
i
i

i
i

i
i

i
i

Practical and Realistic Facial
Wrinkles Animation

Jorge Jimenez, Jose I. Echevarria,

Christopher Oat and Diego Gutierrez

Virtual characters in games are becoming more and more realistic, with
recent advances for instance in the fields of skin rendering [d’Eon and
Luebke 07, Hable et al. 09, Jimenez and Gutierrez 10] or behavior-based
animation [NaturalMotion 05]. To avoid lifeless representations and help
the user engage in the action, more and more sophisticated algorithms are
being devised that capture subtle aspects of the appearance and motion of
these characters. Unfortunately, facial animation and the emotional aspect
of the interaction have not been traditionally pursued with the same inten-
sity. We believe this is an important missing aspect in games, especially
given the current trend of story-driven AAA games and their movie-like
real-time cutscenes.

Without even realizing it, we often depend on the subtleties of facial
expression to give us important contextual cues about what someone is
saying, thinking or feeling. For example, a wrinkled brow can indicate sur-
prise, while a furrowed brow may indicate confusion or inquisitiveness. In
the mid-1800s, a French neurologist named Guillaume Duchenne performed
experiments that involved applying electric simulation to his subject’s fa-
cial muscles. Duchenne’s experiments allowed him to map which facial
muscles were used for different facial expressions. One interesting fact that
he discovered was that smiles resulting from true happiness not only utilize
the muscles of the mouth, but also those of the eyes. It is this subtle but
important additional muscle movement that distinguishes a genuine happy
smile from an inauthentic or sarcastic smile. What we learn from this is
that facial expressions are complex and sometimes subtle, but extraordi-
narily important in conveying meaning and intent. In order to allow artists
to create realistic, compelling characters we must allow them to harness the
power of subtle facial expression.

We present a method to add expressive animated wrinkles to characters,
helping enrich stories through subtle visual cues. Our system allows the
animator to independently blend multiple wrinkle maps across regions of a
character’s face. We demonstrate how combining our technique with state-

1

i
i

i
i

i
i

i
i

2 1. Practical and Realistic Facial Wrinkles Animation

Without wrinkles With wrinkles

Figure 1.1. The same scene without and with animated facial wrinkles. Adding
them helps to increase visual realism and conveys mood to the character.

of-the-art real-time skin rendering can produce stunning results that bring
out the personality and emotional state of a character (see Figures 1.1 and
1.2).

This enhanced realism has little performance impact. In fact our im-
plementation has a memory footprint of just 96 KB. Performance wise, the
execution time of our shader is 0.31 ms, 0.1 ms and 0.09 ms on a low-
end GeForce 8600GT, mid-range GeForce 9800GTX+ and mid-high range
GeForce 295GTX respectively. Furthermore, it is simple enough to be eas-
ily added to existing rendering engines without requiring drastic changes,
even allowing to reuse existing bump/normal textures, as our technique
builds on top of them.

1.1 Background

Bump maps and normal maps are well known techniques for adding the illu-
sion of surface features to otherwise coarse, undetailed surfaces. The use of
normal maps to capture the facial detail of human characters is considered
standard practice for the past several generations of real-time rendering
applications. However, using static normal maps unfortunately does not
accurately represent the dynamic surface of an animated human face. In
order to simulate dynamic wrinkles, one option is to use length-preserving
geometric constraints along with artist-placed wrinkle features to dynami-

i
i

i
i

i
i

i
i

1.1. Background 3

Figure 1.2. This figure shows our wrinkle system in action for a complex facial
expression composed of multiple, simultaneous blend shapes.

cally create wrinkles on animated meshes [Larboulette and Cani 04]. Since
this method actually displaces geometry, the underlying mesh must be
sufficiently tessellated to represent the finest level of wrinkle detail. A
dynamic facial wrinkle animation scheme presented recently [Oat 07] em-
ploys two wrinkle maps (one for stretch poses and one for compress poses)
and allows them to be blended to independent regions of the face using
artist animated weights along with a mask texture. We build upon this

i
i

i
i

i
i

i
i

4 1. Practical and Realistic Facial Wrinkles Animation

technique, demonstrating how to dramatically optimize the memory re-
quirements. Furthermore, our technique allows to easily include more than
two wrinkle maps when needed, as we no longer map negative and positive
values to different textures.

1.2 Our Algorithm

The core idea of this technique is the addition of wrinkle normal maps
on top of the base normal maps and blend shapes (see Figure 1.3, left
and center for example maps). For each facial expression, wrinkles are
selectively applied by using weighted masks (see Figure 1.3, right, and
Table 1.1 for the mask and weights used in our examples). This way, the
animator is able to manipulate the wrinkles on a per-blend-shape basis,
allowing art-directed blending between poses and expressions. We store a
wrinkle mask per channel of a RGBA texture; this way we can store up
to four zones per texture. As our implementation uses 8 zones, we only
require storing and accessing two textures. Note that when the contribution
of multiple blend shapes in a zone exceeds a certain limit, artifacts can
appear in the wrinkles. In order to avoid this problem, we clamp the value
of the summation to the [0, 1] range.

While combining various displacement maps consists of a simple sum,
combining normal maps involves complex operations that should be avoided
in a time-constrained environment like a game. Thus, in order to combine
the base and wrinkle maps a special encoding is used: partial derivative
normal maps [Acton 08]. It has two advantages over the conventional
normal map encoding: a) instead of reconstructing the z value of a normal,
we just have to perform a vector normalization, saving valuable GPU cycles;
b) more important for our purposes, the combination of various partial
derivative normal maps is reduced to a simple sum, similar to combining
displacement maps.

This encoding must be run as a simple pre-process. Converting a con-
ventional normal n = (nx, ny, nz) to a partial derivative normal n′ =
(n′

x, n
′
y, n

′
z) is done by using the following equations:

n′
x =

nx

nz
n′
y =

ny

nz

In runtime, reconstructing a single partial derivative normal n′ to a
conventional normal n̂ is done as follows:

n = (n′
x, n

′
y, 1)

n̂ =
n

‖n‖

i
i

i
i

i
i

i
i

1.2. Our Algorithm 5

Base Map Wrinkle Map Mask Map

Figure 1.3. The wrinkle map is selectively applied on top of the base normal map
by using a wrinkle mask. The usage of partial derivative normal maps reduces
this operation to a simple addition. The yellowish look is due to the encoding
and storage in the R and G channels that this technique employs. Wrinkle zone
colors in the mask do not represent the actual channels of the mask maps, they
are put together just for visualization purposes.

Red Green Blue Brown Cyan Magenta Orange Gray
Joy 1.0 1.0 0.2 0.2 0.0 0.0 0.0 0.0

Surprise 0.8 0.8 0.8 0.8 0.0 0.0 0.0 0.0
Fear 0.2 0.2 0.75 0.75 0.3 0.3 0.0 0.6
Anger -0.6 -0.6 -0.8 -0.8 0.8 0.8 1.0 0.0
Disgust 0.0 0.0 -0.1 -0.1 1.0 1.0 1.0 0.5
Sad 0.2 0.2 0.75 0.75 0.0 0.0 0.1 1.0

Table 1.1. Weights used for each expression and zone (see color meaning in the
mask map of Figure 1.3).

Note that in the original formulation of partial derivative normal map-
ping there is a minus sign both in the conversion and reconstruction phases;
removing it from both steps allows to obtain the same result with the ad-
ditional advantage of saving another GPU cycle.

Then, combining different partial derivative normal maps consists on
a simple summation of their (x, y) components before the normalization
step. As Figure 1.3 reveals, expression wrinkles are usually low frequency.
Thus, we can reduce map resolution to spare storage and lower bandwidth
consumption, without visible loss of quality. Calculating the final normal
map is therefore reduced to a summation of weighted partial derivative
normals (see Listing 1.1).

A problem with facial wrinkle animation is the modeling of compound
expressions, where the resulting wrinkles come from the interactions be-
tween the basic expressions they are built upon. For example, if we are
surprised, the Frontalis muscle contracts the skin producing wrinkles in the
forehead. If we then suddenly became angry, the Corrugator muscles would

i
i

i
i

i
i

i
i

6 1. Practical and Realistic Facial Wrinkles Animation

f loat3 WrinkledNormal (Texture2D<float2> baseTex ,
Texture2D<float2> wrinkleTex ,
Texture2D maskTex [2] ,
f loat4 weights [2] ,
f loat2 texcoord) {

f loat3 base ;
base . xy = baseTex .Sample(AnisotropicSampler16 , texcoord) . gr ;
base . xy = −1.0 + 2 .0 ∗ base . xy ;
base . z = 1 . 0 ;

#i fde f WRINKLES
f loat2 wr ink l e s = wrinkleTex .Sample(LinearSampler ,

texcoord) . gr ;
wr ink l e s = −1.0 + 2 .0 ∗ wr ink l e s ;

f loat4 mask1 = maskTex [0] . Sample(LinearSampler , texcoord) ;
f loat4 mask2 = maskTex [1] . Sample(LinearSampler , texcoord) ;
mask1 ∗= weights [0] ;
mask2 ∗= weights [1] ;

base . xy += mask1 . r ∗ wr ink l e s ;
base . xy += mask1 . g ∗ wr ink l e s ;
base . xy += mask1 . b ∗ wr ink l e s ;
base . xy += mask1 . a ∗ wr ink l e s ;
base . xy += mask2 . r ∗ wr ink l e s ;
base . xy += mask2 . g ∗ wr ink l e s ;
base . xy += mask2 . b ∗ wr ink l e s ;
base . xy += mask2 . a ∗ wr ink l e s ;
#endif

return normalize (base) ;
}

Listing 1.1. HLSL code of our technique. We are using a linear instead of an
anisotropic sampler for the wrinkle and mask maps because the low-frequency
nature of their information does not require higher quality filtering. This code is
a more readable version of the optimized code found in the web material.

be triggered, which would expand the skin in the forehead, thus causing
the wrinkles to disappear. To be able to model this kind of interactions,
we let mask weights take negative values, allowing to cancel each other.
Figure 1.5 illustrates this particular situation.

1.2.1 Alternative: using normal map differences

An alternative to the usage of partial derivative normal maps for combining
normal maps, is to store differences between the base and each of the
expression wrinkle maps (see Figure 1.4, right), in a similar way to how
blend shape interpolation is usually performed. As differences may contain

i
i

i
i

i
i

i
i

1.2. Our Algorithm 7

negative values, we perform a scale and bias operation so that all values
fall in the [0, 1] range, enabling its storage in regular textures:

d(x, y) = 0.5 + 0.5 · (w(x, y)− b(x, y)),

where w(x, y) is the normal at pixel (x, y) of the wrinkle map, and b(x, y) is
the corresponding value from the base normal map. When DXT compres-
sion is used for storing the differences map, it is recommended to renor-
malize the resulting normal after adding the delta, in order to alleviate
the artifacts caused by the compression scheme (see web material for the
corresponding listing).

Base Map Wrinkle Map Difference Map

Figure 1.4. We calculate a wrinkle difference map by subtracting the base normal
map from the wrinkle map. In runtime, the wrinkle difference map is selectively
added on top of the base normal map by using a wrinkle mask (see Figure 1.3,
right, for the mask). The grey color of the image on the right is due to the bias
and scale introduced when computing the difference map.

Partial derivative normal mapping has the following advantages over
the differences approach:

• It can be a little bit faster as it saves one GPU cycle when reconstruct-
ing the normal and also allows to only add two-component normal
derivatives instead of a full (x, y, z) difference; these two-component
additions can be done two at once in only one cycle. This translates
to a measured performance improvement of 1.12x in the GeForce
8600GT, whereas we have not observed any performance gain in ei-
ther the GeForce 9800GTX+ nor in the GeForce 295GTX .

• It only requires two channels to be stored vs. the three channels
required for the differences approach. This implies higher quality as
3Dc can be used to compress the wrinkle map for the same memory
cost.

i
i

i
i

i
i

i
i

8 1. Practical and Realistic Facial Wrinkles Animation

On the other hand, the differences approach has the following advan-
tages over the partial derivative normal mapping approach:

• It uses standard normal maps, which may be important if this cannot
be changed in the production pipeline.

• Partial derivative normal maps cannot represent anything that falls
outside of a 45 degree cone around (0, 0, 1). Nevertheless, in prac-
tice, this problem proved to have little impact on the quality of our
renderings.

The suitability of each approach will depend on both the constraints of
the pipeline and the characteristics of the art assets.

1.3 Results

For our implementation we used DirectX 10, but the wrinkle animation
shader itself could be easily ported to DirectX 9. However, to circumvent
the limitation that only four blend shapes can be packed into per-vertex
attributes at once, we used the DirectX 10 stream out feature, which allows
us to apply an unlimited number of blend shapes using multiple passes [Lo-
rach 07]. The base normal map has a resolution of 2048 × 2048, whereas
the difference wrinkle and mask maps have a resolution of 256 × 256 and
64 × 64 respectively, as they only contain low-frequency information. We
use 3Dc compression for the base and wrinkle maps, and DXT for the color
and mask maps. The high-quality scanned head model and textures were
kindly provided by XYZRGB, with the wrinkle maps created manually,
adding the missing touch to the photorealistic look of the images. We used
a mesh resolution of 13063 triangles, mouth included, which is a little step
ahead from current generation of games; however, as current high-end sys-
tem become mainstream, it will be more common to see such high polygon
counts, specially in cinematics.

To simulate the subsurface scattering of the skin, we use the recent
screen-space approach [Jimenez and Gutierrez 10,Jimenez et al. 10b], which
transfers computations from texture space to screen space by modulating
a convolution kernel according to depth information. This way, the simu-
lation is reduced to a simple post-process, independent of the number of
objects in the scene and easy to integrate in any existing pipeline. Facial
color animation is achieved using a recently proposed technique [Jimenez
et al. 10a], which is based on in vivo melanin and hemoglobin measure-
ments of real subjects. Another crucial part of our rendering system is
the Kelemen/Szirmay-Kalos model, which provides realistic specular reflec-

i
i

i
i

i
i

i
i

1.3. Results 9

Neutral Surprise

Anger Surprise and anger

Figure 1.5. The net result of applying both surprise and anger expressions on
top of the neutral pose is a wrinkleless forehead. In order to accomplish this, we
use positive and negative weights in the forehead wrinkle zones, for the surprise
and angry expressions respectively.

tions in real-time [d’Eon and Luebke 07]. Additionally, we use the recently
introduced Filmic tone mapper [Hable 10], which yields really crisp blacks.

For the head shown in the images, we have not created wrinkles for the
zones corresponding to the cheeks because the model is tessellated enough
in this zone, allowing to produce geometric deformations directly on the

i
i

i
i

i
i

i
i

10 1. Practical and Realistic Facial Wrinkles Animation

Shader execution time
GeForce 8600GT 0.31 ms

GeForce 9800GTX+ 0.1 ms
GeForce 295GTX 0.09 ms

Table 1.2. Performance measurements for different GPUs. The times shown
correspond specifically to the execution of the code of the wrinkles shader.

Nasalis Frontalis Mentalis

Figure 1.6. Closeups showing the wrinkles produced by Nasalis (nose), Frontalis
(forehead) and Mentalis (chin) muscles.

blend shapes.
Figure 1.6 shows different closeups that allow appreciating the wrinkles

added in detail. Figure 1.7 depicts a sequence showcasing the blending
between compound expressions, illustrating how adding facial wrinkle ani-
mation boosts realism and adds mood to the character (frames taken from
the movie included in the web material).

Table 1.2 shows the performance of our shader using different GPUs,
from the low-end GeForce 8600GT to the high-end GeForce 295GTX. An
in-depth examination of the compiled shader code reveals that the wrinkle
shader add a per-pixel arithmetic instruction/memory access count of 9/3.
Note that animating wrinkles is mostly useful for near to medium distances;
for far distances it can be progressively disabled to save GPU cycles. Be-
sides, when similar characters share the same (u, v) arrangement, we can
reuse the same wrinkles improving further the usage of memory resources.

1.4 Discussion

From direct observation of real wrinkles, it may seem natural to think that
shading could be enhanced by using techniques like ambient occlusion or
parallax occlusion mapping [Tatarchuk 07]. However, we have found that

i
i

i
i

i
i

i
i

1.5. Conclusion 11

wrinkles exhibit very little to no ambient occlusion, unless the parameters
used for its generation are pushed beyond its natural values. Similarly, self-
occlusion and self-shadowing can be thought to be an important feature
when dealing with wrinkles, but in practice we have found that the use
of parallax occlusion mapping is most of the times unnoticeable, for the
specific case of facial wrinkles.

Furthermore, our technique allows the incorporation of additional wrin-
kle maps, like the lemon pose used in [Oat 07], which allows to stretch
wrinkles already found in the neutral pose. However, we decided not to
use them because they had little impact in the expressions we selected for
this particular character model.

1.5 Conclusion

Compelling facial animation is an extremely important and challenging as-
pect of computer graphics. Both games and animated feature films rely on
convincing characters to help tell a story and a critical part of character ani-
mation is the character’s ability to use facial expression. We have presented
an efficient technique for achieving animated facial wrinkles for real-time
character rendering. When combined with traditional blend-target morph-
ing for facial animation, our technique can produce very compelling results
that enable virtual characters to be much more expressive in both their
actions and dialog. Our system requires very little texture memory and is
extremely efficient, enabling true emotional and realistic character render-
ings using technology available in widely adopted PC graphics hardware
and current generation game consoles.

1.6 Acknowledgements

Jorge would like to dedicate this work to his eternal and most loyal friend
Kazán. We would like to thank Belen Masia for her very detailed review
and support, Wolfgang Engel for his editorial efforts and ideas to improve
the technique, and Xenxo Alvarez for helping create the different poses.
This research has been funded by a Marie Curie grant from the Seventh
Framework Programme (grant agreement no.: 251415), the Spanish Min-
istry of Science and Technology (TIN2010-21543) and the Gobierno de
Aragón (projects OTRI 2009/0411 and CTPP05/09). Jorge Jimenez was
additionally funded by a grant from the Gobierno de Aragon. The authors
would also like to thank XYZRGB Inc. for the high-quality head scan.

i
i

i
i

i
i

i
i

12 BIBLIOGRAPHY

Bibliography

[Acton 08] Mike Acton. “Ratchet and Clank Future: Tools of Destruction
Technical Debriefing.” Technical report, Insomniac Games, 2008.

[d’Eon and Luebke 07] Eugene d’Eon and David Luebke. “Advanced Tech-
niques for Realistic Real-Time Skin Rendering.” In GPU Gems 3,
edited by Hubert Nguyen, Chapter 14, pp. 293–347. Addison Wesley,
2007.

[Hable et al. 09] John Hable, George Borshukov, and Jim Hejl. “Fast Skin
Shading.” In ShaderX7, edited by Wolfgang Engel, Chapter 2.4,
pp. 161–173. Charles River Media, 2009.

[Hable 10] John Hable. “Uncharted 2: HDR Lighting.” Game Developers
Conference, 2010.

[Jimenez and Gutierrez 10] Jorge Jimenez and Diego Gutierrez. “Screen-
Space Subsurface Scattering.” In GPU Pro, edited by Wolfgang Engel,
Chapter 5.7. A.K. Peters, 2010.

[Jimenez et al. 10a] Jorge Jimenez, Timothy Scully, Nuno Barbosa, Craig
Donner, Xenxo Alvarez, Teresa Vieira, Paul Matts, Veronica Orvalho,
Diego Gutierrez, and Tim Weyrich. “A Practical Appearance Model
for Dynamic Facial Color.” ACM Transactions on Graphics 29:5.

[Jimenez et al. 10b] Jorge Jimenez, David Whelan, Veronica Sundstedt,
and Diego Gutierrez. “Real-Time Realistic Skin Translucency.” IEEE
Computer Graphics and Applications 30:4 (2010), 32–41.

[Larboulette and Cani 04] C. Larboulette and M. Cani. “Real-Time Dy-
namic Wrinkles.” In Proc. of the Computer Graphics International,
pp. 522–525. IEEE Computer Society, 2004.

[Lorach 07] T. Lorach. “DirectX 10 Blend Shapes: Breaking the Limits.”
In GPU Gems 3, edited by Hubert Nguyen, Chapter 3, pp. 53–67.
Addison Wesley, 2007.

[NaturalMotion 05] NaturalMotion. “Dynamic Motion Synthesis.”, 2005.

[Oat 07] Christopher Oat. “Animated wrinkle maps.” In SIGGRAPH ’07:
ACM SIGGRAPH 2007 courses, pp. 33–37, 2007.

[Tatarchuk 07] Natalya Tatarchuk. “Practical Parallax Occlusion Map-
ping.” In ShaderX5, edited by Wolfgang Engel, Chapter 2.3, pp. 75–
105. Charles River Media, 2007.

i
i

i
i

i
i

i
i

BIBLIOGRAPHY 13

Figure 1.7. Transition between various expressions. Having multiple mask zones
for the forehead wrinkles allows their shape to change according to the animation.

i
i

i
i

i
i

i
i

