a rendered image of a 3D scene of sufficient diversity, hav-
ing both complex and simple shapes, and a wide range of materials
including transparent glass. Since it is a synthetic scene, its depth
information is accurate and known, and we can use it as ground-
truth. We then generate two additional depictions of the same scene,
changing the lighting conditions. The original image has the main
light falling in front of the objects at an angle from right-above; we
thus create two very different settings, where light comes a) from
the camera position (creating a very flat appearance) and b) from
behind the objects. Together, the three lighting schemes (which we
call original, front and back) plus the variety of shapes and materi-
als in the scene provide an ample set of conditions in which to test
our algorithm. Figure 7, top, shows the three resulting images.

We then compare the ground-truth depth map of the 3D scene with
each of the approximate depths recovered using our image-based
algorithm (with /3, = 1.0 and Fy = 0.3 according to Equation
1). Figure 7 (middle and bottom rows) shows the four depth maps,
the alpha mask used to define foreground and background, and the
base and detail layers for each approximate depth map. Note that
the ground-truth depth is the same for the three images, whereas our
approximated depth is different since it depends on pixel values.

Table 1 shows the results of the Ly metric and correlation coeffi-
cient: our algorithm cannot recover precise depth information from
just a single image, but the correlation with the ground truth is ex-
tremely high. Additionally, we also compare with a gray-scale ver-
sion of the Lena image and with gray-level random noise (with in-
tensity levels normalized to those of the 3D scene render), in both
cases interpreting gray levels as depth information; both metrics
yield much larger errors and very low, negative correlation. These
results suggest that our simple depth extraction method approxi-
mates the actual depth of the scene well (from the same point of

Input image Lo Corr
Original 100.16 0.93
Front 120.47 0.952
Back 121.66 0.925
Lena 383.92 -0.138

Random noise  524.74  -0.00075

Table 1: Results of the Lo metric and correlation coefficient com-
paring the ground-truth depth of the 3D scene with the approximate
depth extracted from each input image, plus a gray-scale version of
the Lena image and gray-level random noise (interpreting gray lev-
els as depth).

view, since we are dealing with static images). The question we ask
ourselves now is, is this good enough for our purposes? In other
words, is the error obtained low enough to achieve our intended
stylized depictions of the input image, without a human observer
perceiving inconsistencies in the results?

One of the main advantages of our approach over other image-based
stylization techniques is the possibility of adding new light sources.
We thus explore that dimension as well in our test: for each of
the three input images, we create two new lighting schemes, one
with slight variations over the original scheme, and one with more
dramatic changes. Finally, for each of the six resulting images, we
create halftoning, multitoning and color relighting depictions, thus
yielding a total of eighteen images.

Given that the ultimate goal of our test is to gain some insight into
how well our recovered depth performs compared to real depth in-
formation, for each of the eighteen stimuli we create one version
using real depth and another using recovered depth. We follow a
two-alternative forced choice (2AFC) scheme showing images side-
by-side, and for each pair we ask the participants to select the one
that looks better from an artistic point of view. A gender-balanced



set of sixteen subjects (ages from 21 to 39 years old) with normal or
corrected-to-normal vision participated in the experiment. All sub-
jects were unaware of the purpose of the study, and had different
areas of knowledge and/or artistic backgrounds. The test was per-
formed through a web site, in random order, and there was no time
limit to complete the task (although most of the users reported hav-
ing completed it in less than five minutes). Figure 8 shows some
examples of the stimuli, comparing the results using real and ap-
proximate depth, for the three stylized depictions?.

Figure 8: Examples of the stimuli used in our user test, for the
halftoning (top row), multitoning (middle row) and color relighting
styles (bottom row).

Figure 9 summarizes the results of our test, for the three styles
(halftoning, multitoning and color relighting) and two light vari-
ations (similar, different). The bars show the percentage of partic-
ipants that chose the depiction using approximate depth over the
one generated with real depth. Despite the relatively large errors in
the approximate depth (as the metrics from Table 1 indicate), the
results lie very closely around the 50-percent mark. This indicates
that, despite the sometimes obvious differences in the depictions
due to the different depths employed (see for instance the two mul-
titoning images in Figure 8), there is no significant difference in
the participants’ choices when judging the resulting artistic styliza-
tions.

7 Discussion

We have shown results with a varied number of styles, all of which
have been implemented on the GPU for real-time interaction and
feedback, including relighting®. Our simple depth approximation
model works sufficiently well for our purposes, while allowing
for real-time interaction, which more complex algorithms may not
achieve. On a GeForce GTX?295, and for a 512x512 image and
a single light source, we achieve from 110 to 440 frames per sec-
ond. Performance decays with the number of lights: in our tests,

2Please refer to the supplementary material for the complete series.
3Please refer to the video.
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Figure 9: Percentage of participants that chose the depiction using
approximate depth over the one generated with real depth, for the
three styles (halftoning, multitoning and color relighting) and two
light variations (similar, different) per input image.

real-time operation can be maintained with up to 5 light sources on
average.

Our approach has several limitations. If the convexity assumption
is violated, the depth interpretation of our method will yield results
which will be the opposite to what the user would expect them to be.
For instance, the black nose of the bear toy in Figure 3 will be taken
as an intrusive region, whereas in reality is protusive; thus, it cannot
cast shadows and relighting may look wrong in that area. For small
features such as the toy’s nose it usually goes unnoticed, but if the
object is not globally convex the results may not be plausible. It also
assumes relatively Lambertian surface behavior: while highlights
could be removed through thresholding or hallucination techniques,
our assumptions on the perception of depth are broken in the case
of highly refractive or reflective objects. In the latter case, shape-
from-reflection techniques could be investigated. Also, since we
do not attempt to remove the original shading from the image, our
technique could potentially show artifacts if new lights are placed
in the same direction of existing shadows (see Figure 10). However,
our results confirm that quite large shading inaccuracies tend to go
unnoticed in a NPR context. Finally, since we recover only depth
information from camera-facing object pixels, completely accurate
shadows cannot be produced.

Figure 10: Artifacts due to original shadows in the image. Left:
Detail of the original image depicted in Figure 11. Right: Relight-
ing with a light source at (510,520, 740) wrongly illuminates the
shadowed areas.

Our method could potentially be used for video processing, for
which temporal coherence should be considered. For the dynamic
lines stylization technique proposed here, this could be specially
tricky since it would most likely require tracking features at pixel
level. Video segmentation is also a difficult task that would be
necessary to address (although as some of the images in this pa-
per show, compelling results can also be achieved in certain cases
by processing the image as a whole). Finally, we expect that ad-
vances in the fields of perception and shape-from-shading will pro-
vide more exciting new grounds for artistic depiction of images and
video.



8 Conclusions

We have presented a new methodology to develop NPR techniques
based on the recovery of information about the depth from input
images. Relying on known characteristics of human visual per-
ception, our work offers more flexibility and artistic freedom than
previous approaches, including the possibility of extreme relight-
ing of the original image. Accurate extraction of depth information
from a single image is still an open, ill-posed problem for which
no solution exists. In this work we have shown that while our re-
covered depth is not accurate enough for certain applications, non-
photorealistic stylization of images provides a much more forgiving
ground, masking possible inconsistencies and leaving the abstrac-
tion process unhampered.

The fact that the algorithm also works well with a painted image
(Vanitas) is quite interesting: a human artist painting the scene per-
forms inaccurate depth recovery and very coarse lighting estima-
tion, and the perceptual assumptions made by our algorithm seem
to correlate well with the human artistic process. Future work to
develop a system that mimics this process more closely can give us
valuable insight and become a very powerful NPR tool.

Our 2.5D interpretation of objects in images yields an appropriate
basis for appealing visual effects. We have shown several applica-
tions for this approach, such as halftoning, multitoning, dynamic
lines and color relighting, but many more effects could be devised.
For instance an interesting line of future work would be to incorpo-
rate local control over the stylization process as shown by Todo and
colleagues [Todo et al. 2007]. We believe that the combination of
our approach with other techniques such as gradient painting [Mc-
Cann and Pollard 2008] or depth painting [Kang 1998] could open
a wide range of possibilities in the field of image and video pro-
cessing, and expect to see increasing future work on this subject.
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Figure 11: Stylized results achieved with our method. Top row, left: Original input image. Top row, right: Multitoned depiction with two
point light sources at (506,276,1200) and (483,296,900), and using (Fy, Fq) = (0.5,0.8). Second row, left: Multitoned image with two
layers of dynamic lines added, generated from the same light at (500,275,1000). Second row, right: Result of multiplying color relighting
with the multitoned version. Third row, from left to right: Mask with foreground objects (window painted manually for artistic effect and
motivate subsequent relighting), multitone depiction of Vanitas, and result of multiplying two layers of color relighting and five layers of
dynamic lines (please refer to the supplementary material to see the individual layers). Fourth row, from left to right: Original input image,
Dynamic lines version placing a light source at both headlights, and a multilayer combination similar to Vanitas figure above.



Figure 12: Application of our method to a very diffusely lit image. In this example we aim to obtain different moods by changing the light
environment and the degree of stylization. Left: Original input image. Middle: A very stylized and dark version of the input by multitoned
depiction with four point light sources at (140,400,300), (140,400,350), (140,400,400) and (140,400,900) and using (Fy, Fy) = (1.0,0.2).
Right: Less stylized depiction obtained by combination of multitone and color relighting effects with lights at (134,530,290), (115,15,270),
(315,695,350), (100,400,1000) and (589,325,325). No mask was used for these depictions.

Figure 13: Composition of results. Top row, left: Original input image. Top row, middle: Color relighting with five point light sources:two
from above at x = 480,y = 520,z = (500, 250) and three surrounding the disk at x = (50,550, 100),y = 400, z = 1000, and using
(Fy, Fa) = (1.0,0.1). Top row, Right: result of multiplying a shadow layer created by a light source at (580,0,500) and the relighted image
(middle). Second row, from left to right: Original input image, stylized depiction by combination of color relighting and halftone, and result
of compositing the relighted UFO from top row and a new relit version of the input image.



