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Figure 1: Render of participating media with equiangular sampling and several numerical solvers. Top row: Rendered image.
Bottom row: Absolute error vs. ground truth in false color (blue is lowest, red is highest). (a) Standard ray marching, rectangle
quadrature rule (17s). The image shows banding at the cone of light. (b) Monte Carlo integration (19s). The image shows high
frequency noise. (c) Bogacki-Sampine method: an order three embedded (adaptive) initial value problem solver (1m 15s). (d)
Nested Simpson quadrature rule: an order two nested (adaptive) quadrature rule (17s). (e) Monte Carlo ground truth (5h).

Abstract
Rendering participating media is still a challenging and time consuming task. In such media light interacts at
every differential point of its path. Several rendering algorithms are based on ray marching: dividing the path of
light into segments and calculating interactions at each of them. In this work, we revisit and analyze ray marching
both as a quadrature integrator and as an initial value problem solver, and apply higher order adaptive solvers
that ensure several interesting properties, such as faster convergence, adaptiveness to the mathematical definition
of light transport and robustness to singularities. We compare several numerical methods, including standard ray
marching and Monte Carlo integration, and illustrate the benefits of different solvers for a variety of scenes. Any
participating media rendering algorithm that is based on ray marching may benefit from the application of our
approach by reducing the number of needed samples (and therefore, rendering time) and increasing accuracy.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: —Color, shading, shad-
owing, and texture I.3.7 [Computer Graphics]: —Ray tracing

1. Introduction

A ray of light that traverses a participating medium is al-
tered in several ways at differential level: its radiance may
be scattered away or absorbed, and its power may increase
due to medium emission and in-scattering. All these interac-
tions happen at every differential point of the path of light.
As a consequence, light simulation becomes a daunting task.
How to simulate a phenomenon that changes at every differ-
ential point of the volume within a reasonable time frame?
This question inspires a very active field of research, in
which each of the different participating media rendering

techniques finds its own compromise between accuracy and
simulation time.

Rendering physically-accurate participating media in-
volves solving (or approximating) the Radiative Transfer
Equation (RTE) [Cha60]. There are several interesting ap-
proaches, one of the most widely used techniques being ray
marching [PH89,Jen01]. Its main idea is to divide the path of
light into uniform segments that approximate all the differ-
ential interactions by a single sample. Depending on the size
of each of those segments, the render becomes more accurate
(short segments) or the simulation takes shorter time (large
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segments). The optimal compromise between time and accu-
racy happens at a specific step size, which could potentially
vary between different regions of the same scene.

Another option is to integrate the RTE using a Monte
Carlo quadrature method [PM93]. In this case, the trade-off
between accuracy and render time depends on the number of
Monte Carlo samples: given N samples (render time being
proportional to the number of samples), variance becomes
proportional to 1/

√
N. In contrast with ray marching, Monte

Carlo is unbiased. Lately, the RTE has been formulated as
an initial value problem and solved using several numeri-
cal methods [Muñ12]. Higher order Runge-Kutta methods,
while still showing the same step-size trade-off between ac-
curacy and render time, present faster convergence rates than
lower order ones.

Our work analyzes how higher order methods, both
quadrature rules and initial value problem (IVP) solvers, are
capable of simulating participating media, and how they per-
form compared to ray marching or Monte Carlo integration.
We show how each of these methods leads to a new ray
marching technique, and study their applicability for a num-
ber of scenarios. Furthermore, we improve the performance
of such methods by showing how to include importance sam-
pling strategies into the simulation.

Several of the analyzed methods are adaptive, where the
number of samples increases in regions that require it for
an accurate solution, while the number of samples decreases
when they are not required for the desired threshold accu-
racy, speeding up simulation time. The adaptation of such
solvers is not related to per-medium heuristics [Jen01] nor
to light distribution [JZJ08]. Instead, they adapt to the math-
ematical definition of light contribution along the path (in-
cluding both medium and light distribution). This adaptabil-
ity is of great help in scene setups with visible shadows or
highly heterogeneous media, in which standard ray march-
ing leads to banding artifacts and Monte Carlo yields high
frequency noise (see Figure 1).

Standard ray marching and Monte Carlo integration are
particular cases of our approach. Any algorithm that in-
cludes any of those techniques may include other methods
as well. It is the first time that such numerical methods have
been used for rendering participating media.

2. Previous work

Participating media rendering. Many previous papers
have dealt with participating media rendering [GJJD09], ei-
ther based on ray tracing [KvH84], Monte Carlo simula-
tions [PM93] or other methods [RT87]. In practice, all of
them approximate the Radiative Transfer Equation [Cha60]
or find ways to solve it. Recent research deals with reformu-
lating the RTE for specific scenarios to reduce its complexity
(single point light and single scattering [PSS11]) or devise
new sampling strategies [KF12]. Other participating media

rendering algorithms are based on additional representations
of light interactions such as point particles (photons) [Jen01]
or segments, such as virtual ray lights [NNDJ12b] or photon
beams [JZJ08, JNSJ11, NNDJ12a].

Ray marching. Ray marching is one of the key techniques
for rendering participating media [PH89]. Since then, it
has been adapted to algorithms such as volumetric photon
mapping [Jen01]. Some authors have proposed adaptive ray
marching techniques, that adjust their step size to better fit
the scene’s properties. They can be based on medium heuris-
tics [Jen01] or to the distribution of light samples in the vol-
ume [JZJ08]. In contrast, our algorithm provides a generic
framework that, using an adaptive numerical method, adapts
to both media properties and light distribution without the
need of specific per-scene heuristics.

Importance sampling. Monte Carlo based stochastic meth-
ods are also widely used for rendering participating media.
As our work, the key idea of these methods is to find a
sampling strategy that reconstructs light transport in partic-
ipating media from the minimal number of samples. Some
strategies consist on finding and using a probability distri-
bution function that, given a specific heuristic, such as the
optical thickness of the media [Col68, RSK08] (even adapt-
ing the strategy to heterogeneous media with varying optical
thickness [WMHL65]), or the incident radiance from a point
light source [KF12], distribute samples and weights accord-
ing to it. Our work shows how to apply such importance sam-
pling strategies on top of any numerical method. More ad-
vanced stochastic methods involve incorporating several im-
portance sampling strategies at once, either based on a multi-
ple importance sampling strategy [KF12], or on a joint prob-
ability distribution along multiple light bounces [GKH∗13].

Numerical solvers. There has been a lot of research re-
garding both initial value problem solvers [Gea71, CL85,
PTVF07] and quadrature rules [SS66, PTVF07]. In com-
puter graphics, initial value problem solvers have not been
widely used for rendering, with few exceptions [GSMA06,
Muñ12]. However, some quadrature rules are very often ap-
plied, such as Monte Carlo quadrature for path tracing algo-
rithms [Vea97] or rectangle quadrature rules for ray march-
ing [PH89]. The application of other higher order quadrature
rules has been rare, with again few exceptions [JLSJ11].

3. Radiative Transfer

When light traverses a participating medium, it interacts
with it at every differential point of the path, in three pos-
sible ways: it may get absorbed, scattered or emitted by the
medium. The equation that defines this behavior is the Ra-
diative Transfer Equation [Cha60]:

∂L(x,ω)
∂t

= σa(x)Le(x,ω)−σt(x)L(x,ω)

+σs(x)
∫

Ω

p(x,ω′,ω)L(x,ω′)dω
′ (1)
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Ray marching Gauss-Kronrod quadrature Dormand-Prince method
(a) (c) (d)

Monte Carlo
(b)

Figure 2: Ray marching techniques (steps separated by vertical lines, samples marked as dots). (a) Standard ray marching:
path is split into uniform segments, each of them evaluated using one sample. (b) Monte Carlo: samples are randomly chosen.
(c) Gauss-Kronrod: the whole path is integrated with fifteen samples, but if the error is higher than a tolerance (marked in red),
the path is split in two and the same rule is recursively applied. (d) Dormand-Prince: five samples per step. A step is rejected
when its error is higher than a tolerance (marked in red). Step size is modified according to the error even if accepted.

where ∂L(ωo)
∂t represents the differential variation of radiance

along the path of light t, x is the differential point at which
the interaction occurs, ω represents the direction followed by
light and ω

′ represents the direction of other light paths that
reach the differential point x (Ω is the domain of integration,
a sphere). The rest of the symbols represent the properties of
each medium:

• σa is the absorption coefficient, energy that is absorbed by
the medium at every differential step.
• σs is the scattering coefficient, energy scattered by parti-

cles in the medium at every differential step.
• σt = σa +σs is the extinction coefficient, energy that is

either absorbed or out-scattered.
• p(x,ω′,ω) is the phase function, that defines the angular

distribution of light scattering.
• Le is the medium’s emission.

In order to render participating media, we need to solve
Equation 1 and obtain the radiance L(x,ω). Equation 1 is
a linear ordinary differential equation, and therefore has an
analytical integral solution:

L(x0,ω) = Tr(x0,xt)L(xt,ω)

+
∫ t

0
Tr(x0,xs)σa(xs)Le(xs,ω)ds

+
∫ t

0
Tr(x0,xs)σs(xs)Li(xs,ω)ds (2)

where x0 is the origin point of the ray, xs = x0 + txs is a dif-
ferential point of interaction at the position parametrized by
s and t is the distance which the light comes from. Tr(x0,xt)
is named transmittance and accounts for all the light that
has traversed the medium between x0 and xt without getting
extinguished due to the medium’s properties. Li(xs,ω) rep-
resents the in-scattered radiance (energy coming from differ-
ent light paths). They are defined as follows:

Tr(x0,xt) = e
∫ t

0−σt (xs)ds (3)

Li(xs,ω) =
∫

Ω

p(xs,ω
′,ω)L(xs,ω

′)dω
′ (4)

Both in differential (Equation 1) and integral form (Equa-
tion 2), Li involves both single and multiple scattering. Mul-

tiple scattering (light that has bounced several times in the
medium) can be sampled for instance using Monte Carlo in-
tegration or photon mapping [Jen01]. Single scattering can
be computed by tracing shadow rays from the sample point
to the light sources. Light that comes directly from a light
source travels a distance across the medium, and therefore
must be also extinguished according to Tr. The computation
of Li must be done per-sample and is usually linked to the
efficiency of the simulation. In case of homogeneous media,
Tr is an analytical term:

Tr(x0,xs) = e−σt ||xs−x0|| (5)

Rendering participating media involves solving the RTE,
either its integral form (Equation 2, the most common op-
tion, analyzed in Section 4.1) or its differential form (Equa-
tion 1, analyzed in Section 4.3). Each method translates into
a new ray marching strategy, of sampling light along the
path, as it is shown in Figure 2: each technique selects a
different set of sample points and weights in order to con-
verge to the solution. Adaptive techniques may reject some
samples (marked in red) based on an error estimation heuris-
tic and an adaptation strategy, and select new sample points
accordingly.

4. Solving the Radiative Transfer Equation

4.1. Quadrature rules

Equation 2 can be numerically calculated by a quadrature
rule, which approximates the integral by a sum of weighted
function evaluations. For instance, the third term of Equa-
tion 2 would be approximated as follows:∫ t

0
Tr(x0,xs)σs(xs)Li(xs,ω)ds≈

Σ
n
k=1wkTr(x0,xk)σs(xk)Li(xk,ω) (6)

from a set of n sample points xk, each of them weighed by
a specific factor wk. The sample points {xk} and weights
{wk} are specific values of each quadrature rule. Each func-
tion evaluation at each xk requires calculating Tr and Li,
which are again integrals. In case of homogeneous media, Tr
(see Equation 5) is analytical. However, for inhomogeneous

c© 2014 The Author(s)
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media, the transmittance Tr can be computed by applying
the same quadrature rule that is applied to the integral RTE
(Equation 2) to the exponent in Equation 3. In the case of sin-
gle scattering, Li becomes an addition (for all light sources)
but Tr must be also applied to light coming directly from the
light sources to the sample point.

Standard ray marching is the application of a rectangle
quadrature rule to Equation 2: the sample points are uni-
formly distributed along the path of light, and the weight
for each of them is homogeneous ∆s, which is the step size.
By increasing the number of segments, image quality gets
improved (step size ∆s is reduced) but simulation time also
increases. Figure 2(a) illustrates this. Monte Carlo method
is also a quadrature rule, with sample points xk randomly
distributed according to a probability distribution function
(pdf ) and wk =

1
pd f (xk)

, as shown in Figure 2(b). In this work
we also test Simpson rule as representative of a higher order
quadrature rule.

4.2. Nested quadrature

Nested quadrature rules apply a higher order and a lower or-
der rule simultaneously, in order to estimate both a solution
and an estimation of the error:

F̂H =
n

∑
i=1

wH
i f
(

xH
i

)
F̂L =

m

∑
i=1

wL
i f
(

xL
i

)
(7)

where F̂H and F̂L represent the estimations from the higher
order and the lower order quadrature rules, respectively (n >

m), and e = ||F̂H − F̂L|| is the estimated error (although
other method-specific error metrics can be found in the liter-
ature). The corresponding weights and {wH

i } and {wL
i }, as

well as the sample points {xH
i } and {xL

i } are specific to each
method. Furthermore, the lower order method samples are a
subset of the higher order methods samples ({xL

i } ⊂ {x
H
i }),

so just with n sample points we get both the estimation of the
integral FL and the error e. When the error is above a certain
tolerance tol (e > tol), the estimation FL is rejected and the
integration range is split in two. Then, the quadrature rule is
applied recursively to each sub-segment (see Figure 2(c) for
an overview). In practice, it is convenient to set up maximum
and minimum step sizes, so the adaptive method is able to
sample high frequency details and is not stalled indefinitely.

The tolerance is a fundamental parameter for error con-
trol. In this work we test the Nested Simpson rule (standard
Simpson and trapezoid quadrature rules) and the Gauss-
Kronrod method [Pat68]. While there are others in the lit-
erature, these two are a representative subset as they have
different orders.

4.3. Initial value problem solvers

As previous work [Muñ12], our work takes advantage of the
differential form of the Radiative Transfer Equation (Equa-

tion 1). Equation 1 has the form y′(t) = f (y, t) (consid-
ering that t is the distance along the path of light and y
the radiance itself). Furthermore, the radiance that enters
the medium y0 = L(x0,ω) is also known (it comes from
the surface). Therefore, the RTE is in fact an initial value
problem (IVP) and, as such, there are several methods that
can numerically solve it, such as all Runge-Kutta meth-
ods [Gea71,CL85,PTVF07]. General Runge-Kutta methods
are defined as follows:

yi+1 = yi +
n

∑
j=1

b jk
j
i ti+1 = ti +h (8)

k j
i = h f

(
ti + c jsi,yi +

j−1

∑
l=1

a jl

)
(9)

where h is the step size and n is the number of function
evaluations per step, which is usually related to the order
of the method. The values {b j}, {c j} and {a jl} are spe-
cific to each method, and are usually arranged in a Butcher’s
tableau [Gea71]. The Butcher’s tableau of different methods
can easily be found on specialized literature [PTVF07]. Eu-
ler’s method is the most simple Runge-Kutta method, with
n = 1, c1 = 0 and b1 = 1.

We also need to account for the transmittance Tr for the
the radiance that comes directly from the light sources to
each sample point. In the case of homogeneous media this is
an analytical term (Equation 5), and for heterogeneous me-
dia we solve the following IVP using the same solver than
for the RTE:

∂L(x,ω)
∂t

=−σt(x)L(x,ω) (10)

which is just the extinction term of the RTE (Equation 1).
Note that Equation 3 would be the integral form (analyti-
cal solution) of Equation 10 that defines the transmittance
Tr. In this work, we analyze Euler’s method for side-by-
side comparison with the rectangle rule (standard ray march-
ing), and the standard fourth order Runge-Kutta method
(RK4). As the RTE is a linear ordinary differential equation
(Equation 1), the RK4 method requires only two samples per
step instead of the usual four [PTVF07]. RK4 is included in
our tests because it is a standard high order not embedded
numerical method.

4.4. Embedded Runge-Kutta methods

An embedded Runge-Kutta method consists of two different
order methods which share the same {c j} and {a jl} values
with different {b j} weights:

yi+1 = yi +
n

∑
j=1

b jk
j
i y∗i+1 = yi +

n

∑
j=1

b∗j k j
i (11)

where yi and y∗i are the two estimations from the two meth-
ods, and {b j} and {b∗j } are the corresponding weight co-

efficients. The calculation of the k j
i values (which involves

c© 2014 The Author(s)
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function evaluations, as seen in Equation 9) is common for
both methods, so therefore we get both the per-step estima-
tion and error with the same number of function evaluations
(similar to nested quadrature rules, see Section 4.2). y∗i only
serves for the purpose of error estimation ei = ||yi− y∗i | |.

If the per-step estimated relative error ei is greater than a
specified tolerance tol, the step is rejected and recalculated
with a new step size. Even if the step is accepted, the step
size is modified. We use the following default step adapta-
tion strategy for all embedded methods, although other con-
figurations may be explored as future work [PTVF07]:

hi+1 = 0.99
(

tol
ei +10−2

)
hi (12)

As with nested quadrature rules, we also set global upper
and lower bounds for the step size. In this work, we consider
the order three Bogacki-Shampine method [BS89] and the
order five Dormand-Prince method [DP80]. As the RTE is
linear a Dormand-Prince step requires five function evalua-
tions instead of the usual six (as it happens with the RK4
method). The analysis of both methods not only gives in-
sight about embedded methods but also enables comparison
between two methods of different order.

5. Importance sampling

Importance sampling is a general technique that enables
Monte Carlo estimators to choose the integration samples
{xk} according to a probability distribution function (pdf ),
so that statistically more samples are taken in the most rele-
vant regions of the integrand. Different pdf lead to different
sampling strategies along the domain of integration, prefer-
ably minimizing the number of samples required to obtain
an accurate result. Identifying the right pdf for the right inte-
grand involves factoring as much knowledge of the integrand
as possible in the pdf formula, and is a topic of interest for
the rendering community on its own. In this section we show
how, by means of a change of variable, we adapt several im-
portance sampling strategies to any quadrature rule or initial
value problem solver.

Distance sampling [RSK08]: The key idea of this strat-
egy is to locate fewer samples in regions where extinction
makes them unnoticeable. In order to include such strat-
egy into our approach (based either on initial value problem
solvers or quadrature rules) we apply the following change
of variable:

u = e−sσ
re f
t (13)

where σ
re f
t is a per-ray reference extinction coefficient,

which we calculate as the average (for all wavelengths) of
the extinction coefficient at the origin of the ray that traverses
the medium. By applying Equation 13 to both the differen-
tial and the scattering term of the integral form of the RTE

(Equations 1 and 2) we get:

∂L(x,ω)
∂u =−σa(x′u)Le(x′u,ω)−σt (x′u)L(x

′
u,ω)+σs(x)Li(x,ω)

uσ
re f
t

(14)

∫ e−tσre f
t

1
−Tr(x0,x′u)σs(x′u)Li(x′u,ω)

uσ
re f
t

du (15)

where x′u = x0− log u
σ

re f
t

ω is the point in the path of light ac-

cording to the change of variable. Equation 14 can be solved
as an IVP (see Section 4.3) and Equation 15 by means of a
quadrature rule (see Section 4.1).

u

D

∆

t

Figure 3: Geometrical variables involved in equiangular
sampling

Equiangular sampling [KF12]: Given a participating
medium illuminated by a point light, this strategy locates
more samples close to the light source. Again, a change of
variable enables us to take advantage of this sampling strat-
egy. Given a light source at distance D to the ray:

u = tan−1
(

s−∆

D

)
(16)

where ∆ is the distance from the origin of the ray to the pro-
jection of the position of the point light source to the ray
(see Figure 5). This leads to the following transformations
of both the differential form and the scattering term of the
integral form of the RTE:

∂L(x,ω)
∂u =D(tan2(u)+1)(σa(x)Le(x,ω)−σt (x)L(x,ω))+σs(x)Li(x,ω))(17)∫ tan( t−∆

D )
tan(−∆

D )
D(tan2(u)+1)Tr(x0,x′u)σs(x′u)Li(x′u,ω)du(18)

where x′u = x0− (tan(u)∗D+∆)ω is again the point in the
path of light according to the change of variable.

For fixed step size methods (either quadrature rules or
IVP solvers) and Monte Carlo integration, importance sam-
pling locates more samples in targeted regions. For adaptive
methods this change of variable serves as a prior for initial
sample placement. Notice that Monte Carlo importance sam-
pling is actually mathematically equivalent to this approach,
in which the probability distribution function is the deriva-
tive of the corresponding change of variable (Equations 13
and 16, respectively). Other importance sampling strategies
that deal with the traversal of participating media may be
also expressed as a change of variable and therefore could
be adopted by higher order ray marching techniques.

c© 2014 The Author(s)
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Scene #Samples(x) vs. error(y) #Samples(x) vs. error(y) Tolerance(x) vs. error(y) Tolerance(x) vs. #samples(y)

Rectangle Monte Carlo Simpson Euler RK4 Gauss Kronrod Bogacki Shampine Dormand PrinceNested Simpson

CONSTANT STEP ADAPTIVE

Figure 4: Error analysis under three different scenarios, each one of them on each row, represented by the image on the left.
The analysis is done for the single represented ray. Scenarios from top to bottom: a single directional light, a single point
light and a single point light with an occluder. From left to right: scene and ray representation; number of samples vs. error
for constant step methods (without importance sampling); number of samples vs. error for constant step methods, with specific
importance sampling (distance for the directional light scenario, equiangular for both point light scenarios); tolerance vs. error
for adaptive methods with specific importance sampling; tolerance vs. number of samples for adaptive methods with specific
importance sampling.

6. Results and discussion

Each of the solvers that have been introduced in previous
sections shows a different behavior when applied to ren-
der participating media. In order to better understand each
method’s trade-off between number of samples and accuracy
of the resulting radiance, we set up three simple scenarios.
For each of them, we compare the radiance given by a ray
that traverses the corresponding participating medium with
a ground truth. We calculate the ground truth using a Monte
Carlo quadrature rule with 100000 samples (for that single
ray), and compare it to the result of the specific numerical
method. For a L ground truth solution and a L̂ estimated ra-

diance, our error metric is relative: ||L−L̂||
max(||L||,||L̂|| .

These three scenarios are: a single directional light, a sin-
gle point light and a single point light with an occluder. For
this test (and most results in this section) multiple scatter-
ing is neglected and just single scattering is computed. The
errors at multiple scattering simulation would be impossi-
ble to disambiguate from each solver’s error, complicating
the analysis. Furthermore, multiple scattering tends to blur
the apparent radiance, therefore smoothening discontinuities
that are pretty relevant for the performance analysis of ray
marching techniques (discontinuities are actually a worst-
case scenario, as discussed below in the text). Figure 4 shows
the result of these tests. Instead of analyzing rendering time

for a single ray, we count the number of function evalu-
ations (samples) required by each method. This metric is
more reliable, as the bottleneck in participating media ren-
dering comes from the visibility tests and the indirect light
illumination, and the required time per sample is scene de-
pendent.

Importance sampling. Applying distance importance sam-
pling for the first scenario (top row, a single directional light)
is the optimal sampling strategy (the pdf equals the inte-
grand): even with a single sample any numerical method
gives an accurate solution. Therefore, the error yielded by
constant step methods (second column) is owed just to nu-
merical precision. Furthermore, adaptive methods converge
in a single step, no matter the tolerance (fourth column).
In general scenarios with directional light sources, however,
this optimal behavior would be altered either by occluders
and heterogeneities on media coefficients.

Equiangular sampling helps the convergence of some
quadrature rules such as Monte Carlo and rectangle rule
for the second scenario. However, it seems that it hinders
the performance of IVP solvers. This is due to the fact that
IVP solvers are generally weak to stiff equations: differential
equations that for some reason present a numerically unsta-
ble behavior. It seems that the change of variable for equian-
gular sampling (Equation 16) may be leading to a stiff equa-

c© 2014 The Author(s)
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Std. ray marching Monte Carlo Dormand-Prince Gauss-Kronrod

s = 0.01 21m10s n = 100 8m13s tol = 10−7 39m30s tol = 10−3 55m48s

s = 0.001 3h28m40s n = 10000 13h39m59s tol = 4 ·10−10 1h31m55s tol = 10−5 3h9m53s

Figure 5: Test of the performance of different solvers in a medium with very noticeable lighting discontinuities (shadows). From
left to right: traditional ray marching (s is the step size), Monte Carlo (n is the number of samples), Dormand-Prince solver
and Gauss-Kronrod solver (tol represents tolerance). Top row: sub-sampled render. Notice that, except Monte Carlo (that is
unbiased), all solvers lead to perceivable structured errors, with different patterns (more regular in the case of standard ray
marching. Bottom row: Accurate render.

tion under certain circumstances. This can also be perceived
on the performance of adaptive IVP solvers.

This stiffness is further illustrated in Figure 6 for the case
of distance importance sampling. Monte Carlo greatly re-
duces high frequency noise, and it also seems that the rect-
angle rule (standard ray marching) yields less artifacts than
with uniform sampling. However, Euler’s method is impor-
tantly penalized: the underwater scene is quite large com-
pared to the extinction coefficient (the medium is optically
thick), fact that increases equation stiffness for distance sam-
pling and compromises the performance of IVP solvers. Fig-
ure 7 also illustrates the effect of equation stiffness.

Shadows. For the top two scenarios, as expected, higher or-
der methods converge faster to the accurate solution than
lower order ones (requiring less samples). However, shad-
ows (third scenario) alter this behavior. An IVP solver (or
quadrature rule) of order n assumes that the differential
equation (or the integrand) is Cn (continuous derivative up
to order n). However, most scene setups imply that neither
the RTE nor its integral formulation are actually Cn: media
coefficients are not necessarily continuous up to any order
(not even order 0), and lighting from single scattering may
be discontinuous due to shadows. It can be proved that an
order n solver applied to an order m equation shows an or-
der m performance if m < n [EJNT88]. The bottom row of
Figure 4 analyzes a scenario with sharp shadows (order 0),
and shows how constant step methods show the same per-
formance than Monte Carlo (order 0). Adaptive methods,
however, can overcome such discontinuities by casting more
samples. Shadows are a major source of variance.

Figure 5 shows how discontinuities affect participating

Rectangle Euler Monte Carlo

Figure 6: Underwater scene. Rectangle, Euler and Monte
Carlo solvers, using 40 samples per pixel (step = 0.1). Each
image has taken 32 seconds to render. Top row: uniform
sampling. Bottom row: distance sampling.

media rendering with different solvers: the two reflectors in
the back of the scene project a cone of light with a clear
discontinuity that affects the whole image, additionally to
the shadows casted by the bunnies. Standard ray marching
requires the step to be greatly reduced for an accurate solu-
tion. Shadows hinder the performance of the Gauss-Kronrod
rule and Dormand-Prince method: as they are both adap-
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tive, they attempt to locate the samples where they are most
needed (close to the shadows). Monte Carlo quadrature re-
quires more samples in order to reduce the variance.

RK4 Simpson Euler Rectangle

7s 8s 6m7s 7m45s

Figure 7: Comparison of the performance of IVP solvers
and quadrature rules for both homogeneous and a hetero-
geneous media. Equiangular sampling with 10 samples per
path has been applied on all four cases. Notice that, in this
case, quadrature rules are more suited for homogeneous me-
dia and IVP solvers for heterogeneous media.

Monte Carlo Euler Dormand-Prince

Figure 8: Different types of noise are generated by the ap-
plication of different kinds of methods using low number
of samples. Left: Monte Carlo integration leads to unstruc-
tured high frequency noise. Middle: Constant step numerical
methods lead to structured banding noise. Right: Adaptive
methods lead to structured incoherent noise.

Homogeneous vs. heterogeneous media. The performance
of the different numerical methods greatly varies depend-
ing on whether the medium is homogeneous or heteroge-
neous. The perceivable optical features of homogeneous me-
dia are related to shadows (discussed above) and proximity
to light sources. Sharp shadows are often more efficiently
simulated using adaptive quadrature rules (see Figure 1) as
the adaptation strategy involves splitting the domain of in-
tegration. Proximity of point light sources leads to numer-
ical singularities (that can be alleviated by equiangular im-
portance sampling [KF12]) and in general to stiff equations,
that are a worst case scenario for IVP solvers. Figure 7 (top
row) shows that a RK4 method fails to simulate light trans-
port in a simple homogeneous medium due to such stiff-
ness (although the artifact would be solved by using more
samples), while Simpson result does not yield any rendering
artifact. On the other hand, heterogeneous media pose two
challenges for quadrature rules. First, the transmittance Tr
needs to be approximated per-sample (for instance using the
same quadrature rule), while the differential form of the RTE
does not present this requirement. Therefore, the efficiency
of quadrature rules is hindered (see Figure 7, bottom row and

Standard ray marching Euler

s = 0.01 t = 3h9m34s s = 0.01 t = 2h31m2s
Gauss-Kronrod Dormand-Prince

tol = 1 t = 5h33m59s tol = 10−6 t = 1h20m55s

Figure 9: Test of the performance of different solvers across
a high frequency procedural heterogeneous medium. Left
column: Quadrature rules. Right column: IVP solvers. Top
row: Constant step order 0 methods (rectangle quadrature
and Euler’s method). Bottom row: Higher-order adaptive
methods (Dormand-Prince and Gauss-Kronrod).

Figure 9, top row), although this issue could be solved by de-
coupling the computations related to transmittance from the
scattering simulation [KF12]. Also, the accuracy of the re-
sult depends on the accuracy of the Tr approximation, which
may lead to perceivable errors compared to equivalent IVP
solvers (or even introduce discontinuities), as illustrated in
the bottom row of Figure 7. In the case of heterogeneous
media, sub-sampling leads to different kinds of noise, de-
pending on the numerical method (see Figure 8).

Regarding adaptive rendering of heterogeneous me-
dia, Figure 9 (bottom row) compares the results from
two high order adaptive methods: Dormand-Prince and
Gauss-Kronrod. Dormand-Prince greatly improves effi-
ciency (without accuracy loss) compared to standard ray
marching and Euler. However, Gauss-Kronrod shows a
much worse performance: it does not converge to the accu-
rate solution even after almost double the time than standard
ray marching. Apart from the transmittance approximation
of quadrature rules discussed above, the splitting strategy
for nested quadrature rules is suboptimal for high-frequency
heterogeneous media. At every rejected integration, all sam-
ples are discarded (15 samples per rejected step). High fre-
quency media properties lead to many rejected integration
attempts and therefore a great performance loss. Dormand-
Prince, on the other hand, at each step, adapts the step size to
the RTE no matter if the step is finally accepted or rejected.
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This flexibility leads to a more accurate error prediction and
therefore less rejected steps.
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Figure 10: Multiple scattering simulation using photon
mapping and several numerical methods.

Multiple scattering. Previous results account just for single
scattering. Multiple scattering calculations can easily be in-
cluded on the in-scattering term Li(xs,ω) based on any stan-
dard algorithm. However, applying Monte Carlo for gath-
ering indirect bounces would lead to high frequency noise,
which is toxic for the presented numerical methods. We use
photon mapping instead [Jen01] for the indirect bounces of
light, which yields a smooth (but biased) representation of
multiple scattering that favors the solvers used in this article.
Figure 10 shows the result of several simulations for sev-
eral methods. An interesting outcome is that, for adaptive
solvers, a specific tolerance parameter that leads to efficient
accurate results for single scattering may be too restrictive
for multiple scattering (Nested Simpson method, Figure 10,
middle row), while adaptive methods that lead to visible ar-
tifacts for single scattering may improve their results when
including multiple scattering (Dormand-Prince method, Fig-
ure 10, bottom row).

7. Conclusions and future work

We have revisited the concept of ray marching as the use of
a numerical solver for the Radiative Transfer Equation, both
on its differential form (initial value problem solvers) and
on its integral form (quadrature rules). While there are def-
initely many more numerical solvers in the literature, we
have analyzed a significant representative subset of them,
that enables us to extract conclusions in side-by-side com-
parisons between different order methods and between fixed

and adaptive techniques. Apart from Monte Carlo integra-
tion, we have analyzed two constant step IVP solvers (Euler
and order four Runge-Kutta) and two constant step quadra-
ture rules (rectangle rule, which is the standard ray march-
ing technique, and order two Simpson rule). We have shown
that, while on ideal scenarios higher order translates into
faster convergence, in the presence of strong shadows the
performance of all the methods is similar to Monte Carlo
for the same number of samples, no matter the order of the
numerical solver.

We have also taken into account several adaptive tech-
niques: Bogacki-Shampine (order three) and Dormand-
Prince (order five) as IVP solvers and Nested Simpson rule
(order two) and Gauss-Kronrod quadrature rules. Given a
tolerance parameter, those techniques adapt the location of
the samples according to a local estimation of the error. The
tolerance parameter of such methods is unintuitive to set:
First, error control is local (per-step) and therefore there is
no direct control over global error. Furthermore, each of the
methods estimates the error at a different order, so there is no
optimal tolerance parameter for all of them. However, given
a specific adaptive method, its optimal tolerance parameter
does not vary greatly between different scenes. . We have
shown how this adaptiveness maximizes accuracy for a num-
ber of scenarios, including sharp shadows and heterogeneous
media. Adaptive techniques show a better convergence rate
than constant step methods and Monte Carlo quadrature.

We have also included in our formulation two widely used
participating media importance sampling techniques: dis-
tance sampling [RSK08] and equiangular sampling [KF12],
which are no longer Monte Carlo specific but can be ap-
plied with any numerical method. All constant step meth-
ods distribute their samples according to the importance, and
adaptive methods use the importance information as a prior
for their adaptation strategy. Interesting paths for future re-
search could involve including other importance sampling
strategies, such as strategies dealing with heterogeneous me-
dia (such as Woodcock tracking [WMHL65]) or combined
strategies (multiple importance [Vea97, KF12] or joint im-
portance sampling [GKH∗13]) for any generic solver.

Our tests show that IVP solvers present a better perfor-
mance at heterogeneous media, while quadrature rules are
better suited to deal with equation stiffness (singularities
caused by point lights or optically thick media). Further-
more, the convergence of adaptive methods is tied to the er-
ror adaptation strategy. Specifically, IVP solvers adapt step
size to local error estimations at every single step, which is
an adequate strategy for heterogeneous media, while quadra-
ture rules split the integration range recursively, which is
suited to deal with sharp discontinuities such as shadows.

As future research, it would be interesting to test how the
use of these numerical solvers can be applied to other tech-
niques. Any technique that is based on ray marching (or on
sampling points along the path of light using Monte Carlo
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integration) would be suitable for these numerical solvers.
We have already shown that it can be used for volumetric
photon mapping [Jen01]. For instance, it could be applied
to integrate light transport between camera rays and virtual
ray lights [NNDJ12b] or to sample light and extinction dis-
tributions along photon beams or ray beams [JNSJ11]. We
hope that our work inspires further research on efficient par-
ticipating media rendering, which is still an enormous and
difficult task.

Acknowledgements

We would like to thank Adrian Jarabo for his constructive
criticism about this work. This research has been partially
funded by the European Commission, 7th Framework Pro-
gram, through projects GOLEM, VERVE, the Spanish Min-
istry of Science and Technology, project TAMA, and by the
Gobierno de Aragón (project CTPP6/11).

References
[BS89] BOGACKI P., SHAMPINE L.: A 3(2) pair of runge - kutta

formulas. Applied Mathematics Letters 2, 4 (1989), 321 – 325. 5

[Cha60] CHANDRASEKHAR S.: Radiative Transfer. Dover Pub-
lications, Inc., 1960. 1, 2

[CL85] CODDINGTON E. A., LEVINSON N.: Theory of Ordinary
Differential Equations, 9 ed. Tata Mcgraw-Hill, 1985. 2, 4

[Col68] COLEMAN W.: Mathematical verification of a certain
monte carlo sampling technique and applications of the technique
to radiation transport problems. Nucl. Sci. Eng. 32 (1968), 76–81.
2

[DP80] DORMAND J., PRINCE P.: A family of embeded runge-
kutta formulae. Journal of Computational and Applied Mathe-
matics 6(1) (1980), 19–26. 5

[EJNT88] ENRIGHT W., JACKSON K., NORSETT S., THOMSEN
P.: Effective solution of discontinuous IVPs using a Runge-Kutta
formula pair with interpolants. Applied Mathematics and Com-
puting 27 (1988), 313–335. 7

[Gea71] GEAR C.: Numerical initial value problems in ordinary
differential equations. Prentice-Hall series in automatic compu-
tation. Prentice-Hall, 1971. 2, 4

[GJJD09] GUTIERREZ D., JENSEN H. W., JAROSZ W., DON-
NER C.: Scattering. In ACM SIGGRAPH ASIA 2009 Courses
(New York, NY, USA, 2009), SIGGRAPH ASIA ’09, ACM,
pp. 15:1–15:620. 2

[GKH∗13] GEORGIEV I., KŘIVÁNEK J., HACHISUKA T.,
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