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Abstract: This study evaluates the effectiveness of deep learning techniques applied to raw
Scheimpflug corneal images for keratoconus detection, with a particular focus on forme fruste (FF)
keratoconus, which refers to preclinical cases. Using an original dataset of 22,750 images from
910 eyes, a deep learning model based on transfer learning with a pre-trained VGG16 architecture
was trained, incorporating specific preprocessing steps and data augmentation strategies. The
proposed approach achieved an overall accuracy of 90.70%, with a sensitivity of 80.57%, and
a specificity of 80.56% for FF keratoconus classification, and an AUC of 0.89. For clinical
keratoconus, the model demonstrated a sensitivity of 93.28%, a specificity of 99.40%, and an
AUC of 1.00. These findings highlight the potential of leveraging raw Scheimpflug images in
deep learning-based keratoconus detection, particularly for identifying early-stage structural
changes that may not be apparent in conventional topographic assessments.

© 2025 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Keratoconus is a progressive, non-inflammatory corneal disorder characterized by thinning and
conical protrusion of the cornea, leading to visual impairment [1,2]. This condition primarily
affects adolescents and young adults [3], with a reported prevalence ranging from 1:375 [4]
to 1:1,000 [5], depending on the population and diagnostic criteria used. Keratoconus is a
bilateral but often asymmetrical disease, typically developing at different rates in each eye.
This asymmetry offers a unique opportunity to study eyes that have not yet exhibited clinical
signs but are at high risk of progression—a condition known as forme fruste (FF) keratoconus
[6]. FF keratoconus can be used as a surrogate for the preclinical stage of keratoconus, as it
enables the identification of structurally predisposed eyes while maintaining normal topography.
Understanding and detecting these preclinical stages is key to enhancing patient outcomes and
preventing irreversible vision loss. It is worth noting that, while FF keratoconus is widely
recognized in the literature as a preclinical stage, the term “subclinical keratoconus” lacks a
consistent definition. Some authors use it to describe cases with incipient topographic changes,
while others apply it interchangeably to preclinical cases as well. In this work, FF keratoconus is
specifically used to denote the preclinical stage, while the term “subclinical” appears only when
referencing previous studies, regardless of how it was defined in those works.

While early detection of keratoconus is important, it is not sufficient to fully mitigate the
risks associated with the disease. There is a pressing need to improve diagnostic strategies
to identify keratoconus before it shows clinical signs. Detecting the disease at this stage is
essential to prevent iatrogenic postoperative corneal ectasia, a serious complication that can occur
after refractive surgery when underlying keratoconus is undiagnosed [7–9]. As the prevalence
of myopia continues to rise globally, the demand for refractive surgery increases accordingly,
amplifying the importance of accurate preoperative screening [10].
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Scheimpflug-based corneal tomography is considered the gold standard in keratoconus
screening due to its ability to provide detailed three-dimensional imaging of the cornea. However,
despite its diagnostic capabilities, the proprietary software integrated into these devices for
keratoconus characterization often relies on predefined indices and parameters that lack the
sensitivity required to detect subclinical cases [11,12]. Consequently, there is a critical need for
advanced analytical approaches capable of enhancing the detection of keratoconus before the
manifestation of clinically detectable signs with currently available methods.

Due to the complexity of subclinical keratoconus detection, numerous mathematical models
[13–15] and traditional machine learning techniques have been proposed [16–19], often relying
on the combination of proprietary-specific parameters to automate keratoconus detection. More
recently, deep learning algorithms have been introduced, utilizing corneal tomography maps
—such as curvature, elevation, and thickness maps— as input data [20–32]. These approaches
leverage the ability of deep learning to learn and model complex, non-linear patterns, making it
the state-of-the-art technique for image classification tasks [33]. However, the limitation of these
approaches in detecting preclinical cases lies in the input data itself—since FF keratoconus does
not produce noticeable changes in corneal shape, even the most advanced algorithms struggle,
particularly when attempting to distinguish them from control cases.

A more recent and promising area of research explores corneal densitometry, which quantifies
light backscatter to objectively analyze corneal tissue as a reliable marker for detecting subclinical
cases [34,35]. Building on this premise, this work introduces an innovative approach by focusing
directly on the raw images themselves, minimizing dependence on proprietary, unknown processes.
By utilizing raw images, a deep learning-based model can simultaneously leverage both corneal
shape (Fig. 1, yellow)—traditionally the primary focus in keratoconus detection—and corneal
tissue characteristics (Fig. 1, green), a novel yet promising approach. This dual-focus strategy
allows the model to extract and integrate information from both structural and tissue-based
features, potentially enhancing its ability to identify subtle changes associated with preclinical
keratoconus.

Fig. 1. Representative raw Scheimpflug images from each diagnostic class (control, forme
fruste keratoconus, and clinical keratoconus). A deep learning-based model can process
these images directly, allowing it to simultaneously extract features related to both corneal
shape and tissue. For illustrative purposes, the first image highlights the corneal contour in
yellow to indicate shape-related characteristics, while a zoomed-in region in green shows the
pixel intensity distribution, which may contain information related to tissue characteristics.

The aim of this work is to develop a deep learning-based approach that leverages raw
Scheimpflug images to enhance the detection of preclinical keratoconus, specifically FF kerato-
conus, by simultaneously analyzing corneal shape and tissue characteristics, thereby overcoming
the limitations of traditional topographic-based methods.

2. Methodology

2.1. Overview

Our model takes as input five raw Scheimpflug images corresponding to five angularly equidistant
eye meridians, and outputs a classification of such eye into one of three classes: control (C),
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forme fruste (FF) keratoconus or clinical keratoconus (KC); the specific clinical definition of
each class can be found in Section 3.1.

This classification is done employing transfer learning, a common strategy in deep learning
approaches which involves leveraging pre-trained models—typically trained on large, generic
datasets—and fine-tuning them for specific tasks such as keratoconus detection. In our case, a
VGG16 backbone is trained to extract features from the input images, and these features are then
input to a feature fusion module before producing the final classification. Section 2.3 describes
the model architecture in detail, while the pre-processing of the images before being fed to the
model is explained in Section 2.2. As is common in diagnosis-related problems, the classes in the
training dataset are significantly imbalanced, with a low prevalence of keratoconus and especially
FF keratoconus, hinderinglearning;wethusexplorestrategiestoaddressclassimbalanceinSection
2.4.

2.2. Data pre-processing

Input data to our model are raw Scheimpflug images (without gamma correction or contrast
enhancement), cropped from the original (2400 × 1782 pixels in size), which included patient
identification details, machine specifications, and blank margins. For each raw image (Fig. 2(A)),
we conduct an objective corneal segmentation process to accurately identify the anterior and
posterior boundaries of the cornea, and select only the area in-between these boundaries. The
first step involves automatically cropping the raw image using the corneal apex as the center,
with a bandwidth of 1200 pixels, corresponding approximately to the central 7 mm of the cornea.
This approach facilitates the exclusion of irrelevant elements such as eyelashes, or lateral scleral
brightness artifacts (Fig. 2(B)). The next step is border detection (Fig. 2(C)). In this stage, the
anterior and posterior corneal borders are automatically identified by applying Gaussian filtering
followed by the Canny edge detection method, a widely used technique for corneal segmentation.
Further, the cornea is segmented (Fig. 2(D)) to eliminate the potential influence of the iris,
crystalline lens, and background, enhancing the effectiveness of the learning model. A second
cropping is then applied (Fig. 2(E)) to remove excess background. In this step, a fixed vertical
dimension is selected for the ROI to ensure all corneas fit within the second cropped area. To
determine this dimension, the maximum distance between the apex and the posterior border at
the corneal periphery is measured across the dataset, and this value is used as a reference.

This segmentation process optimizes memory usage, reduces training time to one-quarter of
the original, and improves model performance, as demonstrated in Section 3.3. In our dataset,
the resulting cropped images are 1200 × 300 pixels in size, and are then downsampled by half to
optimize memory usage and subsequently normalized, resulting in input images with a spatial
resolution of 600 × 150 pixels.

2.3. Model architecture

The architecture of our model is shown in Fig. 3. Given five input images from equidistant
meridians, we use a convolutional neural network (CNN) to extract features from them. This
CNN is VGG16 [36], pre-trained on ImageNet [37], which has shown great performance for
classification tasks in natural images. Since our Scheimpflug images are substantially different
from the images that VGG16 is trained on, we fine-tune the final layers of the network on our own
dataset (details on this dataset are given in Section 3.1), so that it learns to extract meaningful
features for our classification problem, in a transfer learning approach. We experiment with
different degrees of transfer, varying the number of layers that are trained on our data (see
Supplement 1).

The features extracted from each of the images are then fed into our feature fusion module. This
module comprises a global average pooling (GAP) step to reduce dimensionality, followed by
feature concatenation from the five branches, and two dense (fully-connected) layers. Two dropout

https://doi.org/10.6084/m9.figshare.29221049
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Fig. 2. Main steps of our data pre-processing stage. (A) Sample raw Scheimpflug image with
the initial cropped region centered on the apex (highlighted in green), to remove irrelevant
elements such as eyelashes and lateral scleral brightness artifacts (2020 × 966 pixels). (B)
Resulting image after cropping (1200 × 966 pixels). (C) Border detection step, identifying
the anterior (yellow line) and posterior (red) borders of the cornea (1200 × 966 pixels). (D)
Corneal segmentation to eliminate any remaining influence from the iris, crystalline lens,
and background (1200 × 966 pixels). (E) Final post-processed image after removing excess
background (1200 × 300 pixels, then downsampled to 600 × 150).

layers are included after each dense layer to regularize the model during training, enhancing its
generalization and preventing overfitting by randomly deactivating neurons. Additionally, after
each dropout layer a batch normalization layer follows, normalizing activations to stabilize and
accelerate the training process. Finally, a softmax activation is applied to the output layer to
obtain, for each of the three classes, the probability that the input sample belongs to that class.

The model is trained using sparse categorical cross-entropy loss function, a more efficient
alternative to categorical cross-entropy that works with integer-encoded labels instead of one-hot
encoding, reducing computational complexity in multiclass classification [38].

2.3.1. Training hyperparameters and implementation details

We trained the model using the Adam optimizer [39], with an early stopping callback after 15
epochs, and a ReduceLROnPlateau callback that reduced the learning rate by a factor of 0.5 if the
validation loss did not improve for five consecutive epochs, with a minimum learning rate of
1e-6. Furthermore, during validation, class weights were adjusted such that the forme fruste class
was assigned twice the weight of the other two classes, to alleviate its reduced size in terms of
training samples.

Our final VGG16-based transfer learning scheme features six unfrozen layers. The dense
layers have 512 and 256 channels, applying the ReLU activation function, a dropout rate of 0.4,
and a batch size of 32. The initial learning rate is 1e-4, and training runs for a maximum of 100
epochs. These hyperparameters are the result of a comprehensive exploration of the space: for
results using other hyperparameters, as well as other pre-trained models for transfer learning,
please refer to the Supplement 1.

The model was developed using Python 3.10.12 and the Tensorflow 2.14.0 open-source
framework. Models were trained on a NVIDIA GeForce RTX A6000 GPU.

https://doi.org/10.6084/m9.figshare.29221049
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Fig. 3. Workflow of our proposed deep learning-based model. The input consists of
raw images of five equidistant meridians out of the 25 meridians of the same eye imaged
by the Pentacam HR rotating camera. These raw images undergo a data pre-processing
stage (described in Section 2.2) that yields the images Ii, i ∈ 1..5, that are input to our
model. Features are extracted from each image Ii with a VGG16-based CNN trained on our
specialized dataset. Then, the outputs of each branch are concatenated, and two additional
dense layers are applied to extract more complex features, together with batch normalization
and dropout layers. Finally, the output is obtained after a Softmax classifier. The output
labels are C: control, FF: forme fruste keratoconus, and KC: clinical keratoconus.

2.4. Addressing class imbalance

In diagnosis-related problems, it is common to have datasets where the classes are imbalanced.
Fortunately, the prevalence of pathological cases in the population is typically lower than that of
the normal ones, resulting in the normal class usually having a larger number of samples than the
others. This imbalance severely affects the learning process and results in inferior performance,
particularly when detecting the underrepresented class, which tends to be the most interesting
one. In our dataset (described in detail in Section 3.1) this is also the case: the number of samples
belonging to the control class is largest, and the number of FF samples is significantly lower than
that of the other two classes. Therefore, we implement a number of strategies to mitigate class
imbalance.

We balance class size by applying a combination of random oversampling (ROS) and data
augmentation (DA) to our dataset. ROS is a widely used technique that randomly duplicates
samples from the minority classes to decrease class imbalance [40]. To increase the variability
of the dataset and avoid excessive repetition, this oversampling is combined with DA [41]. DA
involves generating new training samples by applying certain transformations to the original
samples; the nature of these transformations can vary depending on the particular scenario.
Augmentation increases the dataset’s diversity and helps prevent overfitting, particularly relevant
when there are an important number of duplicate images due to ROS. Inspired by the work of
Schaudt et al. [42], we implemented and evaluated two levels of DA, termed weak and strong.
Our DA procedure is illustrated in Fig. 4. In our case, augmentation is conducted using three
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different transformations: image rotations, image flips, and image sharpening. Although based on
their methodology, we specifically avoided transformations that affect image contrast to preserve
the original pixel intensity of the corneal tissue. To further minimize any unintended alterations,
sharpening was applied with the lowest probability, as indicated in Fig. 4, and no additional
transformations that could compromise the integrity of corneal texture were used.

Fig. 4. Diagram of the data augmentation (DA) process with its stacked probabilistic
transformations.

Weak DA involves first rotating images between −5 and +5 degrees with a 100% probability
(i.e., all images are rotated a random amount within the specified range), and then flipping images
horizontally with a 50% probability. Strong DA implies adding image sharpening after the weak
DA, applying it to the image with a 25% probability. Since images are input to our model in
groups of five (five equidistant meridians from the same eye), all five images from an eye undergo
the same DA. This synchronization is achieved by implementing DA as custom layers that, at the
beginning of each training step, apply the same random transformation to all five images, using
shared random seeds. Section 3.3 evaluates the performance of the model with the different
augmentation strategies.

3. Evaluation

This section presents the evaluation of this work. First, we describe in detail the dataset used
(Section 3.1), and the evaluation metrics employed (Section 3.2). Finally, Section 3.3 shifts focus
to the results of the proposed model.
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3.1. Dataset

Our dataset consists of corneal tomographies that were retrospectively collected from one prior
investigation carried out at the Eye Hospital of Wenzhou Medical University [19]. Approval
for the study was granted by the Hospital Research Ethics Committee, and they adhered to the
principles outlined in the Declaration of Helsinki. Written informed consent was obtained from
all participants after they were briefed on the nature and potential consequences of the research.

The dataset includes 910 eyes of patients with an average age of 22.3 ± 6.3 years, and a
male/female ratio of 59/41, respectively. Participants are divided into three groups according to
labels provided by clinical experts: controls (492 eyes), clinical keratoconus (339 eyes), and FF
keratoconus (79 eyes), considered to be the non-pathological fellow eye of a keratoconus patient
[6]. Specifically, the three groups are defined as follows:

• Control (C): No slit-lamp findings suggestive of corneal ectasia and normal tomography.

• Keratoconus (KC): Clinical and tomographic signs consistent with keratoconus (e.g.,
anterior and/or posterior corneal steepening, corneal thinning, stromal thinning, Fleischer
ring at the cone base, Vogt striae). All of the patients were diagnosed by a cornea specialist
in a tertiary center [43].

• Forme fruste keratoconus (FF): Contralateral, asymptomatic eye showing no clinical signs
of ectasia of a subject with clinical ectasia in the other eye as a very or highly asymmetric
ectasia [43]. These eyes had central average keratometry (Kmax) ≤ 46.3 diopter, normal
scores for topographical keratoconus classification and ABCD (A0B0C0) [44].

To avoid short-term induced corneal tissue changes by lens wear [45], patients were asked
to discontinue soft contact lenses for at least two weeks before the examination, or at least four
weeks in cases of rigid gaspermeable contact lenses wear. Patients who could not comply were
eliminated from the dataset. A comprehensive ophthalmologic examination was conducted for
all patients, including corneal Scheimpflug tomography images using a Pentacam HR (Oculus
Optikgeräte GmbH, Wetzlar, Germany), which provided the dataset used in this study.

For each explored eye, the Pentacam HR captures images for 25 corneal meridians. Thus, for
each eye, our dataset includes the 25 raw Scheimpflug images from the Pentacam HR, and a
label (one of three classes, C, KC or FF) assigned by cornea specialists according to the criteria
above. Images corresponding to the 25 meridians of an eye share the same label. This results in
a total of 22,750 labeled images. These grayscale images have a spatial resolution of 2400 ×
1782 pixels before pre-processing (see Section 2.2).

This dataset is then split into training set (∼85%) and a test set (∼15%). To ensure reliable
assessment of our model’s performance, we do the split such that there is no leakage between
both sets, i.e., data from a certain patient is either in one or in the other set, but never in both.
This test set, which is completely separate from the training one and never used during training,
is the one used for the results shown here (Section 3.3). Given the size of our training set, when
validating different design choices to select the best model we conduct a 5-fold cross-validation
to improve generalization.

3.2. Evaluation metrics

To assess the performance of the developed model and provide a meaningful discussion, different
metrics commonly used in the literature for health diseases detection (specifically keratoconus
detection) were chosen.

The first one is accuracy, which measures the ratio of correct classifications to the total number
of classifications. Additionally, sensitivity represents the proportion of correctly classified
pathological cases among all individuals who actually have the disease (true positives divided
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by the total number of positives), while specificity refers to the ratio of non-pathological cases
correctly identified as such (true negatives divided by the total number of negatives).

Besides, the Receiver Operating Characteristic (ROC) curve is a plot that displays the
relationship between the proportion of correct positive predictions and the proportion of incorrect
positive predictions for a model, calculated across different thresholds for the model’s score.
Each point on the curve represents a different trade-off between false positives and false negatives.
By adjusting the threshold, it is possible to prioritize sensitivity over specificity, or vice versa,
allowing the model to be optimized for different clinical or operational needs. Additionally, ROC
curves are used to derive the Area Under the ROC curve (AUC or AUROC), a popular metric
that measures the probability that a positive case (pathological) will have a higher score than a
negative case (healthy).

To delve deeper into differences in crucial classification areas for the models, and to get a
visual insight into how the model is working internally, GradCAM [46] attributions are utilized.
GradCAM is a technique that visualizes the gradients of the classification score in relation to the
final convolutional feature map, thereby highlighting important regions of an image.

3.3. Results

The proposed model achieved an overall accuracy of 90.70% and an AUC of 0.96. Table 1
presents class-specific sensitivity, specificity, and AUC in the case in which, for each test sample,
the predicted class is the one for which the model outputs the highest probability. Additionally,
Fig. 5 displays the ROC curves for individual classes.

Table 1. Evaluation metrics (specificity, sensitivity and AUC) for each class. For each test sample,
the predicted class is the one with the highest probability.
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Table 1. Evaluation metrics (specificity, sensitivity and AUC) for each class. For each
test sample, the predicted class is the one with the highest probability.

Specificity Sensitivity AUC

C 86.12% 96.89% 0.97

FF 97.34% 49.71% 0.89

KC 99.40% 93.28% 1.00

AUC, area under the curve; C, control; FF, forme fruste keratoconus;
KC, clinical keratoconus.

Fig. 5. ROC curve of our model for each of the three classes. AUC, area under the
curve; C, control; FF, forme fruste keratoconus; KC, clinical keratoconus.

While the model performs well overall in this scenario, the sensitivity for FF keratoconus
(50%) is low, meaning half of FF cases are misclassified as normal. To address this, instead
of using the class with the highest output probability as the predicted class, we implemented a

While the model performs well overall in this scenario, the sensitivity for FF keratoconus
(50%) is low, meaning half of FF cases are misclassified as normal. To address this, instead
of using the class with the highest output probability as the predicted class, we implemented a
probability-based threshold adjustment for FF classification. If an eye’s predicted probability
for FF exceeded an established threshold, it was assigned to the FF class, even if another
class had a higher probability. After an exhaustive loop-based search, we set the threshold
to 0.20. This adjustment significantly improved FF sensitivity from 49.71% to 80.57%, as
shown in Fig. 6, which may be highly valuable depending on the clinical scenario (e.g., patients
considering undergoing refractive surgery, who could incur in serious complications if they have
FF keratoconus).

Table 2 shows, for various approaches to address class imbalance: global accuracy, sensitivity,
specificity, and AUC for each class independently. The first row highlights the overall top-
performing model discussed earlier. The combination of Strong DA and ROS yielded the best
overall performance, significantly enhancing FF sensitivity while maintaining high accuracy and
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Fig. 5. ROC curve of our model for each of the three classes. AUC, area under the curve;
C, control; FF, forme fruste keratoconus; KC, clinical keratoconus.

Fig. 6. Comparison of the confusion matrices between the overall top-performing model
(A) and the best-performing model for the FF keratoconus (B). C, control; FF, forme fruste
keratoconus; KC, clinical keratoconus.

specificity. Given its robustness, this configuration was subsequently used as the foundation for
further analyses and testing.

Table 3 shows the results obtained when evaluating different input data schemes for the
transfer learning model. Specifically, we evaluate whether the segmentation done during the
pre-processing stage indeed leads to improved results, as well as the number of images per eye
required by the model during inference. The best performance was achieved using segmented
images, in groups of five (5 images/eye). Note that, during training, we typically use all available
images per eye, e.g., for the case of a model that has 5 images/eye as input, the 25 meridians of
one eye yield five groups of five images, leading to five training samples; this is somewhat akin
to a form of data augmentation. Importantly, and as mentioned before, the whole data for one
patient is either in the training or in the test set, but never in both. The table shows how, given the
same number of images in inference, our strategy of leveraging the full dataset during training
results in improved performance (row 2 vs. row 3). We also see that, for the same amount of
training data, inference with 5 images/eye leads to better results than with 1 image/eye (row 2 vs.
row 4), justifying our choice.
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Table 2. Performance metrics for different techniques used to address class imbalance in the
dataset. We vary, in each row, whether we apply ROS or not (first column), and whether we conduct

no DA, weak DA or strong DA (second column). Our proposed scheme is marked in boldface.
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Table 2 shows, for various approaches to address class imbalance: global accuracy, sensitivity,
specificity, and AUC for each class independently. The first row highlights the overall top-
performing model discussed earlier. The combination of Strong DA and ROS yielded the best
overall performance, significantly enhancing FF sensitivity while maintaining high accuracy and
specificity. Given its robustness, this configuration was subsequently used as the foundation for
further analyses and testing.

Table 2. Performance metrics for different techniques used to address class imbalance
in the dataset. We vary, in each row, whether we apply ROS or not (first column), and
whether we conduct no DA, weak DA or strong DA (second column). Our proposed
scheme is marked in boldface.

Options Metrics

ROS DA Accuracy Sensitivity Specificity AUC C AUC FF AUC KC

✓ ✓(strong) 90.70% 79.96% 94.29% 0.97 0.89 1.00

✓ ✓(weak) 88.68% 74.17% 92.66% 0.96 0.86 0.99

✓ × 79.85% 77.58% 90.77% 0.94 0.83 0.99

× ✓(weak) 88.53% 67.35% 92.27% 0.96 0.88 0.99

× × 80.74% 62.89% 89.22% 0.95 0.76 0.99

ROS, random oversampling; DA, data augmentation; AUC, area under the
curve; C: control; FF: forme fruste keratoconus; KC: clinical keratoconus.

Table 3. Comparison of different input data schemes (rows) for the model. We vary three
parameters: whether segmentation is applied or not during the image preprocessing stage (first

column, Seg); the number of images (meridians) per eye required as input to the model to conduct
inference (second column); and the number of images per eye included in the training dataset (third

column, grouping in parentheses, see text for details). For each combination of parameters, the
table compiles the corresponding evaluation metrics. Our proposed model is highlighted in

boldface.

Table 3 shows the results obtained when evaluating different input data schemes for the
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required by the model during inference. The best performance was achieved using segmented
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results in improved performance (row 2 vs. row 3). We also see that, for the same amount of
training data, inference with 5 images/eye leads to better results than with 1 image/eye (row 2 vs.
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Table 3. Comparison of different input data schemes (rows) for the model. We vary three
parameters: whether segmentation is applied or not during the image preprocessing
stage (first column, Seg); the number of images (meridians) per eye required as input to
the model to conduct inference (second column); and the number of images per eye
included in the training dataset (third column, grouping in parentheses, see text for
details). For each combination of parameters, the table compiles the corresponding
evaluation metrics. Our proposed model is highlighted in boldface.

Options Metrics

Seg Input Training images per eye Accuracy Sensitivity Specificity AUC C AUC FF AUC KC

× 5 images/eye 25 (5 groups × 5 images) 86.44% 74.67% 93.43% 0.96 0.88 0.98

✓ 5 images/eye 25 (5 groups × 5 images) 90.70% 79.96% 94.29% 0.97 0.89 1.00

✓ 5 images/eye 5 (1 group × 5 images) 86.03% 63.33% 90.37% 0.96 0.78 0.97

✓ 1 image/eye 25 (25 groups × 1 image) 88.09% 71.03% 92.82% 0.96 0.88 0.98

Seg, segmentation; AUC, area under the curve; C, control; FF, forme fruste
keratoconus; KC, clinical keratoconus.

We also designed an additional experiment to assess whether the model relies on tissue-related
features in addition to shape information. For this purpose, the input images were binarized
to preserve only the corneal contour, thereby isolating shape information. Table S3 in the
Supplemental Document presents the model’s performance on these binarized images compared
to its performance on the original input images. A marked drop in performance when using the
binarized data supports the hypothesis that tissue-related features are a key component in the
model’s predictive ability, especially in FF cases.

GradCAM heatmaps [46] were also utilized, in order to enhance model interpretability by
visually indicating which areas of the input image were most influential in the model’s decision-
making process, offering insights into how the model was working internally. Figure 7 shows
GradCAM visualizations for sample images from the three classes: C, FF, and KC. In both
control and FF keratoconus, which are similar in shape between them, the model focuses on a
large central portion of the cornea. In the case of clinical keratoconus, the area of influence is
much smaller, confined, and located in a region of high curvature.

Fig. 7. GradCAM visualizations for the three classes. Top row: Input images. Bottom row:
Corresponding GradCAM heatmaps showing areas of high predictive influence, together
with prediction accuracies (in all three cases the correct class is predicted).
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We also designed an additional experiment to assess whether the model relies on tissue-related
features in addition to shape information. For this purpose, the input images were binarized
to preserve only the corneal contour, thereby isolating shape information. Table S3 in the
Supplement 1 presents the model’s performance on these binarized images compared to its
performance on the original input images. A marked drop in performance when using the
binarized data supports the hypothesis that tissue-related features are a key component in the
model’s predictive ability, especially in FF cases.

GradCAM heatmaps [46] were also utilized, in order to enhance model interpretability by
visually indicating which areas of the input image were most influential in the model’s decision-
making process, offering insights into how the model was working internally. Figure 7 shows
GradCAM visualizations for sample images from the three classes: C, FF, and KC. In both
control and FF keratoconus, which are similar in shape between them, the model focuses on a
large central portion of the cornea. In the case of clinical keratoconus, the area of influence is
much smaller, confined, and located in a region of high curvature.

4. Discussion

This study presents the, to our knowledge, first application of deep learning to raw Scheimpflug
images for keratoconus detection, a significant departure from previous approaches that relied on
preprocessed tomographic maps. The complexity of the problem is heightened by our focus on FF
keratoconus, a condition that lacks distinct topographic alterations when compared to control eyes,
making its detection inherently challenging. Accurate identification of keratoconus, particularly
in this preclinical stage, remains a major challenge in ophthalmology. This detection is crucial
for preventing iatrogenic corneal ectasia following refractive surgery. FF keratoconus serves as a
surrogate for the preclinical stage, since it represents structurally predisposed eyes despite normal
topography. Our model demonstrates the feasibility of using Scheimpflug images to detect subtle
corneal changes, achieving a sensitivity of 80.57%, a specificity of 80.56% at a 0.20 cut-off, and
an AUC of 0.89 for FF classification (see Figs. 5 and 6(B)). Notably, this threshold is in line with
values reported in the literature for similar early-stage keratoconus detection tasks [19,24]. For
clinical keratoconus detection, the model achieves higher performance, reaching a sensitivity
of 93.28%, a specificity of 99.40%, and an AUC of 1.00 for KC classification (Table 1). This
superior performance is expected, as KC cases typically exhibit more noticeable and distinct
changes in corneal shape and alterations in corneal tissue appearance, making them easier to
identify than C or FF cases, which tend to share similar morphological characteristics.

Our proposed model achieves an overall accuracy of 90.70%, which falls within the range of
accuracy reported in the literature (81%–99%) [20–22,25,27–32,47–51]. While some studies have
reported higher values within this range, many of these focused on classification tasks that were
inherently less challenging, often distinguishing only between clinical keratoconus and normal
eyes [22,29–31,47,48]. Additionally, in cases where subclinical keratoconus was considered, the
definition was often imprecise, with many so-called subclinical cases likely representing early
keratoconus already exhibiting slight topographic alterations [20,21,25,27,28,32]. This distinction
is crucial, as our study specifically targets FF keratoconus, a stage where conventional topographic
methods fail to detect structural abnormalities, making the classification task significantly more
complex. The GradCAM heatmaps (see Fig. 7) support the model’s interpretability. Interestingly,
control and FF cases often lead to activations in a large central portion of the cornea, while
clinical keratoconus cases the focus is on more specific areas of high curvature. This could be
consistent with the model focusing also on corneal tissue in the former cases (C and FF), and
mainly on shape in the latter (KC), but more investigation would be needed to derive conclusions
in this direction. This provides additional indication that the model is not relying on spurious
correlations but rather learning meaningful diagnostic features.

https://doi.org/10.6084/m9.figshare.29221049
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The use of raw Scheimpflug images provides a unique opportunity to simultaneously infer
both corneal shape and tissue characteristics, extending beyond the limitations of prior studies
that predominantly focused on topographical parameters, i.e., shape analysis. For results of
an additional experiment using binarized images—designed to isolate shape information and
remove tissue-related features—please refer to the Supplement 1. This perspective is supported
by previous research that has explored corneal tissue properties (e.g., corneal densitometry)
as an alternative approach, recognizing its potential in detecting subclinical keratoconus. In
this context, Koc et al. [35] and Consejo et al. [34] pioneered corneal densitometry-based
methods for subclinical keratoconus detection; however, they employed traditional statistical
techniques rather than artificial intelligence based approaches. Koc et al. reported a sensitivity
of 75.0%, a specificity of 90.0%, and an AUC of 0.883 using densitometric analysis from built-in
Pentacam HR software [35], while Consejo et al. improved upon this with their densitometry
distribution analysis (DDA), achieving a sensitivity of 90.0%, a specificity of 95.0%, and an
AUC of 0.97 [34]. Despite these promising results, the latter study was based on a limited
sample of 40 eyes (20 C vs 20 FF), which may have inflated performance metrics due to reduced
variability and more controlled conditions. In contrast, our approach includes 571 eyes (492 C vs
79 FF) and leverages deep learning to extract both structural and tissue-based features directly
from raw images, eliminating dependence on predefined parameters and enhancing the model’s
generalizability. Additionally, those previous studies were conducted on Caucasian eyes and two
classes, whereas our dataset consists primarily of Asian eyes and three classes, making direct
comparisons challenging.

To optimize keratoconus classification, different combinations of techniques have been explored
to address class imbalance, as shown in Table 2. As expected, the absence of data balancing
techniques (last row) led to low sensitivity and specificity, confirming the necessity of class
balancing techniques. Among the tested approaches, strong DA combined with ROS (first row)
yielded the best performance, significantly improving FF sensitivity while maintaining overall
accuracy. The reason for strong DA outperforming weak DA (second row) may be that the
variations introduced by weak DA were not significant enough to make a considerable difference
compared to the data without augmentation.

We also explored different schemes for the input data, including the influence of the segmentation
step of our preprocessing stage, and the number of input images to our model (Table 3, the best
scheme is shown in row 2). When segmentation was not applied (row 1 vs. row 2), overall
performance decreased, highlighting the importance of this preprocessing step in enhancing
model performance; besides, processing time was also improved from ten hours to two hours and
a half, approximately. The use of several images per eye improved with respect to using one, even
when using the same amount of training data (row 2 vs. row 4); this is probably due to having
more information to conduct inference, as well as the potential of establishing relationships
between different meridian views. Lastly, when not using the full training dataset (row 3 vs. row
2), sensitivity also dropped significantly, reinforcing the well-known importance of dataset size,
as well as validating our approach of leveraging the full training dataset.

Despite its strengths, this work is not free of limitations. The dataset, while large relative to
prior studies, remains geographically limited and may lead the model to over-rely on locally
augmented features; further validation on larger and more diverse populations would help ensure
generalizability. Additionally, the reliance on Pentacam HR images restricts direct comparisons
with other imaging modalities such as anterior-segment OCT, which provides higher axial
resolution. Future studies should explore whether combining Scheimpflug imaging with other
modalities could further enhance performance.

In conclusion, this work demonstrates the feasibility of creating a supervised deep learning
model that uses raw labeled corneal Scheimpflug tomography images. By considering both

https://doi.org/10.6084/m9.figshare.29221049
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corneal shape and tissue, it becomes a novel contribution to the field and serves as a starting
point for further research.
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