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Figure 1: We explore the benefits of weakly supervised learning to predict perceived gloss from images. Commonly used supervised models
require costly manual annotations of large datasets (left). In contrast, we propose to leverage simple weak labels, which can be automatically
computed, achieving a twofold contribution: (1) our weak labels can be effectively combined with such costly annotations to reduce gloss
prediction error, if accuracy is the priority (center); and (2) they enable a significant reduction in manual annotations of up to 80% without
sacrificing accuracy, if efficiency is the priority (right).

Abstract
Estimating perceptual attributes of materials directly from images is a challenging task due to their complex, not fully-
understood interactions with external factors, such as geometry and lighting. Supervised deep learning models have recently
been shown to outperform traditional approaches, but rely on large datasets of human-annotated images for accurate per-
ception predictions. Obtaining reliable annotations is a costly endeavor, aggravated by the limited ability of these models to
generalise to different aspects of appearance. In this work, we show how a much smaller set of human annotations (“strong
labels”) can be effectively augmented with automatically derived “weak labels” in the context of learning a low-dimensional
image-computable gloss metric. We evaluate three alternative weak labels for predicting human gloss perception from limited
annotated data. Incorporating weak labels enhances our gloss prediction beyond the current state of the art. Moreover, it en-
ables a substantial reduction in human annotation costs without sacrificing accuracy, whether working with rendered images
or real photographs.

CCS Concepts
• Computing methodologies → Perception; Dimensionality reduction and manifold learning; Supervised learning;

1. Introduction

The advent of powerful generative deep learning models for im-
age synthesis and editing creates new opportunities, as well as
new challenges, for computer graphics. In this context, techniques
to navigate the massively high-dimensional latent spaces of such
models in ways that are perceptually meaningful to humans be-
come increasingly vital. Within the field of computer graphics, un-

derstanding and modeling human perception of material appear-
ance has long been a fundamental challenge. This understand-
ing is essential for accurately simulating the visual aspects of
the physical world as perceived by humans and it has potential
applications ranging from design and virtual prototyping to im-
age editing and fabrication processes [CPW∗22, SL23]. In partic-
ular, gloss is one of the most perceptually salient appearance at-
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tributes [CK15, Fle17]. Unfortunately, how glossy a surface ap-
pears to a human viewer is a product of complex and only par-
tially understood interactions between surface reflectance, illumi-
nation, and geometry [Fle14, LSGM21]. Perceived gloss, despite
being grounded in photogeometric features such as the properties
of reflected highlights [MKA12], cannot be well captured by ei-
ther linguistic descriptors or objective measures, such as surface
reflectance. This makes gloss an excellent candidate for a learned
perceptual metric.

Recently, it has been shown that complex representations of vi-
sual inputs are likely needed to capture perception of gloss in im-
ages [DLG∗20, FS19, LSGM21], drawing attention to deep learn-
ing approaches. Gloss perception is a high-dimensional problem
that cannot be easily modeled by combining only physical mate-
rial properties like roughness or specularity [Fle14, CK15]. Such a
model could not, for instance, account for the effects of shape or
illumination on perceived gloss [MKA12, SAF21, SCW∗21]. Sim-
ple image statistics also fall short, due to the importance of spatial
information (e.g., congruence of highlights, lowlights, and shad-
ing). Consequently, deep learning offers a framework for com-
puting suitably complex visual features from which perceptual
gloss metrics may be directly learning from detailed human an-
notations [LMS∗19, SCW∗21]. State-of-the-art gloss predictions
have been achieved using supervised methods, as demonstrated
by Serrano et al. [SCW∗21]. However, these approaches heavily
rely on a substantial amount of human-annotated images, which
can be prohibitively expensive to obtain. For instance, Serrano et
al. [SCW∗21] collected over 200,000 gloss ratings from more than
3,000 human participants for their dataset. Alternatively, methods
employing fully unsupervised models, such as the one proposed
by Storrs et al. [SAF21], face challenges in capturing material
properties in complex stimuli and realistic images. Object appear-
ance in realistic images is influenced by multiple factors, including
geometry, lighting, and viewpoint, creating a prohibitively high-
dimensional space to learn in a fully unsupervised fashion from
limited training data. Moreover, even after training, unsupervised
models require further adjustments to align their latent dimensions
with human perception.

In this work, we show that costly human annotations (strong
labels) can be effectively combined with automatically derived
weak labels in the context of learning a low-dimensional image-
computable gloss metric. First, we demonstrate that our weakly su-
pervised approach achieves higher gloss prediction accuracy than
previous supervised methods (Figure 1, center). It is not trivial that
such an approach should work – noisy weak labels can in some do-
mains “dilute” high-quality strong labels, reducing a model’s per-
formance even as more training data is provided [LGZ19]. Then,
we leverage our weak labels to reduce the annotation cost, allowing
for an 80% reduction in the amount of human-labeled data needed,
without losing accuracy (Figure 1, right). In addition, we identify
the need for a controlled dataset to systematically evaluate gloss
prediction models, as opposed to crowd-sourced existing datasets.
For this purpose, we create a new test dataset that includes system-
atic variations in rotation, geometry complexity, illumination and
specularity, and covers a reasonable and balanced range of glossi-
ness levels. This new test dataset is annotated under constant, con-
trolled viewing conditions that enable a reliable evaluation of gloss

prediction models. Finally, we show how our weakly supervised
gloss predictors are consistent with human perception for such sys-
tematic variations and are able to generalize reasonably to “in-the-
wild” real images.

In summary, we present the following contributions:

• A study of three possible automatic weak labels (simple and
cheap to obtain) that can effectively be leveraged to predict hu-
man perception of gloss without the need for a large amount of
costly annotated data.

• A test dataset with controlled variations and reliable annotations
to evaluate perceptual gloss prediction models.

• An accurate gloss predictor that outperforms previous methods,
is consistent across changes in object view or illumination, and
generalizes to real-world photographs.

Our datasets and gloss prediction models, as well as the train-
ing and evaluation code, are available in https://graphics.
unizar.es/projects/perceived_gloss_2024/.

2. Related Work

Weakly supervised learning [Zho18] has been widely applied in
computer vision and graphics in several domains such as im-
age classification [XXY∗15, CZZ∗20], object detection [RYY∗20,
CFJ∗20], semantic segmentation [BRFFF16, LY20, KJHH23], or
image retargeting [CPO∗17]. However, in the fields of material ap-
pearance and perception science, contemporary studies still rely
on tedious and expensive human annotations [LMS∗19, DLC∗22],
which are the standard in psychophysical experiments. In this pa-
per, we perform the first study of weakly supervised learning focus-
ing on the field of material appearance, particularly on perceptual
gloss prediction.

2.1. Gloss Metrics

Finding an objective measure of gloss is a long-standing problem in
computer graphics, industry, perception research and related fields.
Since the work from Hunter et al. [H∗37], it has been recognized
that a single physical measure is not sufficient to quantify physical
gloss. An active field of research on the perceptual aspects of gloss
has demonstrated that perceived gloss depends not only on surface
reflectance properties but also on geometry, illumination, and mo-
tion [FDA01, FDA03, PFG00, WAKB09]. Chadwick et al. [CK15]
provides a review of the study of gloss perception and measure-
ment.

One intuitive approach to quantifying gloss would be to con-
sider a physical parameter (e.g., roughness) from an analytical
BSDF model, as an objective measurement. However, such pa-
rameters of analytical models do not correlate well with per-
ceived gloss [NDM06, WAKB09]. Moreover, it is difficult to ad-
just BSDF parameters to approximate real-world measured ma-
terials while maintaining their perceptual quality [LBFS21]. Al-
ternatively, there are works showing that certain image statis-
tics [MNSA07], or visual cues [MKA12] correlate with perceptual
judgments of gloss, at least for simple stimuli. Last, the work of
Westlund and Meyer [WM01] explores the objective measurement
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of physical gloss on analytical BSDF models following industry
standards [HJ39].

Following each of these proposals, we explore three different ob-
jective metrics to label gloss perception of rendered images, based
on BSDF parameters, image statistics, and industry standards, and
analyze their usefulness as weak labels to guide learning-based al-
gorithms for gloss prediction.

2.2. Dimensionality Reduction for Material Appearance

Reducing the dimensionality of material representations while cap-
turing the statistical structure of their appearance (either across im-
ages or BSDF tabulated data) is a challenging task with multiple
applications for computer graphics, such as database searching and
visualization [LMS∗19], gamut mapping [SSGM17] or material
editing [SCW∗21, DLC∗22, SL23].

Some early works show that linear reduction methods such as
Principal Component Analysis (PCA) are good for finding direc-
tions that capture some traits of material appearance [MPBM03,
NJR15, SGM∗16]. Since the emergence of deep learning, super-
vised learning methods have demonstrated good performance for
efficient compression of complex material representations, such
as Bidirectional Texture Functions (BTFs) [RJGW19, RGJW20]
or tabulated BSDFs [HGC∗20]. Other works also show that su-
pervised methods are efficient in compressing images into low-
dimensional representations while capturing the statistical struc-
ture of materials [LMS∗19,SCW∗21]. However, these data-hungry
algorithms require collecting large amounts of labeled data for
training. On the other hand, recent works suggest that unsu-
pervised learning methods are also capable of compacting high-
dimensional BSDF tabulated data in low-dimensional latent vec-
tors [BSP22, ZZW∗21], and keeping certain structures related to
high-level perceptual attributes on simple image stimuli, such as
gloss [SAF21] or translucency [LSX23]. However, aligning such
latent dimensions with human perception for the case of complex
stimuli remains challenging.

In our work, we propose a weakly supervised encoder that com-
presses images in a low-dimensional latent space capturing the
structure of gloss. Our weakly supervised learning approach allows
us to reduce the annotation cost, by automatically labeling training
images, while still supervising the learning process to simplify the
task for complex stimuli.

2.3. Material Appearance Datasets

Existing databases of materials, such as MERL [MPBM03],
RGL [DJ18] and UTIA [FV14] contain measured BSDFs of differ-
ent material types (e.g., metals, plastics or fabrics) and are widely
used for material appearance applications [SGM∗16, SSGM17,
SSN18]. To capture the complex interactions of materials with
other factors that influence human perception of appearance, like
geometry or illumination [LSGM21], previous works rely on
image-based material datasets, such as CURet [DVGNK99], Open-
Surfaces [BUSB13] or Lagunas et al. [LMS∗19]. These large
datasets are usually annotated manually through crowd-sourcing
experiments, in order to obtain ground-truth labels of perceptual

attributes for material appearance, such as glossiness or metallic-
ness.

Our training process relies on the dataset from Serrano et
al. [SCW∗21], which includes thousands of rendered images us-
ing a variety of real-world geometries, illuminations and measured
materials, manually annotated with six perceptual attributes includ-
ing glossiness. We further extend this dataset with new images of
analytical materials, automatically labeled with our weak labels.
Although massive crowd-sourced datasets are very useful to train
learning-based models, they are not ideal for a systematic evalua-
tion of gloss prediction models, since they can be noisy and do not
cover controlled variations in factors affecting gloss perception. We
thus create a new, controlled test dataset for evaluation, made up of
310 reliably annotated images.

3. Datasets

We first describe the image dataset that we use to train our model
(Section 3.1). Then, we describe our new controlled test dataset to
systematically evaluate gloss prediction results (Section 3.2). We
include our full test dataset in the supplemental material.

3.1. Training Dataset

We use a large image-based material dataset to train our models.
First, we rely on the dataset from Serrano et al. [SCW∗21], which
includes a variety of measured materials under real-world geome-
tries and illuminations. We use a subset of this dataset, after re-
moving the geometries and materials used in our test dataset and
all anisotropic materials, to simplify the range of material appear-
ances, making a total of 23,616 images. Each of these images has
an associated strong label of perceived glossiness, assigned manu-
ally by humans as a single rating in the 7-point Likert scale. Note
that the commonly used Likert-scale ratings already capture poten-
tial non-linearities in perception. In the following, for clarity, we
always refer to this subset as the Serrano dataset.

We then extend our training dataset with 38,250 new images
(never annotated by humans) including new geometries, points of
view, illuminations and analytical materials using Disney’s Prin-
cipled BSDF [BS12, Bur15], for which we vary the values of
the roughness r and specular s parameters in the intervals [0,0.5]
and [0.1,5], respectively. The images were rendered using Mitsuba
3 [JSR∗22], using a global gamma-exposure tone mapping oper-
ator to avoid introducing non-uniform contrast changes following
previous work [SCW∗21]. We annotate this extended dataset with
our automatically-computed weak labels (see Section 4.1), with the
purpose of offering an effective alternative to human labeling of a
full dataset, improving generalization at a very low cost. Figure 2
shows a representative subset, and additional details are included in
the supplemental material.

3.2. Test Dataset

Several datasets exist that pair images of varying material appear-
ance with ground-truth data in the form of human judgements of
gloss [SCW∗21,SGM∗16,DLC∗22,SAF21]. Most of these datasets
are built with the goal of training, testing or calibrating models

© 2024 The Authors.
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Figure 2: Example images from our training dataset. We extend the Serrano dataset [SCW∗21] with a set of new images of varied geometries,
illuminations and analytical materials using Disney’s Principled BSDF.

A)

B)

C)

D)

Figure 3: Representative images of our controlled test dataset. Top
row shows our five baseline measured materials under the baseline
geometry frog and baseline illumination uffizi. Rows A-D show in-
dividual variations for one example material: A) different rotations,
B) different geometry complexity by increasing bumpiness of the
surface, C) different illuminations, and D) different levels of the
specular parameter for the analytical fitting of the material.

that mimic human perception of gloss, and feature varying material
properties, lighting conditions, geometries and camera viewpoints.

However, they are not ideal for a systematic evaluation of gloss
prediction models, for several reasons. First and foremost, images
in the dataset do not include controlled variations, such as system-
atic changes in point of view, or illumination frequency, to measure
consistency. Second, annotations are given through large crowd-
sourced experiments under varying, uncontrolled viewing condi-
tions, and thus can be noisy and unreliable for specific images. And
last, annotations might be highly unbalanced with respect to levels
of perceived gloss, which can lead to erroneous conclusions when
reporting an average error metric (e.g., a constant baseline model
that always predicts the lowest gloss level for every image could get
a low average error if the majority of the images in the test dataset
are completely matte). Therefore, we create a test dataset, anno-
tated under constant, controlled viewing conditions, which we use
to reliably evaluate our models.

Our test dataset includes twenty baseline samples, from which
we generate controlled variations, yielding a total of 310 images.
The baseline samples are created through combinations of geom-
etry, material (measured BSDFs), and illumination (environment
maps), and cover a reasonable range of appearances (see Figure 3,
top row). Specifically, our baseline includes:

• Two geometries with different complexity: frog and
bumpy_sphere.

• Two illuminations with different distributions of spatial frequen-
cies: uffizi and st_peters.

• Five measured materials, from the MERL database [MPBM03],
with different glossiness: pink_plastic, fruitwood, violet_acrylic,
specular_yellow_phenolic and aluminium.

For each combination of the baseline materials, illuminations
and geometries, the following variations are generated (see Fig-
ure 3, rows A through D):

A) Five different rotations of the object.

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.
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B) Five different levels of geometry complexity, by increasing the
bumpiness of the surface.

C) Three additional illuminations. Ranked in order of increasing
high-frequency content [BBP04], the full set of illuminations is:
st_peters_blurred, glacier, uffizi, st_peters, and grace. We obtain
st_peters_blurred by applying a Gaussian filter of size 20x20 to
the original st_peters, to offer a direct comparison.

D) Five different levels of the specular parameter for the Ward-
Duer [Dür06] analytical fitting of the material, sampling the
range [-0.05, +0.05]. Although the Ward-Duer model has limita-
tions modeling the Fresnel effects, this model adequately fits our
need to vary the specular level in the MERL database materials,
as the parameters for the material fitting are publicly available in
the work of Ngan et al. [NDM06].

Our resulting dataset includes challenging examples (e.g., non-
conventional illumination maps like glacier), both measured and
analytical materials, and large differences in geometry complexity.
As well as providing a challenging benchmark for gloss prediction,
these variations provide a means to evaluate gloss constancy, both
for human annotators and for models.

Each of these 310 images is manually annotated for gloss, on
a 7-point Likert scale, by five different subjects (ages 24-35, three
females and two males, all claiming experience in computer graph-
ics). Annotation is done under constant, controlled viewing condi-
tions (SDR display and fixed lighting). Agreement between annota-
tors is high (Krippendorff’s alpha [Kri11] = 0.87; 1.0 would indi-
cate perfect agreement), and annotations are well balanced between
gloss levels (see further details in the supplemental material).

4. Gloss Prediction with Weak Labels

To obviate the need to collect a large number of strong (manual)
gloss labels via time-consuming user studies, we propose combin-
ing just a small set of strong labels with a larger set of automatically
computed weak labels.

4.1. Automatic Weak Labels

Our objective in developing automatic weak labels is to ensure their
ease of computation while maintaining a rough correlation with
the perception of gloss. These labels are obtained through simple
and coarse approximations. To illustrate this, we explore three sim-
ple methods to automatically produce weak labels for our images,
based on i) Disney’s Principled BSDF model [BS12, Bur15]; ii)
image statistics; and iii) industry metrics [HJ39], respectively. As
a result, every image x in our analytical dataset has three different
weak labels {y0,y1,y2} (in the range [1,7]) associated with it.

Disney’s Principled BSDF Model (y0) Previous works [PFG00,
WAKB09, AKLM18] suggest that roughness r and specular s are
the two main physical parameters related to gloss perception. We
use a weighted combination of these parameters in Disney’s Princi-
pled BSDF Model to approximate the gloss level for each image, as
y0 =

⌊
λss+β(α−λrr2)

⌋
where λs and λr are weights to balance

the distribution of the labels, which we empirically set to 0.95 and
1.2 respectively, and β and α are scalars to translate the roughness
term to the interval [1,2] (set to 4 and 0.5, respectively).
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Figure 4: Weak labels automatically computed for example images
in our training dataset: based on the BSDF model (blue), image
statistics (green) and industry metrics (orange). We show samples
from the blob geometry under the cambridge illumination and grey
albedo with different combinations of roughness and specular pa-
rameters from Disney’s Principled BSDF. Although none of these
labels are precise indicators of perceived gloss, they sufficiently
correlate with gloss perception to be used as weak labels. All weak
labels are in the range [1, 7].

Image Statistics (y1) Some works point to simple image statis-
tics as indicators of human perception of gloss for simple stim-
uli [MNSA07, SLM∗08, WTG15]. Although such approaches may
not generalize well to complex images or high-frequency illumi-
nation, we analyze their usefulness as weak labels since they are
easy to compute and not linked to any specific BSDF model. We
define y1 = 1

N ∑
N
i=1(xi − x)3/σ

3 as the skewness of the luminance
histogram [MNSA07], where x and σ are its mean and the standard
deviation, respectively. We compute the skewness per geometry and
material under low-frequency illumination in grey scale, where we
empirically observe a reasonable correlation to gloss perception.
To compute the skewness only from pixels inside the objects, we
remove the background using a mask. Then, we assign the same
label y1 across different illuminations. Recent literature shows that
more complex visual features are better correlated to human per-
ception [SBD23] but these require access to matte and specular
components separately, so we choose skewness for its simplicity.

Industry Metrics (y2) The standard D523 from the American
Society for Testing and Materials (ASTM) provides a procedure
to measure gloss on real-world materials [HJ39]. Westlund and
Meyer [WM01] apply its methodology to compute the ratio be-
tween the radiance given by simple BSDF models and an analyt-
ical approximation of a polished black glass. We follow a simi-
lar approach and calculate the log-ratio between the radiance com-
puted with Disney’s Principled BSDF (used to render our analyti-
cal dataset) and a black glass modeled by a GGX microfacet model
[WMLT07], as y2 = log(Rd +1)/ log(Rg+1), where Rd and Rg are
the radiance of Disney’s Principled BSDF and the black glass re-
spectively, computed at an angle of 20º with respect to the normal.
Both Rd and Rg are computed with the radiance meter provided
by Mitsuba 3 [JSR∗22]. Each resulting yi approximates the gloss

© 2024 The Authors.
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level of x on a 7-point Likert scale. We show examples of our re-
sulting weak labels in Figure 4. Although none of them is suitable
to directly derive a gloss metric (nor have they been designed for
that purpose), we can observe how these labels reasonably correlate
with perceptual gloss, which suffices for our purposes.

4.2. Gloss Predictor

We next describe the network architecture and our weakly super-
vised framework for training a gloss predictor, together with imple-
mentation details for reproducibility. During training, we use data
augmentation to increase the number of images by flipping, crop-
ping, shifting, rotating, scaling, and adding Gaussian and Poisson
noise.

As a feature extractor, following the work from Serrano et
al. [SCW∗21], we use a VGG16 architecture and remove its last
layer. Then, we initialize our feature extractor with weights from
pre-training on the ImageNet dataset [DDS∗09] and introduce two
fully connected layers to compress the features into a reduced 20-
dimensional latent vector z. In addition, since we are interested in
generating a linearly separable space, we introduce a linear regres-
sion layer that predicts the gloss level from z, constrained to the
range [0,1].

We train our gloss predictor for regression by minimizing the
Mean Absolute Error (MAE) between its predicted value ŷ and the
training label y normalized (min-max normalization) to the interval
[0,1]. This training label can be either strong (coming from human
annotations and computed as the median between users) or weak
(automatically computed with any of our three methods explained
in Section 4.1). Therefore, our training loss LMAE is defined as:

LMAE =
1
N

N

∑
j=1

|y j − ŷ j|, (1)

where N is the number of images in the batch. We train our pre-
dictor for 35 epochs with batch size N = 4 and input resolution
512x512, using the Ranger optimizer [ZLBH19, LJH∗20] with an
initial learning rate set to 10−5.

5. Results

We evaluate our gloss predictor on our controlled test dataset de-
scribed in Section 3.2. We begin by thoroughly evaluating the im-
pact of our weakly supervised learning strategy with our three types
of weak labels (Section 5.2), followed by a consistency evaluation
across the controlled variations in the test dataset (Section 5.3).
Then, we compare the accuracy of our gloss predictors to the cur-
rent state of the art (Section 5.4) and show the ability of our mod-
els to generalize to more diverse data, including real images (Sec-
tion 5.5). Finally, we perform ablation studies to validate the im-
pact of our main design decisions (Section 5.6), and explore the
structure of our 20-dimensional latent space with respect to human
perception of gloss (Section 5.7).

5.1. Evaluation Metrics

To quantitatively evaluate our predictions, we follow recent related
work [SCW∗21] and use the Mean Absolute Error (MAE), which

Table 1: Mean Absolute Error (MAE ↓ ) on our controlled test
dataset for our gloss predictors trained on the following data: using
only strong human labels (with the 100% of the Serrano dataset or
with only 20% of it, S. only), combining these strong labels with
our weak labels based on either BSDF model (S.+BSDF), image
statistics (S.+Image stats.) or industry metrics (S.+Industry) and
using only our weak labels (S. 0%) We use S. to refer to the Serrano
dataset.

S. only S.+BSDF S.+Image stats. S.+Industry
S. 100% 0.1510 0.1207 0.1389 0.1484

S. 20% 0.2091 0.1538 0.1550 0.1797
S. 0% - 0.3114 0.3015 0.3466

measures the absolute distance to the ground-truth gloss judge-
ments of our controlled test dataset, normalized to the interval [0,1].
We define the ground-truth (GT) judgement per image as the me-
dian across our five human ratings, as a robust estimator of human
perception. By considering the median, we obtain a more reliable
estimation that is less influenced by individual variations or ex-
treme judgments. In addition, in order to evaluate the consistency
of our gloss predictions and their rank performance with respect to
the ground truth, we compute the Pearson correlation, which mea-
sures the linear dependence between them without taking into ac-
count the absolute scale. Finally, to consider monotonic, but not
necessarily linear, relationships we also compute Spearman’s rank
correlation. Both correlation coefficients are bounded to the range
[−1,1], where 1 means perfect positive correlation.

5.2. Weakly Supervised Learning

“Same annotation cost, better performance”: We show the effec-
tiveness of our weak labels in improving gloss predictions without
the need to collect a large amount of costly manual annotations.
In Table 1 (first row) we show MAE results on our controlled test
dataset for our gloss predictor trained only on the Serrano dataset
with strong labels, compared to the same predictor trained on our
full training dataset, including our weak labels. Although this is
a challenging task, as noisy weak labels could easily degenerate
learning performance even with more data [LGZ19], our weakly
supervised gloss predictor outperforms the predictor trained only
with strong labels, across our three different weak labels.

In Table 1 (third row) we show MAE results on our controlled
test dataset featuring our gloss predictor trained exclusively using
weak labels. Despite the limited ability of our weak labels alone
to capture human gloss perception accurately, they are still suffi-
ciently good to guide the learning process when combined with
human-annotated data. Our weak labels allow us to train on a larger
training dataset, including new geometries, illuminations, and ma-
terials, helping the model better generalize without incurring the
high cost of manually annotating such new data.

“Same performance, substantially less annotation cost”: Next,
we study to what extent our weak labels can help mitigate the
cost of collecting large human-annotated datasets, while still
maintaining performance. We train our gloss predictor on a small
randomly selected subset of the Serrano dataset, consisting of only

© 2024 The Authors.
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GT: 1.00
S.100% only: 1.06

S.100%+BSDF: 1.00
S.20%+BSDF: 1.89

3.00
2.42
2.18
1.99

5.00
5.17
4.88
4.57 

5.00
5.13
4.73
3.08

7.00
6.96
7.00
7.00

GT: 1.00
S.100% only: 3.41

S.100%+BSDF: 1.00
S.20%+BSDF: 2.04

GT: 3.00
S.100% only: 4.96

S.100%+BSDF: 2.90
S.20%+BSDF: 2.84

GT: 4.00
S.100% only: 5.91

S.100%+BSDF: 5.10
S.20%+BSDF: 4.43

GT: 5.00
S.100% only: 5.70

S.100%+BSDF: 4.17
S.20%+BSDF: 3.55

GT: 6.00
S.100% only: 6.97

S.100%+BSDF: 7.00
S.20%+BSDF: 6.98

GT: 1.00
S.100% only: 2.00

S.100%+BSDF: 1.00
S.20%+BSDF: 2.04

3.00
3.87
2.90
2.84

4.00
5.50
5.10
4.43

5.00
5.96
4.17
3.55

6.00
7.00
7.00
7.00

Figure 5: Qualitative results of our gloss predictors on example images from our controlled test dataset. The numbers in the insets indicate,
for every input image, the ground-truth judgement (GT) and the predictions from our models (from top to bottom): supervised model trained
only with strong labels (S.100% only, second line), weakly supervised model with strong labels combined with our BSDF weak labels (S.100%
+ BSDF, third line) and weakly supervised model with a subset of the strong labels combined with our BSDF weak labels (S.20% + BSDF,
fourth line). All gloss ratings are in the range [1,7].

20% of the strongly labeled images. We combine this reduced
human-annotated subset with our extended weakly labeled dataset
and show that we get similar, competitive performance (Table 1,
second row). In particular, for both BSDF and image statistics
weak labels we can reduce the cost of human annotation by 80%,
without losing accuracy with respect to using the 100% of the
Serrano dataset (MAE = 0.15 in S.20%+BSDF, S.20%+Image
stats and S.100% only). These two different weak labels are
complementary: for synthetic images with analytical materials
we could rely on labels based on the BSDF model, while image
statistics could be easily computed from any simple image. Here-
after, we will focus on our weakly supervised models using the
BSDF weak labels (Table 1, S.100%+BSDF and S.20%+BSDF),
as they are the ones that show the best performance. Refer to the
supplemental material for further results using the image statistics
and industry weak labels.

We show qualitative results in Figure 5. We observe how incor-
porating our weak labels in addition to the 100% of the strongly
labeled Serrano dataset (S.100%+BSDF) leads to gloss predictions
that better correlate with the ground-truth human judgements com-
pared to training only on the strongly labeled data (S.100% only).
Additionally, combining our weak labels with a subset of the Ser-
rano dataset (S.20%+BSDF) still maintains reasonably accurate
gloss predictions. More qualitative results are included in the sup-
plemental material.

5.3. Consistency Evaluation

We evaluate the consistency of our weakly supervised gloss predic-
tors for every variation of different confounding factors present in

Table 2: Quantitative results when varying each of the confound-
ing factors in our test dataset. We include results of our weakly
supervised gloss predictors, both trained with our BSDF weak la-
bels jointly with the 100% of the Serrano dataset (S.100% + BSDF)
vs. the 20% of it (S.20% + BSDF). We show MAE, Spearman and
Pearson correlations results for every variation.

Variation MAE ↓ Spearman ↑ Pearson ↑
S.100% + BSDF

A) Rotation 0.1043 0.9050 0.9119
B) Bumpiness 0.1076 0.8796 0.8979
C) Illumination 0.1004 0.9089 0.9129
D) Specularity 0.1448 0.8501 0.9086

S.20% + BSDF
A) Rotation 0.1381 0.8746 0.8591
B) Bumpiness 0.1460 0.8262 0.8248
C) Illumination 0.1356 0.8565 0.8411
D) Specularity 0.1801 0.8100 0.8696

our test dataset, both quantitatively and qualitatively. Table 2 shows
how our predictors perform consistently well across variations of
rotation, bumpiness, illumination, and specularity, for the three dif-
ferent evaluation metrics. Although the error (MAE) is slightly
higher when increasing the specular level (row D), the Pearson cor-
relation remains high, indicating that our predictors successfully
capture the trend of the perceived glossiness.

Figure 6 illustrates qualitative results for variations of rotation
and specularity. The top row of images shows how human percep-
tion of gloss (GT) remains constant under different rotations of the

© 2024 The Authors.
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GT: 7.00
S.100%+BSDF: 7.00
S.20%+BSDF: 7.00

7.00
7.00
6.99

7.00
6.95
6.79 

7.00
6.99
6.81

7.00
7.00
6.99

GT: 1.00
S.100%+BSDF: 1.00
S.20%+BSDF: 1.00

4.00
3.90
2.17

5.00
4.58
2.68

6.00
4.82
3.38

6.00
5.70
4.38

Figure 6: Qualitative results of our weakly supervised gloss predictors when varying one confounding factor at a time on our test dataset.
We show: variation across different rotations for the frog geometry with uffizi illumination and aluminium material (top), and variation across
increasing specularity for the bumpy_sphere geometry with uffizi illumination and the Ward-Duer BRDF fitting of specular_yellow_phenolic
material (bottom). The numbers in the insets indicate the ground-truth judgements (GT) and the gloss predictions from our weakly supervised
models trained with BSDF weak labels jointly with the 100% of the Serrano dataset (S.100%+BSDF, second line) and the 20% of the Serrano
dataset (20%+BSDF, third line). All gloss ratings are in the range [1,7].

object. Accurately, our weakly supervised predictions exhibit very
low variation (std = 0.01 and 0.09, respectively), also preserving
gloss constancy. The bottom row shows the effect of increasing
the specular level; as expected, the ground-truth perceived gloss
also increases (although not linearly). We observe how our predic-
tors tend to underestimate the absolute gloss predictions (slightly
for the case of the S.100%+BSDF model and more clearly for the
S.20%+BSDF one), yet effectively capture the increasing trend in
both cases. Further qualitative results for variations in bumpiness
and illumination are included in the supplemental material.

5.4. Comparison to State of the Art

We compare our gloss predictors against a supervised state-
of-the-art gloss predictor from Serrano et al. [SCW∗21]
(available in https://github.com/Hans1984/
material-illumination-geometry) on our controlled
test dataset. Results are shown in Table 3, where we see that all
our predictors match significantly better with ground-truth human
judgements across all evaluation metrics, even when trained on a
smaller amount of human-annotated data.

5.5. Generalization

Additionally, we evaluate how well our weakly supervised predic-
tors generalize to challenging, out of distribution data, using the
test set B from Serrano et al. [SCW∗21]. This test set includes 78
synthetic images depicting new materials, geometries and illumina-
tions not included in our training data, as well as 20 “in-the-wild”
real photographs of materials from the Flickr Material Database

Table 3: Quantitative evaluation of our gloss predictors and Ser-
rano et al. [SCW∗21] gloss predictor on our controlled test dataset.
We include results of our weakly supervised gloss predictors, both
trained with our BSDF weak labels jointly with the 100% of the Ser-
rano dataset (S.100% + BSDF) vs. the 20% of the Serrano dataset
(S.20% + BSDF). We show results for MAE, Spearman and Pear-
son correlations with respect to the ground truth.

Gloss predictor MAE ↓ Spearman ↑ Pearson ↑
Serrano et al. 0.3293 0.5662 0.5358

Ours
S.100%+BSDF 0.1207 0.8594 0.8788

S.20%+BSDF 0.1538 0.8366 0.8228

(FMD) [SRA14]. We report quantitative results in Table 4, and
show illustrative examples in Figure 7. As we can see, our gloss
predictors obtain a reasonable performance despite the challenging
out-of-distribution dataset: mirror-like surfaces (left and middle-
left) are accurately predicted by our models as highly glossy despite
their complex reflections; the cloth material (right) is predicted as
medium-gloss by our S.20%+BSDF model (second row), proba-
bly due to the high contrast of the knitted pattern, while our best
model (S.100%+BSDF, first row) is able to successfully predict it
as a low-gloss object.

5.6. Ablation Studies

We analyze how different design decisions of our training affect
performance. We independently evaluate the possibility of remov-
ing our data augmentation pipeline and adding background masks

© 2024 The Authors.
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Table 4: Quantitative evaluation of the generalization capabil-
ities of our weakly supervised gloss predictors and Serrano et
al. [SCW∗21] gloss predictor on their test set B, which contains
real photographs. We include results of our weakly supervised gloss
predictors, both trained with our BSDF weak labels jointly with the
100% of the Serrano dataset (S.100% + BSDF) vs. the 20% of the
Serrano dataset (S.20% + BSDF). We show results for MAE, Spear-
man and Pearson correlations with respect to the ground truth.

Gloss predictor MAE ↓ Spearman ↑ Pearson ↑
Serrano et al. 0.3327 0.4546 0.4266

Ours
S.100% + BSDF 0.2236 0.6625 0.6570

S.20% + BSDF 0.2386 0.6208 0.6063

7.00
7.00

7.00
7.00

3.62
3.52

2.48
4.31

Figure 7: Qualitative results on challenging out-of-distribution
images from test set B [SCW∗21], that include (from left to right): a
synthetic image with a very glossy mirror-like surface and a highly
complex geometry, several real objects with mirror-like surface, a
real image of plastic material, and a real photograph of cloth with a
knitted pattern. The numbers in the insets indicate gloss predictions
from our weakly supervised models trained with BSDF weak labels
jointly with the 100% of the Serrano dataset (S.100%+BSDF, first
row) and the 20% of the Serrano dataset (S.20%+BSDF, second
row). Predictions are in the range [1,7].

to the input images (masking out the environment by setting all
background pixels to 0). As shown in Table 5, the data augmen-
tation pipeline has a major positive effect on the predictions as it
helps the models to generalize better to unseen data. Background
masks do not seem to help the models to estimate human gloss per-
ception. We hypothesize that the networks might leverage the con-
textual cues from the background to disambiguate between material
properties and illumination, similar to how humans do [AKLM18].

Additionally, we test a modified version of our training loss in
Equation 1 to take into account the different classes of training la-
bels (strong/weak); we use a loss reweighting scheme [SKP∗22]
and define our weighted MAE loss (LwMAE ) as:

LwMAE =
1
N

N

∑
j=1

w(y j)|y j − ŷ j|, (2)

where w(y j) is a weighting function that depends on the class of the
label y j. Therefore, our original LMAE loss is equivalent to LwMAE
when using a constant weighting function w(y j) = 1, which does
not differentiate between strong and weak labels. We show results
using different weighting functions in Table 6. As expected, setting
higher weights to our weakly labeled images has a negative effect;
however, assigning higher weights to the strongly labeled images
also deteriorates performance. We hypothesize that in these latter
cases (last two rows of Table 6), the training focuses too much on

Table 5: Ablation studies by independently changing different de-
sign elements of our models: removing data augmentation (w/o
aug.) and adding background masks (bg. mask). We include results
of our weakly supervised gloss predictors, both trained with our
BSDF weak labels jointly with the 100% of the Serrano dataset
(S.100% + BSDF) vs. the 20% of the Serrano dataset (S.20% +
BSDF). We show MAE results on our test dataset.

MAE ↓ Ours w/o aug. bg. mask
S.100% + BSDF 0.1207 0.3113 0.1819
S.20% + BSDF 0.1538 0.3131 0.1976

Table 6: Ablation studies by changing the weighting function in our
LwMAE training loss. We include results of our weakly supervised
gloss predictors, both trained with our BSDF weak labels jointly
with the 100% of the Serrano dataset (S.100% + BSDF) vs. the
20% of the Serrano dataset (S.20% + BSDF). We show MAE results
on our test dataset.

w(y j) MAE ↓
strong weak S.100%+BSDF S.20%+BSDF

1.0 5.0 0.1655 0.2685
1.0 1.5 0.1634 0.1800
1.0 1.0 0.1207 0.1538
1.5 1.0 0.1361 0.1622
5.0 1.0 0.1775 0.1900

the strongly labeled images compared to the weakly labeled ones
that extend the variability of the training data. Therefore, the mod-
els generalize worse, and predictions in our test set (composed of
unseen scenes) become less precise. In the limit, excessively high
weighting for the strongly labeled data would make it equivalent to
using only the Serrano dataset. Further research is needed to bet-
ter understand why the network overfits here to the strongly labeled
data. In conclusion, our simple approach using equal weights, leads
to the best results.

Finally, although our weakly-annotated images are almost free
to obtain, we validate that the maintained performance is not due to
the larger amount of total training images. To do so, we train several
models with exactly the same amount of training images (23,616),
but varying the percentage of strong labels from the Serrano dataset
(from 0% to 100% = 23,616 strong labels). To complete the train-
ing data, we randomly select images from our extended analytical
dataset labeled with our BSDF weak labels. In Figure 8, we show
that 20% of strong labels (+80% of weak labels) are sufficient to
achieve a similar performance as using the 100% of the Serrano
dataset (100% of strong labels), hence showing the effectiveness of
the weakly supervised strategy independent of the total number of
training images.

5.7. Towards a Perceptually Meaningful Latent Space

Our gloss predictors are designed to encode input images into a
low-dimensional latent space z of 20 dimensions. Therefore, if pre-
dictions are accurate, this latent space should capture aspects of
the underlying structure of gloss perception. As we can see in Fig-
ure 9 (left), the latent space is indeed meaningfully organized with

© 2024 The Authors.
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Figure 8: Evolution of the mean absolute error (MAE ↓) when
training our gloss predictor with the same amount of training im-
ages but different percentages of strong labels. 0% indicates that
the predictor has been trained with 23,616 randomly selected im-
ages from our analytical dataset annotated with BSDF weak labels,
while 100% indicates that the predictor has been trained with all
23,616 images from the Serrano dataset annotated with strong la-
bels. We see that, also when the total number of training images is
constant, only a 20% of strong labels is needed to achieve similar
performance to using 100% of strong labels.
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Figure 9: Visualization of the latent space. We show all images
from our controlled test dataset as points in 2D space using t-
SNE [VdMH08] dimensionality reduction from the 20-dimensional
feature vectors of the latent space. The color of every point in-
dicates, from left to right: ground-truth gloss judgements, gloss
predictions from our model and absolute error (normalized to the
range [0,1]). In this figure, we use our best weakly supervised
model, trained on the Serrano dataset and our BSDF weak labels
(S.100%+BSDF).

respect to human judgements of gloss for our test dataset. Very
matte and very glossy materials (gloss levels 1 and 7) get clearly
clustered, likely due to the higher confidence (and therefore con-
sistency) of human labels towards the extreme values of the gloss
range. The latent space is also smoothly related to the network’s
output predicted gloss (Figure 9, center), leading to a generally low
absolute error (Figure 9, right) for all images in the test dataset. This
latent space of perceptual gloss could be potentially leveraged for
several applications such as material recommendations or database
visualization [LMS∗19].

5.96 7.00 4.79

Figure 10: Failure cases: real images with multicolored patterned
surfaces (left) and very sharp shadows (center) are sometimes pre-
dicted by our model as highly glossy surfaces; perfectly-specular
flat surfaces are not properly predicted by our model as mirrors
(right). To illustrate these general failure cases, we use here our
best weakly supervised model (S.100%+BSDF). Predictions are in
the range [1,7].

6. Discussion and Future Work

This paper explores weakly supervised learning in the context of
gloss prediction from images. Our work shows that, when model-
ing perceived material appearance, it may be possible to reduce the
high cost of collecting human annotations by leveraging automat-
ically computed weak labels for model supervision. These weak
labels, combined with a reduced set of strong human labels, lead
to accurate gloss predictions. Furthermore, our predictions are con-
sistent with human perception of gloss for systematic changes in
confounding factors that influence appearance, generalize reason-
ably well to out-of-distribution images, and exhibit an organized
latent space with respect to human perception.

Our work is not free of limitations. First, although our weakly
supervised gloss predictors accurately capture the trend of human
ratings for systematic variations of appearance, we see how they
tend to slightly underestimate the absolute gloss level, especially
for images rendered with analytical materials. Additionally, despite
their reasonable generalization performance for real images, our
predictions fail in some challenging cases, such as multicolored
patterns, very bright scenes exhibiting sharp shadows and perfectly-
specular flat surfaces, as shown in Figure 10. For the first two
cases, we hypothesize this might be due to the network interpret-
ing high-contrast differences as glossy highlights. For the latter, we
believe the network bases its predictions on the materials of the ob-
jects reflected on the perfectly specular surface, instead of focusing
on the material of the mirror itself, which should be predicted as
highly glossy. Providing an object mask as an additional channel
could help the gloss predictor to divert its attention from the image
background, improving its performance. However, this process can
be somewhat cumbersome or imprecise, especially when working
with real images.

Our work inspires promising lines of future research. First, we
have shown how our simple weakly supervised strategy, using a
constant weight that does not take into account the type of label,
suffices for effective learning of accurate gloss predictions. It is
not straightforward that weakly supervised learning could be suc-
cessful in the field of gloss perception, nor what the weak labels
should be. In the future, we believe that other weakly supervised
learning frameworks could be exploited, including, for instance,
assigning loss weights automatically based on the noise of each
weak label [RZYU18, CZZ∗20], or transfer learning strategies be-
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tween weak and strong labels [RJS20]. We have proposed three
one-dimensional weak labels, conceptually simple and inexpensive
to compute. Using one-dimensional metrics is inspired by com-
mon practice in the literature that operationally defines gloss as
a single judgement provided by human observers in response to
"how glossy is the surface?" [SCW∗21,KMA12,MKA12], that cap-
tures their overall impression. However, perceived gloss is multi-
dimensional [CK15], so we believe future work could extend our
approach to model multiple dimensions of gloss by defining alter-
native weak labels and asking observers to rate images in terms of
multiple features. On the other hand, although our predictions are
consistent with human perception of gloss, we evaluate our predic-
tors on our controlled test dataset, which could be biased towards
expert knowledge. Therefore, our work could be extended to evalu-
ate whether our predictions are also consistent with the non-expert
human perception of gloss, by collecting a set of test data annotated
by naive observers to test whether this yields the same conclusions.
In addition, our datasets (as well as the Serrano dataset) contain

only opaque materials. We believe the current generalization limita-
tions could be mitigated by augmenting the training data to a wider
variety of optical characteristics, such as translucent or iridescent
materials, as well as more diverse images (e.g., real photographs or
patterned surfaces).

Finally, our weakly supervised predictors encode images into a
low-dimensional latent space that is well organized with respect
to perceptual gloss. Exciting future work opens up to explore how
to further guide this space in order to disentangle other material
appearance factors.
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