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The supplemental material of this paper is composed of the following
items:

• A project web page including video results of our
method (AViSal360) and the three main state-of-the-art
approaches: https://graphics.unizar.es/projects/
AViSal360_2024.

• This PDF document.

This PDF contains additional information on the following topics:

• (S.1) Ablation Studies

• (S.2) Spatial Representation of Audio: Upsampled Audio En-
ergy Maps

• (S.3) AViSal360: Implementation Details

• (S.4) Metrics for Saliency Map Evaluation

• (S.5) Extended Comparative with Previous Works

• (S.6) Drawbacks of Optical Flow for Saliency Prediction

• (S.7) Datasets of Viewing Behavior in 360◦ Content

• (S.8) D-SAV360 Videos for Audiovisual Evaluation

S.1 ABLATION STUDIES

We performed ablation studies for our model, including also an
evaluation of the performance of our proposed AEMs in comparison
to conventional ones [17], used by previous audiovisual saliency
models [7, 26]. The D-SAV360 dataset, on which we have evaluated
and compared our model (Secs. 4.2 and 4.3 of the main paper),
comprises a diverse collection of 87 videos where the presence and
nature of audio, and its significance in visual attention varies greatly.
For the ablations of our own model, we opt for videos where audio
plays a significant role, more representative of the cases that our
model targets. We selected a subset of videos from the dataset
wherein the CC scores between the AEMs and the ground truth
saliency exceeded a threshold, which we set at 0.25. This subset,
consisting of 29 videos, allows us to evaluate the impact of audio
without dimming its influence among videos where it is not relevant.
The IDs of these videos, and the videos themselves, can be found in
the supplementary material.

To evaluate the impact of audio information, we re-trained
AViSal360 without incorporating any audio features: The model
architecture excludes the audio branch and solely processes RGB
frame sequences. Table 1 (first row) presents the results obtained
for this model trained with a conventional KLD loss (i.e., without
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Table 1: Ablation study results. We assess the performance of various
configurations of AViSal360 on the D-SAV360 dataset, following a five
k-fold strategy to ensure robust evaluation. Metrics include CC, NSS,
SIM, and RMSE, with the table presenting average mean scores and
standard deviations (in brackets) across videos. Best performances
are highlighted in bold, and the second-best are underlined. Further
details can be found in Section S.1.

Model CC ↑ NSS ↑ SIM ↑ RMSE ↓

No Audio Information 0.533 3.923 0.400 0.104
(0.104) (1.030) (0.060) (0.016)

Conventional AEM 0.519 3.786 0.373 0.071
(0.107) (1.080) (0.058) (0.015)

Random ImageBind-ViT 0.532 3.945 0.382 0.064
(0.111) (1.160) (0.06) (0.015)

Random AEM 0.488 3.695 0.345 0.064
(0.121) (1.160) (0.063) (0.014)

AViSal360 (Ours) 0.545 4.100 0.391 0.061
(0.111) (1.180) (0.060) (0.013)

the second term of our loss function in Eq. 2). We observe a gen-
eral decrease in saliency prediction accuracy when audio input is
omitted from the model in the quantitative results, and the effect of
audio on saliency can be clearly observed in the qualitative com-
parisons shown in Figure 1 and Figure 1 of the main paper, where
the model without auditory information finds all individuals and
motion salient, while AViSal360 can distinguish the truly salient due
to audio information.

Furthermore, motivated by the insights of Agrawal et al. [1],
we investigated the model’s response to random audio information
to verify that the addition of the audio branches does not merely
function as a regularizer, and to assess the contribution of each
of our audio features (directional and semantic). We do this by
feeding our model with random AEMs and random ImageBind-
ViT embeddings, respectively. The results, also presented in Table
1, highlight the model’s dependency on AEMs and emphasize the
necessity of precise directional and semantic audio information. A
similar evaluation can be found in Section S.5 of this supplementary
material for the state-of-the-art models AVS360 and SVGC-AVA.

Finally, we train our model using the conventional AEMs em-
ployed by previous works [17], which rely on conventional beam-
formers to decode the AEMs from first-order ambisonic audio. Ta-
ble 1 shows how the performance is notably worse than AViSal360
trained with our proposed AEMs. The proposed upsampling en-
hances the sound field representation, and the use of an adaptive
beamformer such as MVDR allows for a clearer reconstruction of
the incoming audio intensity from each direction, achieving more
accurate AEMs that favor learning from the directional audio fea-
tures.

https://graphics.unizar.es/projects/AViSal360_2024
https://graphics.unizar.es/projects/AViSal360_2024
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Figure 1: Qualitative ablation of AViSal360 for an example video
(video_2008 in the dataset) without audio processing features, la-
beled as the ’No Audio Information’ configuration in Table 1 (excluding
the audio branches and trained solely with a conventional KLD loss).
Left : Sample RGB frame (top) and the corresponding ground-truth
saliency (bottom). While this classroom scene features several po-
tential points of visual interest among the audience, the ground truth
saliency focuses on the presenter who is talking (as illustrated by
the AEM). Under the ’No Audio Information’ condition (top right), the
model fails to discern the presenter as the primary point of interest,
instead distributing saliency across several regions, including the au-
dience to the sides of the frame. In contrast, AViSal360 with its full
capabilities (bottom right) leverages the auditory information from the
AEM and accurately focuses on the presenter as the main source of
attention, matching more accuratelly the ground truth saliency.

S.2 SPATIAL REPRESENTATION OF AUDIO: UPSAMPLED
AUDIO ENERGY MAPS

Audio in 360◦ content is typically played back from stereo head-
phones, where users receive different audio signals in each ear to
simulate spatialized sounds. However, since the direction of a sound
is relative to the orientation of the user’s head, the audio signal for
each ear should change as users orient their heads. Therefore, storing
the incoming sounds within a stereo (two-channel) audio track, as
in traditional videos, is not enough. There exist more sophisticated
spatial representations of sound environments, yet the most common
format for virtual reality (VR) applications is the ambisonic format.
It represents the captured soundscape as a combination of different
audio tracks, each encoding a directional signal according to spheri-
cal harmonics (see Figure 2). As such, it supports different orders,
where ambisonics of higher order have an increased spatial localiza-
tion at the expense of requiring specialized hardware for capture.

For real-time applications such as 360◦ video, it is widely adapted
to employ first order ambisonics (FOA), which are composed of
four channels that correspond to the first four spherical harmonics.
Indeed, previous works in audiovisual saliency prediction [8, 26]
have resorted to FOA representations. While FOA can represent
the general direction of the sound, they usually lack precision. As
discussed in the main document, having an accurate representation
of where the audio salient regions are is a cornerstone for the devel-
opment of audiovisual saliency models. We hypothesized that FOA
does not necessarily suffice for this task, especially in cases where a
high degree of spatial localization is required to resolve ambiguities
in scenes with a large amount of nearby potential sound sources.

To alleviate this limitation, and feed AViSal360 with accurate
enough audio spatial representations, we perform an upsampling
(i.e., also coined upmixing) of the source audio files to fourth-order
ambisonic (4OA) format, which assigns an audio channel for each
of the first 25 spherical harmonics. We perform this upsampling
from FOA to 4OA using COMPASS ambisonic upmixer [16]. We
then extract their corresponding audio energy maps (AEMs, see
main document for further details on this representation) with the
PowerMap plug-in from the Spatial Audio Framework [15], using
the Minimum Variance Distortionless Response (MVDR) method

Figure 2: First four ambisonic orders and their audio channels with
their corresponding spherical harmonics. Note that the higher the
order, the more precise the information is.

[6]. This method is a common algorithm in signal processing with
phased arrays (such as ambisonic microphones) that employs an
adaptative beamformer that minimizes the total power at the receiver
while maintaining the power in the direction of the signal. This
results in the reduction of the interfering signals while conserving
the signal in the sampled direction.

Evaluation We have evaluated whether our upsampled 4OA is
more accurate than its FOA counterpart. We resort to the QoEVAVE
dataset [21], which contains ground-truth 4OA and FOA AEMs
for twenty-six 360◦ videos. We have thus upsampled their FOA
into 4OA and compared both the AEMs coming from the FOA and
the ones extracted from our 4OA to the ground truth for all the
videos in the dataset. Figure 3 shows the Root Mean Squared Error
(RMSE) obtained, and Figure 4 depicts three qualitative comparisons
of the three. The AEMs from our upsampled 4OA yield a smaller
error, while also much better resembling the ground-truth AEMs,
suggesting that our upsampling method can effectively generate
much more precise AEMs, thus overcoming the common limitations
of FOA.

Figure 3: Qualitative evaluation of our upsampling strategy. The left
violin plot shows the averaged RMSE when comparing the audio
energy maps (AEMs) for ground-truth first-order ambisonics (FOA)
and ground-truth fourth-order ambisonics (4OA), while the right violin
plot shows the averaged RMSE when comparing the audio energy
maps (AEMs) from our upsampled 4OA and ground-truth 4OA. Note
how the latter yields a smaller error, thus better resembling the ground-
truth data.



Figure 4: We show the audio energy maps (AEMs) for three frames
randomly selected from three videos. From top to bottom: ground-truth
4OA, ground-truth FOA, upsampled 4OA. Note how our upsampled
4OA yields AEMs significantly more close to the ground-truth ones,
surpassing FOA by a large margin, and suggesting that our upsam-
pling strategy effectively improves the precision of AEMs.

S.2.1 Analysis of the Relationship Between AEMs and
Fixations

To evaluate whether the proposed AEMs are, indeed, better repre-
sentations of directional audio information for saliency prediction
than the AEMs typically used [8, 26], we assess the degree of cor-
relation between AEMs and gaze fixations. To this end, we use the
AUC metric (see Section S.4) to measure to what extent fixation
patterns align with conventional AEMs [17] and with our proposed
AEMs. Higher AUC scores mean a greater alignment of ground
truth fixations with the source of the sound. Figure 5 illustrates that
our proposed AEMs achieve higher scores than those obtained from
conventional AEMs and random AEMs.
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Figure 5: We have assessed the correlation between fixations and
AEMs. The violin plots show AUC scores comparing ground-truth
fixations from the D-SAV360 dataset with random (blue), conventional
(orange), and our proposed (green) AEMs. Higher scores indicate bet-
ter alignment between areas of high audio intensity and fixations. Our
proposed AEMs achieve a higher score, the closest to 1, significantly
outperforming random AEMs. This suggests that there exists a strong
correlation between fixations and sound sources. On the other hand,
conventional AEMs yield scores closer to random, which seems to
highlight they are indeed limited for saliency prediction.

S.3 AVISAL360: IMPLEMENTATION DETAILS

Our model takes as input sequences of RGB frames, and their cor-
responding audio in first-order ambisonic (FOA) format. The RGB
frame sequences have a total length of 20 frames, with a spatial

Table 2: Summary of layers forming our semantic audio features
encoder and our audiovisual fusion module. It represents the output
size of each layer. bs denotes the batch size. We follow Sphernet
implementation [10], thus all the spherical convolutional layers have a
kernel size of 3×3.

Semantic Features Encoder Audiovisual Fusion Module

Layers Output Shape Layers Output Shape

Fully Connected (bs, 512) Spherical Convolution (bs, 72, 120, 160)
Batch Normalization (bs, 512) Batch Normalization (bs, 72, 120, 160)
LeakyReLU (bs, 512) LeakyReLU (bs, 72, 120, 160)
Fully Connected (bs, 256) Spherical Convolution (bs, 36, 120, 160)
Batch Normalization (bs, 256) Batch Normalization (bs, 36, 120, 160)
LeakyReLU (bs, 256) LeakyReLU (bs, 36, 120, 160)
Dropout (0.5) (bs, 256)
Fully Connected (bs, 64)
Batch Normalization (bs, 64)
LeakyReLU (bs, 64)
Fully Connected (bs, 36)
Sigmoid (bs, 36)

resolution of 320×240, thus the input visual tensor has a total shape
of (3,20,320,240). The visual tensor is fed to the visual encoder,
which follows a ConvLSTM architecture, inspired by the imple-
mentation of SST-Sal [3]. It yields a visual feature vector of shape
(36,120,160) for each pass over each frame of the sequence.

Then, we upsample the AEMs from the FOA to our proposed
AEMs coming from fourth-order ambisonics (4OA) as stated in
Section S.2. The sequence of our proposed AEMs is introduced
after the visual encoder phase, thus we reshape them to match the
spatial shape of the extracted visual features. Therefore, the AEM
tensors corresponding to each frame of the sequence have a shape of
(1,120,160).

Finally, to obtain the audio semantic features, we convert the
ambisonics to a mono audio track maintaining the sampling rate of
48,000 Hz. The tracks are split in sequences of 2.5 seconds before
extracting the Log Mel spectrograms of 128 bins. The spectrograms
are input to ImageBind-ViT [13] to obtain the audio semantic embed-
dings of length 1024. We further process these embeddings with four
fully connected layers to extract the final audio semantic features
of length 36. Detailed information is shown in the first column of
Table 2. Other alternatives were explored for the extraction of audio
features, from training CNNs on raw audio waveforms and log-mel
spectrograms to employing pre-trained models like SoundNet [2].
However, ImageBind-ViT [13] achieved the highest performance,
probably due to its superior audio semantic representation.

As a final step, the visual features, AEMs, and audio semantic
features are concatenated before input into the Audiovisual Fusion
module, forming a tensor of shape (73,120,260). The Audiovisual
Fusion module is built over two spherical convolutions with a kernel
size of 3·3, the detailed layers are provided in the second column of
Table 2. The output of the Audiovisual Fusion module, with a shape
of (36,120,160), is provided to the audiovisual decoder to extract
the final saliency map of shape (1,320,240). Note that only the final
saliency map obtained after processing the whole sequence of 20
frames is used as the final prediction [3]. Once the whole sequence
has been processed, the cell and hidden states of the encoder and
decoder (formed by spherical ConvLSTMs) are reset.

S.3.1 Spherical ConvLSTMs
We follow the implementation of Bernal-Berdun et al. [3] for the
spherical ConvLSTM employed in both our encoder and decoder.
Convolutional LSTMs (ConvLSTMs) [20] replace the fully con-
nected layers of traditional LSTMs with convolutional operations
that additionally account for the spatial relationships of sequential
data. Furthermore, spherical ConvLSTMs rely on spherical convolu-
tions [10], which employ a distorted kernel to compute real pixels
neighboring in spherical space, thus handling spatial features over
time while accounting for the unique particularities of equirectangu-



lar representation. Our spherical ConvLSTMs can be expressed as
follows:

it = σ (Wi ∗ [et ,ht−1]+bi)

lt = σ (Wl ∗ [et ,ht−1]+bl)

ot = σ (Wo ∗ [et ,ht−1]+bo)

gt = tanh
(
Wg ∗ [et ,ht−1]+bg

)
ct = lt ⊙ ct−1 + it ⊙gt

ht = ot ⊙ tanh(ct) ,

(1)

where c and h are the cell and hidden states as in traditional LSTMs,
* spherical convolutions with 3× 3 kernel size, ⊙ the Hadamard
product, and σ a sigmoid activation function. Wi,Wl ,Wo,Wg and
bi,bl ,b0, bg are the learned weights and biases for the four spherical
convolutions, whereas [et ,ht−1] represents the concatenation of the
frame with the hidden state at time t. The output of the spherical
ConvLSTM is the last value of ht .

S.3.2 Audiovisual Loss Function
Our novel audiovisual loss function can be computed as follows:

LAV = γ KLD(Q,P)+(1− γ) KLD(AEM,P), (2)

where P and Q are the predicted and ground truth saliency maps,
AEM is the audio energy map, and γ is a weighting parameter fixed
at 0.75. We compute the Kullback-Leibler Divergence (KLD) terms
as:

KLD(A,B) = ∑
i, j

wi, j Ai, j log
(

ε +
Ai, j

ε +Bi, j

)
, (3)

where

wi, j = ∆ϕ
sin(∆θ j)+ sin(∆θ( j+1))

2∆θ
, (4)

∆θ =
π

H
;∆ϕ =

2π

W
; i ∈ [0,W ]; j ∈ [0,H];ε = 10−8. (5)

A and B represent the evaluated saliency maps of shape W ×H,
and wi, j, is a spherical weighting that acknowledges the distortions
introduced by the equirectangular projection, ensuring that the con-
tribution of each pixel (i, j) is proportional to its solid angle [3, 25].

S.4 METRICS FOR SALIENCY MAP EVALUATION

To evaluate our model and compare it to the state of the art, we
resort to the well-established metrics analyzed by Bylinskii et al. [5].
As they state in their work, there is no definite metric to evaluate
saliency, since each one offers different information about the good-
ness of the predictions. In our main paper, we resort to Pearson’s
Correlation Coefficient (CC), Normalized Scanpath Saliency (NSS),
Similarity (SIM), and Root Mean Square Error (RMSE) to evaluate
our model. Here, we also show results with the Area Under the
ROC Curve (AUC) and Earth Mover’s Distance (EMD) (which have
a limited penalty imposed on false positives), and the Kullback-
Leibler Divergence (KLD), which is employed during training of
most approaches. We further outline the key features of each of
these metrics in the following.

• AUC: The Area Under the ROC Curve primarily reflects the
presence of highly valued salient areas. This ROC curve is
generated by applying increasing thresholds to the predicted
saliency map values and then assessing, for each threshold,
the number of fixations within salient regions surpassing the
threshold. Consequently, a larger AUC indicates a greater
number of fixations falling within these salient regions. Given
its reliance on high-valued predictions, AUC is less sensitive
to low-valued false positives.

• NSS: Normalized Scanpath Saliency assesses the alignment
between predicted saliency maps and actual eye fixations. This
metric computes the average normalized saliency specifically
at the locations of ground truth fixations. Importantly, NSS
remains unaffected by parameters employed in generating the
ground truth saliency maps, such as the sigma of the Gaussian
kernel applied. NSS penalizes false positives as they do not
contribute to the average value and reduce the values associated
with true positives due to normalization.

• CC: Pearson’s Correlation Coefficient evaluates the correlation
between the distributions of two saliency maps, yielding a
value of one when the distributions are identical and minus one
when they are opposite. Because of its symmetrical nature, it
equally penalizes false positives and false negatives. Figure 6
illustrates this behavior, where B2 saliency maps present fewer
false positives, achieving a higher CC score, while in the last
row, where both false positives and false negatives increase,
the score notably decreases compared to the B2 maps in first
and second rows.

• SIM: The similarity metric is obtained by summing up the
minimum value between the saliency maps at each pixel. Con-
sequently, the presence of a false positive in the predicted
saliency map doesn’t result in a penalty, as the metric will
consistently select the minimum value at each pixel, which in
this case corresponds to that of the ground truth saliency map.

• KLD: The Kullback-Leibler Divergence metric quantifies the
difference between two probability distributions by measuring
the amount of information lost when one distribution is used
to approximate the other. Due to its sensitivity to zero values,
KLD harshly penalizes a sparse set of predictions.

• EMD: Earth Mover’s Distance quantifies the spatial disparity
between two saliency maps by determining the minimum effort
needed to transform one distribution into another. Particularly,
saliency maps with dispersed density across a larger area tend
to yield higher EMD values, indicating worse scores, as re-
distributing this excess density to match the ground truth map
requires more effort. Moreover, EMD imposes a slight penalty
on false positives that are spatially close to the ground truth.

• RMSE: The Root Mean Square Error metric gauges the dis-
parity between predicted and ground truth saliency maps. It
calculates the square root of the average of the squared dif-
ferences between corresponding pixel values in both maps.
Unlike metrics focused on area-based evaluations, RMSE di-
rectly measures the magnitude of the discrepancies across the
entire map. Consequently, it is sensitive to both high and
low-valued errors. In scenarios where false positives or false
negatives occur, even at lower magnitudes, RMSE can be af-
fected, impacting its overall value.

We also illustrate in Figure 6 how each metric might yield differ-
ent results within different pairs of saliency maps.

S.5 EXTENDED EVALUATION AND COMPARATIVE WITH PRE-
VIOUS WORKS

In this section, we offer an extended discussion and performance
evaluation of the state-of-the-art models for audiovisual saliency
prediction over 360◦ video [8, 9, 26]. Table 3 presents quantitative
results obtained across all metrics outlined in Section S.4. For
each metric, we performed a Wilcoxon signed-rank test between the
scores of our model and each of the state-of-the-art models [8,9,26].
The results can be found in Table 4, showing a statistical difference
for all the metrics.



Figure 6: Each row illustrates a comparative analysis wherein, for a given reference saliency map A (first column), we calculate AUC_Judd, NSS,
CC, SIM, KLD, EMD, and RMSE (see Section S.4) metrics for two distinct saliency maps, B1 (second column) and B2 (fourth column). Additionally,
we illustrate the difference between each saliency map and the reference, with reddish colors indicating false negatives (FN) and bluish colors
representing false positives (FP). The whiter the difference, the more similar the pair of maps are. The best metric between maps B1 and B2 is
highlighted in boldface. While saliency maps B2 exhibit qualitative similarity to the reference map compared to B1, certain metrics (e.g., KLD,
EMD, or AUC_Judd ) do not accurately reflect this similarity due to their low sensitivity to false positives.

Inspired by Agrawal et al. [1], we aim to perform thorough anal-
yses to assess the impact of the different audio cues on the final
saliency predictions. To this end, we have introduced random audio
inputs to AViSal360, AVS360 [8], and SVGC-AVA [26], both in
terms of directional features (i.e., AEMs) and semantic features
(as a waveform for AVS360 and ImageBind-ViT embeddings for
AViSal360). For this comparative analysis, we exclude Cokelek et
al.’s approach due to its non-data-driven nature. The results of these
analyses can be found in Table 5.

Our results show that prior state-of-the-art models exhibit con-
sistent or similar results with the introduction of random audio
information to the ones obtained with correct audio, suggesting that
their approaches are likely overlooking audio features, thus reducing
their performance in cases where visual and auditory salient regions
are not similar. Differently, our model experiences a notable drop
in performance, which suggests that our model is indeed leveraging
such audio features to provide more robust and accurate predictions.

As shown in Figure 8, AViSal360 can generally leverage audio
semantic features to discern when the audio direction is relevant.
This minimizes the negative effects introduced by reverberation or
noises like wind in the AEMs, focusing on visually relevant features
instead. Regardless, AViSal360’s predictions on these cases degrade
when no element is clearly visually salient (see Figure 7 of the main
paper). The small number of videos in D-SAV360 presenting these
conditions (no visually salient elements and noise/reverberation) dif-
ficult to learn these specific scenarios during training. This limitation
could be mitigated with a larger and more diverse dataset.

S.6 DRAWBACKS OF OPTICAL FLOW FOR SALIENCY PRE-
DICTION

As discussed in Section 3 in the main document, our model builds
upon a visual feature extraction module similar to SST-Sal [3], the
state-of-the-art in visual saliency prediction. Importantly, different
from them, we exclude the use of optical flow, as we have found two
main occasions where its inclusion may hinder our model’s ability
to predict accurate saliency.

SST-Sal resorts to optical flow, which estimates the pixel move-
ment across consecutive frames, as a measure of the movement of
objects within a static scene. Nonetheless, when applied to videos
captured with a moving camera, it does not serve to distinguish
which objects are in motion, as the scene itself shifts along with
them. The optical flow SST-Sal relies on is computed using the deep
learning model RAFT [23]. We have empirically observed that this
model tends to produce noisy optical flow estimates in scenes where
there is either no movement or where the motion is subtle.

We have explored the impact of those cases in SST-Sal. We have
found that in both cases (see Figure 7), and as briefly discussed
by the authors, predictions are hindered and the model’s accuracy
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Figure 7: We have evaluated the impact of noisy optical flow estima-
tions in the state-of-the-art visual saliency predictor SST-Sal [3] for
cases with a complex scene with noisy optical flow (top) and cases
where the camera is dynamic (bottom). For both, we show an RGB
frame together with an inset with the optical flow estimation (left),
and the ground-truth (center) and predicted (right) saliency. The in-
accurate optical flow estimation in both cases significantly hinders
SST-Sal’s performance. Therefore, we decide to exclude optical flow
from our visual feature extraction module, alleviating this limitation
and favoring AViSal360’s generalizability.



Figure 8: Additional qualitative results obtained from AViSal360 for
two different videos (from left to right: video_0001, and video_0011 in
the D-SAV360 dataset). Both present scenarios where the captured
audio is noisy and could hinder the prediction. In the first video (left),
a strong case of reverberation is presented due to the architecture of
the place, but the model pays no attention to the echo. For the second
video, outdoor noise captured between the two mainly salient spots
leads to a suboptimal audio representation. However, our proposed
model avoids being mistakenly driven by the noise.

significantly drops. We therefore decided not to feed optical flow
into our visual feature extraction module, ensuring that our model is
not tied to only videos with static cameras and does not depend on
having accurate optical flows.

S.7 DATASETS OF VIEWING BEHAVIOR IN 360◦ CONTENT

With the proliferation of VR systems, we are witnessing an increased
interest in better understanding the intricacies of viewing behavior
in virtual environments. Datasets featuring head and gaze data
from viewers for visual-only content are relatively abundant, both in
static 360◦ images [12, 19, 22] and in 360◦ video [11, 14, 18, 24, 28].
However, datasets for audiovisual content are more scarce or exhibit
limitations. Zhang et al. [27] collected around 1,000 scanpaths from
20 different viewers, but their sound was not spatialized, limiting the
real impact of sound. Chao et al. [7] presented video with ambisonic
(i.e., spatialized) audio, but only recorded head data (no gaze). In this
work, we leverage the largest audiovisual 360◦ video dataset to date,
D-SAV360 [4], which is currently the only publicly available dataset
containing gaze data for 360◦ videos with spatialized audio. D-
SAV360 features varied video content, and a diverse set of viewers,
including a balanced number of female and male participants with
varying levels of familiarity with VR.

S.8 D-SAV360 VIDEOS FOR AUDIOVISUAL EVALUATION

The D-SAV360 dataset [4] presents 87 videos exhibiting varying
degrees of audio presence and its influence on visual attention. To
capture a more representative scenario where audio significantly
drives attention, we selected a subset of videos where audio plays a
pivotal role. This subset was chosen based on the CC scores between
the AEMs and the ground truth saliency, selecting the videos whose
CC score is above a threshold set at 0.25. This subset includes 29
videos, enabling us to assess the impact of audio without dimming
its influence among videos where it may be less relevant. The video
IDs included in this subset are as follows: 5026, 0021, 5017, 0017,
0012, 0028, 1011, 1001, 1012, 5018, 5019, 1008, 5010, 5009, 0002,
1004, 2017, 0004, 1018, 0014, 0027, 2008, 0016, 0007, 0005, 0030,
5037, 1005, and 0013.
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Table 3: Extended quantitative comparison of the proposed AViSal360 to the state-of-the-art audiovisual saliency models: AVS360, SVGC-AVA,
and Cokelek’s proposal for audio inclusion fused with SST-Sal. The values presented for each model are the average mean scores for each of the
videos in the D-SAV360 dataset, the average standard deviation is shown between parenthesis, and the confidence intervals between brackets.
Upward and downward arrows for each metric indicate whether higher or lower values represent better performance. Bold text indicates the best
model. Our model AViSal360 archives the best score among the audiovisual state-of-the-art models.

Model CC ↑ NSS ↑ SIM ↑ RMSE ↓ AUC ↑ EMD ↓ KLD ↓

Cokelek et al. + SST-Sal
0.356 2.414 0.294 0.141 0.834 1.453 8.269

(0.105) (0.815) (0.066) (0.030) (0.06) (0.620) (1.728)
[0.336,0.376] [2.212,2.615] [0.281,0.307] [0.137,0.145] [0.821,0.847] [1.347,1.559] [7.913,8.625]

AVS360
0.252 1.544 0.236 0.121 0.793 1.503 9.343

(0.100) (0.665) (0.054) (0.020) (0.062) (0.351) (1.430)
[0.224,0.280] [1.351,1.737] [0.221,0.252] [0.113,0.129] [0.774,0.812] [1.378,1.627] [8.936,9.343]

SVGC-AVA
0.248 1.505 0.244 0.094 0.881 1.345 8.804

(0.091) (0.580) (0.051) (0.007) (0.027) (0.309) (1.202)
[0.224,0.271] [1.343,1.668] [0.231,0.258] [0.090,0.097] [0.872,0.890] [1.241,1.449] [8.467,9.141]

AViSal360
0.462 3.543 0.339 0.068 0.911 0.978 7.155

(0.116) (1.196) (0.059) (0.015) (0.028) (0.344) (1.274)
[0.435,0.490] [3.164,3.922] [0.325,0.353] [0.063,0.072] [0.901,0.921] [0.908,1.049] [6.840,7.469]

Table 4: Wilcoxon signed-rank test comparison between our model AViSal360 and each state-of-the-art audiovisual saliency model: AVS360,
SVGC-AVA, and Cokelek’s approach for audio inclusion fused with SST-Sal. For each metric, we present the associated p-value, z-value, and
effect size r. Results support that the performance improvement exhibited by AViSal360 is statistically significant.

Model CC NSS SIM RMSE AUC EMD KLD

Cokelek et al. + SST-Sal
p-value < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
z-value -7.153 -7.412 -6.549 -8.008 -8.003 -7.421 -6.719
r-value 0.053 0.037 0.091 <0.001 <0.001 0.037 0.080

AVS360
p-value < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
z-value -7.368 -7.605 -7.469 -7.767 -7.960 -6.943 -7.232
r-value 0.040 0.025 0.034 0.015 0.003 0.066 0.048

SVGC-AVA
p-value <0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
z-value -7.442 -7.718 -7.333 -6.855 -6.443 -5.725 -6.535
r-value 0.035 0.018 0.042 0.072 0.098 0.143 0.092

Table 5: Random Inputs. Quantitative evaluation while providing random audio input to our model and the state-of-the-art models AVS360 and
SVGC-AVA. The values presented for each model are the average mean scores for each of the videos in the D-SAV360 dataset, and the average
standard deviation is shown between brackets. Upward and downward arrows for each metric indicate whether higher or lower values represent
better performance. AVS360 and SVGC-AVA achieve similar performance when random audio is provided, which suggests a poor use of the audio
information.

Random AEM Random Semantic Correct Inputs

Model CC ↑ NSS ↑ SIM ↑ RMSE ↓ CC ↑ NSS ↑ SIM ↑ RMSE ↓ CC ↑ NSS ↑ SIM ↑ RMSE ↓

AVS360 0.248 1.521 0.234 0.123 0.252 1.547 0.245 0.122 0.252 1.544 0.236 0.121
(0.099) (0.656) (0.054) (0.018) (0.100) (0.663) (0.054) (0.017) (0.100) (0.665) (0.054) (0.016)

SVGC-AVA 0.248 1.505 0.245 0.094 - - - - 0.248 1.505 0.244 0.094
(0.091) (0.580) (0.051) (0.007) (0.091) (0.580) (0.051) (0.007)

AViSal360 0.431 3.302 0.311 0.070 0.451 3.418 0.332 0.071 0.462 3.543 0.339 0.068
(0.121) (1.190) (0.061) (0.016) (0.115) (1.160) (0.059) (0.016) (0.116) (1.196) (0.059) (0.015)
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