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Compositing an image of an object into another image is a frequently occurring task in both image

processing and augmented reality. To ensure a seamless composition, it is often necessary to infer the

light conditions of the image to adjust the illumination of the inserted object. Here, we present a novel

algorithm for multiple light detection that leverages the limitations of the human visual system (HVS)

described in the literature and measured by our own psychophysical study. Finally, we show an

application of our method to both image compositing and synthetic object insertion.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

This paper deals with the problem of obtaining the positions
and relative intensities of light sources in a scene, given only a
photograph as input. This is generally a difficult and under-
constrained problem, even if only a single light source illuminates
the depicted environment.

Traditionally, light probes are used to acquire the lighting data
[1,2]. A light probe is an object of known 3D shape and BRDF
properties (Bidirectional Reflectance Distribution Function, which is
a description of the reflectance properties of the material) that is
positioned in the scene when the image is captured. Unfortunately,
in several cases, this technique is not applicable; e.g., in paintings
and in photographs taken under uncontrolled conditions. It would
be possible to use any object in the image if geometry information
was available to allow light source positions or directions to be
estimated [3,4]. Conversely, if the light source is known, the 3D
geometry can be approximately recovered, an ill-posed problem
known as shape-from-shading [5].

However, we are interested in the problem of light source
recovery without the benefit of any geometric prior models. To
this end, we first carried out a psychophysical experiment to
quantify the accuracy with which humans can generally detect
light sources. The results of this experiment were then used to
validate the results of our light-detection algorithm, both
numerically and perceptually. We then used any existing object
in the image as a de facto light probe. We found that assuming a
globally convex shape for such a light probe is sufficient to
reconstruct light directions. The user only needs to identify the
ll rights reserved.
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silhouette of the object in the image, a task similar to or simpler
than other existing image-editing applications [6,7]. We then
analyzed the information in the contour and the gradients
contained in the shape to infer the light directions and relative
intensities.

Real environments are likely to contain multiple light sources.
In practice, we found that identifying up to four sources that
when combined provided similar illumination as in the image
sufficed for most situations. This keeps the dimensionality of the
solution manageable, in a way similar to professionally lit
environments, which are usually lit by a three-light setup.
Additionally, although we did assume in principle that the chosen
light probe was Lambertian, we will show that this is not a strong
requirement.

We believe that by analyzing the lighting consistency between
images, our algorithm can help improve several types of
applications, such as Photo Clip Art [7], Interactive Digital
Photomontage [8] or Photo Tourism [9].
2. Previous work

The computation of light source directions from images is an
ill-posed problem, with many possible solutions leading to the
same observed image. As a result, assumptions about the
environment must be made, known geometry must be present
in the scene, or extra information must be captured to change the
problem into a solvable one.

To detect single light sources, a local analysis of the surface
and image derivatives may be used to estimate the direction of
the light source [10–12]. Alternatively, occluding contours within
a single object [13,14] or texturing [15,16] provide clues as to
where the light is coming from.
through light source detection. Computers and Graphics (2010),
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To detect multiple lights, the environment could be photographed
along with the aforementioned light probe—a calibration object of
known size and shape. For instance, a Lambertian sphere could be
employed and subsequently analyzed for multiple light source
directions [17,18]. Alternatively, multiple specular spheres can be
triangulated for the same purpose [19,20]. Combinations of Lamber-
tian and specular spheres have also been used [21]. Finally, reflections
of a human eye can be analyzed to detect light sources [22].

Another way to overcome the underconstrained nature of the
problem is to use a range camera to record geometry, allowing
light sources to be inferred from the combination of the
photograph and the range data [23]. Known geometry can be
used to the same effect [24,25]. In contrast, our approach is free of
previous restrictions; e.g., there is no need for a calibration object
or known geometry. Furthermore, we do not require shadows to
be cast on nearby objects, nor is any camera information needed.
Fig. 1. Psychophysical test. Top: number of correct answers for each stimulus.

Bottom: example stimuli shown to the participants. The rightmost image shows

the anomalous object for the outlier (highlighted for visualization purposes).

Fig. 2. (a) Input image, (b) object, (c) silhouette normals, and (d) coordinate

system.
3. Perceptual framework

Natural illumination in real environments is often complicated,
making its analysis by both machines and humans difficult. Natural
illumination exhibits statistical regularities that largely coincide
with those found for images of natural environments [26,27]. In
particular, the joint and marginal wavelet coefficient distributions,
harmonic spectra, and directional derivative distributions are
similar. Nonetheless, a complicating factor is that illumination is
not statistically stationary because of locally dominant light sources
[28]. By representing illumination with spherical harmonics, Mury
et al. [29] have recently shown that low-order components show
significant regularities, whereas the statistical non-stationarity is
captured in the higher frequencies. Moreover, variation in the low-
frequency representation tends to covary with the geometry rather
than with the illumination. This interpretation is consistent with
evidence suggesting that human vision assumes a priori the global
convexity of object shapes [30]. Thus, human vision may apply the
dark-is-deep paradigm, namely, that globally darker shading values
indicate surface points that are further away than lighter values.
Natural scenes, however, contain significant high-frequency compo-
nents, and these complicate analysis. It is possible that human vision
ignores these components, and this may help explain why human
vision is not accurate in the perception of illumination in cluttered
environments [31].

3.1. Psychophysical quantification

Ostrovsky et al. [31] show that even though the visual system
can easily spot an anomalously lit object in an array of identical
objects with the same orientation and lit in exactly the same way
[32,33], the overall performance drops when altering orientations
of the equally lit objects. This suggests that a fast, parallel pattern-
matching mechanism in the former case is substituted with a
much slower serial search in the latter, making illumination
detection a difficult task for humans.

Because of uncontrolled factors such as lens distortion or glare
in the input images, detecting light directions cannot be
absolutely precise. We are therefore interested in determining
an error threshold below which variations in the direction vector
of the lights will not be noticed by a human observer. For this, we
performed a psychophysical experiment inspired by [31,34,35].
Participants had to spot an anomalously lit item among a set of
identical objects with randomized positions and orientations (see
Fig. 1, bottom). We limited the test to the most restrictive azimuth
angle f (see Fig. 2d); it has been observed that human perception
is better at azimuth estimates than at zenith y estimates [36]. In
their experiments, Koenderink et al. asked human observers to
Please cite this article as: Lopez-Moreno J, et al. Compositing images
doi:10.1016/j.cag.2010.08.004
estimate the illumination direction for samples of random
Gaussian surfaces illuminated by a collimated beam from random
directions. The divergence between the coherent and the
anomalous light in our test varied between 5 and 1001.

Eighteen participants took part in the experiment, none of them
computer graphics experts. All reported normal or corrected-to-
normal vision. Each was shown the entire sequence of images in
random order and was asked to detect the inconsistently lit object. No
time limits were imposed on the task. The results, shown in the chart
through light source detection. Computers and Graphics (2010),
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in Fig. 1, show how for up to 351, the participants failed to guess
correctly in most cases (only 3 right answers at best). An exception
occurred at 301, where the anomalous object was spotted by 12
participants. However, as the overall tendency confirms, this can be
considered an outlier: the randomized position and orientation of the
anomalous object combined in that specific image to provide obvious
clues (see Fig. 1, bottom right). For divergences of 701 or more, all the
participants guessed correctly. We thus assumed a conservative
threshold at 351, which is well above the measured error of our
algorithm (see Section 5). Note that in our examples throughout this
paper, we used images of different objects, so it seems safe to assume
that the threshold would be even higher, given that the observer
could not rely on direct comparison between identical objects.
4. Light detection

Consider a typical input image such as is depicted in Fig. 2a.
The problem at hand was to estimate the number of illumination
sources, their dominant directions and the relative intensities. We
propose that any object in the image can be used as a virtual light-
probe as long as it covers a reasonable area in the image. The user
provides the outline defining the object, typically with the aid of a
smart selection tool [37]. We do not assume any restrictions on
the shape, the color or any other features of the object.

4.1. Assumptions and overview

To achieve a reasonable solution, we relied on the particular
characteristics of human vision. In estimating illumination, the
human visual system tends to ignore the local shape variations, and
treats the object as a globally convex geometry [30]. We also
leveraged the tendency of the human visual system to perceive
objects correctly as long as the illumination is locally consistent [31].
Further, we observed that humans are surprisingly good at
estimating back-lighting using cues from shadows [36]. Based on
these assumptions, we devised the following three-step algorithm.
1.
P
d

To estimate the number of lights N and their respective azimuth
coordinates fi, i¼ 1 . . .N, we analyzed the intensity variation
along the silhouette of the object. We assumed that the surface
normals of the object at the silhouette lie in the image plane [13].
Using the silhouette normal assumption and the nominal diffuse
lighting equation, we could accurately predict the azimuth
coordinate f of the individual lights. The number of lights and
their relative intensities were estimated in an iterative fashion.
2.
 We used the globally convex assumption to estimate the
zenith angles yi, i¼ 1 . . .N and relative intensities Ii. For each
light detected in the first step, we swept the image from the
silhouette to the interior along the azimuth direction, looking
for maxima in the shading. The corresponding shape normal at
the maxima ~ni was indicative of the direction of the light and
thus the zenith angle yi. To robustly handle local non
convexities and back lighting, we detected and used shadows.
Following Khan et al. [38], we differentiated the relatively high
frequency variations of the luminance due to albedo (texture)
from the low-frequency variations of luminance due to
shading by using bilateral filtering.
3.
 By analyzing the median intensity in the shadow areas, we
estimated the ambient light intensity.

Each of these steps is explained in detail in the following sections.
However, we start by defining the coordinate system used. As
depicted in Fig. 2d, the image plane was assumed to be aligned with
the y–z plane, whereas the x-axis pointed out of the image plane. The
origin lay at the center of the image. We also set a polar coordinate
lease cite this article as: Lopez-Moreno J, et al. Compositing images
oi:10.1016/j.cag.2010.08.004
system such that the equator was aligned with the image plane and
the axis was aligned with x-axis. Thus, the direction of a light was
uniquely identified by the azimuth angle f and the zenith angle y.

4.2. Estimating azimuth angles

We assumed that the normals at the silhouette lay in the
image plane. We further assumed that there were N discrete
lights, each being either a directional light or a far-away point
light (we estimate N below). Thus each light was uniquely
characterized by its unknown luminance Lj and unknown unit
direction xj, j¼ 1 . . .N. To analyze the intensity variation of the
silhouette pixels, we assumed a nominal Lambertian surface.
Consider all pixels {pi} that belong to the silhouette. Let ni be the
normal and Lv

i be the known luminance of the object at point pi:

Lv
i ¼

XN

j ¼ 1

OijLj

Oij ¼Oðni,xjÞ ¼
0 if ni �xjo0

Kd
i ni �xj if ni �xjZ0

(
ð1Þ

where Kd
i is the unknown diffuse reflectivity or albedo of pixel i.

We encoded the normals, which were in the y–z plane, as polar
coordinates fn

i -ni ¼ ½0,sinðfn
i Þ,cosðfn

i Þ�
T ,0rfn

i r2p.
To estimate the lights’ azimuth angles fl

j, we used a k-means
clustering algorithm. In traditional k-means clustering algorithms,
each data point belongs to a certain cluster and affects the
centroid of only that cluster. Unfortunately, a silhouette pixel may
be illuminated by more than one light. Thus, we could not
partition the pixels into exclusive clusters. Instead, we devised a
partial voting scheme based on the O function to form ‘fuzzy’
clusters and to simultaneously compute the corresponding
centroids as the lighting directions, as outlined in Algorithm 1.

Algorithm 1. Contour Voting—N lights
through
Require Lv
� fLv

i g {discrete luminances}

Require n� fnig {silhouette normals}

Require /n
� ffn

i g {azimuth coordinates of the normals}
1:
 sortðLv,n,/n
Þ {sort by decreasing luminances}
2:
 /l
� ffl

jgj jA ½1 . . .N� {azimuth coordinates of the lights}
3:
 seedð/l
Þ

4:
 a� � fa�j gj jA ½1 � � �N� {aggregate of weights per light}
5:
 a�’0

6:
 Repeat

7:
 for all Lv

i ALv do
8:
 xj’½0,sinðfl
jÞ,cosðfl

jÞ�
T {current direction}
9:
 O�i ’
P

jOðni,xjÞ {total weight}
10:
 for all jA ½1 . . .N� do

11:
 xj’½0,sinðfl

jÞ,cosðfl
jÞ�

T {current direction}
12:
 aij’Lv
i Oðni,xjÞ=O

�

i {weight of normal i}
13:
 fl
j’a�j f

l
jþaijf

n
i {update direction}
14:
 a�j ’a�j þaij
15:
 fl
j’fl

j=a�j

16:
 end for

17:
 end for

18:
 until convergenceð/l

Þ

19:
 return /l
We went through the list of pixels sorted by luminance (line 7)
to perform the normal voting. Notice that each silhouette normal
light source detection. Computers and Graphics (2010),

dx.doi.org/10.1016/j.cag.2010.08.004


J. Lopez-Moreno et al. / Computers & Graphics ] (]]]]) ]]]–]]]4
fn
i votes for all the N light clusters (lines 10 to 16), according to

their luminances Lv
i . However, each normal only partially votes for

each light cluster, according to the O function (line 12). For that,
the individual O function with respect to each light direction Oij

was normalized with the aggregate of the O functions
O�i ¼

P
jOðni,wjÞ.

We repeated the voting process (lines 7 to 17) until we

converged on the light azimuth angles /l (lines 6 and 18). The
choice of the initial guess (line 3) for the azimuth angles was
important to ensure a speedy and effective convergence. We

assigned the azimuth of the brightest pixel’s normal fn
1 to the first

light fl
1. For the successive lights, we set the azimuth angles to

fl
1þ2pðj�1Þ=N.

For the estimation of the number of lights N, our approach
subsequently increased the number of lights N¼1: :i until either
the error was below a given tolerance or the added light source
did not improve the result. In practice, we found that the number
of iterations was usually below N¼4. This was due to the
quantization associated with the image’s finite bit-depth. As the
number of opposing lights increased, the variation in the shading
over the surface decreased and became rather constant.

Although the proposed voting method has built-in resistance
to local variations in albedo because of its search of global
tendencies, ultimately, the results will be biased if the points in
the contour form large clusters with very different luminance
values, as the first image of Fig. 3a demonstrates.

It is possible to reduce this bias with a second pass, as follows.
Once we have a set of N centroids (light directions), we went
through all the voting pixels assigned to each k-group, corre-
sponding to a light direction. We then checked that the dot
product of the normal and the estimated light direction yielded a
luminance value equal to the original luminance of the pixel,
fractioned by its O function. If not, we forced the fractional albedo
of the pixel to be coherent with the fractional luminance of the
brightest pixel in the group. Then we repeated the contour voting
algorithm. This correction in the albedo values usually produced
small shifts (10–201) in the directions in the case of extreme
albedo variations (Fig. 3a).

As in other previous approaches based on contour analysis
[39,40,14], the first step will fail if the light is situated around the
x-axis; i.e., y� p=2. In this case there is no variation in luminances
due to shading. This would result in erroneous estimation of the
azimuth angles. However, the final direction of the light would be
estimated accurately in the second step when we analyze the
shading in the interior.

Finally, we corrected the potential bias along the direction
stemming from the geometry of the silhouette. As depicted in
Fig. 3. (a1) Sphere with a change in the albedo, (a2) initial biased estimation

because of a higher albedo, (a3) corrected light direction estimate, (b1) an estimate

incorrectly biased because of the geometry of the silhouette, and (b2) the correct

result after eliminating multiple normals.

Please cite this article as: Lopez-Moreno J, et al. Compositing images
doi:10.1016/j.cag.2010.08.004
Fig. 3b, a significant number of silhouette normals were parallel to
the y-axis, biasing the resultant light towards that direction. We
corrected this by eliminating multiple normals. We chose a set of
discrete normal directions f

n

i and distributed all the silhouette
normals into bins. Then, we computed the average luminance for
each bin Li and used this set of silhouette normals and luminances
instead.
4.3. Estimating Zenith angles and intensities

To estimate zenith angles fyjg accurately, we disambiguated
the luminance variations due to shading from the variations due
to texture, which are relatively high in frequency. We used
bilateral filtering to remove high frequencies while keeping lower
frequency content, which is typically attributed to shading [38].

Then, for each light detected in the previous step, marching in
the light’s direction xj ¼xðfl

jÞ from the silhouette to the interior,
we analyzed the luminances. Because the pixels were lit by
multiple lights, this directional derivative of the luminance xj �

rLv was the main indicator of the shading from a particular light j

aligned to its direction. There are two cases of luminance
variations in the interior.

Case 1: If the directional derivative xj � rLv is positive at the
silhouette, the light is directed towards the camera from the
image ðyZ0Þ. In this case, the luminances continue to increase as
we march along the direction of the light to reach the first local
maximum. We denote this point as phi

j . At this point, the surface
normal points in the direction of the light; i.e., yj ¼ yn

ðphi
j Þ. We

ignore all the pixels thereafter because the geometry might be
self-occluding or under the influence of another light.

Case 2: At the silhouette, if the directional derivative is
negative, this is an indication of backlighting ðyo0Þ. The
luminances will successively decrease as we march along the
light direction to reach a singularity. This point is the first self-
shadow point plo

j and is marked by either a change of sign in the
gradient of the directional derivative xj � rLv or a zero value of its
luminance Lv. A change of sign will be produced when the
contribution to the luminance value at that point by a second
light is greater than the contribution of Lv. At this point, the
surface normal is perpendicular to the light direction; i.e.,
yj�y

n
ðplo

j Þ ¼ p=2,yjo0.
To estimate the normal at each point, we could not rely on

shape-from-shading because of the overlapping of multiple lights.
It was not possible to know a priori which combination of light
sources was contributing to a certain point. Good solutions for
estimating a valid normal at points phi

j or plo
j in arbitrary images

do not exist [5].
Furthermore, this was complicated if two given points on the

surface of the object were lit by a different and unknown number
of light sources. Wang et al. [24] developed a technique to
determine the number of lights, but they could do this thanks to
accurate knowledge of 3D depth and normals. Instead, we
reverted once more to our global convexity assumption and fit
an ellipse along the scanline: one of the axes is given by the
intersection of such a scanline and the silhouette; the other axis
will approximate the object convexity and is a user parameter. By
default, both axes are equal (in fact, defining a circumference).
The surface normal was subsequently assumed to be the normal
of the ellipse at the point under consideration.

We could start marching along the light direction from the
brightest silhouette point that corresponds to the light. However,
in order to minimize the influence of albedo variations, we
scanned the light direction from multiple silhouette points. One
way to realize this scheme was to rotate the image such that the
light direction xðfl

jÞ was aligned with the y-axis and the light on
through light source detection. Computers and Graphics (2010),
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the left, see Fig.4. Then, we simply scanned each raster line i,
starting from the silhouette boundary on the left and moving into
the interior. We detected the set of points {phi

ij } or {plo
ij }

corresponding to the zenith angles fyijg and the luminances Lv
ij.

Thus, for the light j, the resultant zenith angle was the weighted
sum:

yj ¼

P
iL

v
ijyijP

iL
v
ij

ð2Þ

By using two objects in the image as light probes and repeating
the process for the second one, we could approximate the position
of a point light source; i.e., a source that was not infinitely far
away. Given that the directions computed for both objects could
not be absolutely precise (we assumed directional lights), there
was no intersection point. We simply placed the light source
halfway between the points d1 and d2, defining its minimum
distance.

Once we had estimates of the light directions, estimating the
relative intensities was fairly straightforward. For each light j, we
computed the total sum of the luminances normalized by the O
function of the light over all the pixels i of the contour of the
object. The intensity of the light Ij was proportional to

Ijp

X
i

Lv
j =Oðni,xjÞ: ð3Þ

Any potentially remaining light sources were treated by our
algorithm as ambient illumination, which we will explain next.

4.4. Ambient illumination

The shading contribution of the ambient light was assumed to
be constant for all pixels, and we could therefore estimate its
intensity by analyzing pixels in the shadow regions. We had
already detected the shadow lines in the previous step. The region
bounded by these shadow lines was determined to be a shadow
region. We averaged the set of samples along these boundaries.
This ambient intensity estimate was also relative to the
previously detected lights.
Fig. 5. Input images for the error analysis of Table 1. From left to right: Apple 1,

Apple 2 and Apple 3, guitar and quilt.
5. Results

Once we tested the accuracy of our method with real
(controlled) light configurations, we further provided a visual
validation of our method by using the lights detected in an image
for automatic insertion and relighting of synthetic objects. Finally,
Please cite this article as: Lopez-Moreno J, et al. Compositing images
doi:10.1016/j.cag.2010.08.004
we show a novel technique of image compositing based on our
light detection method.

5.1. Error analysis

We have tested our algorithm on several images with
controlled (known) light configurations to measure the errors in
our light detection method. The images included varied config-
urations (see Fig. 5): Apple 1, Apple 2 and Apple 3 show a
relatively simple geometry under very different lighting schemes
(with one or two light sources, plus ambient light). The Guitar and
Quilt images show much more complex scenes lit by three and
two light sources, respectively. The light directions returned by
our algorithm showed errors usually below 201 for the more
restrictive azimuth angle f, which is below the 30–351 limit set
by our psychophysical findings. Even for the zenith angle y, only
the second light in the Quilt scene returned a larger error because
of the bouncing of that light off the surface on the left. Table 1
shows all the data for the input images shown in Fig. 5. For each
light source present in the scene, we show the real measured
locations of the light sources, the results output by our algorithm
and the corresponding absolute error. The number of directions
was acquired automatically. The light probe used in the first three
images was the apple; for the other two, we used the head of the
guitar player and the Scottish quilt.

We can select multiple objects (or convex parts of objects) in a
single image as light probes, as shown in Fig. 6. In these cases, the
analysis returns coherent results for global light sources. Local
sources may spatially vary in the image. In both cases (Apollo’s
arm and the body of Vulcan’s assistant), the main light shows
almost the same direction. This figure also shows the applicability
of our method to 2D paintings. In this case we can observe how
the artist intended (and was able) to have both characters under
consistent lighting.

5.2. Visual validation

We further tested our algorithm on uncontrolled images,
depicting scenes with unknown illuminations and varying
degrees of diffuse-directional lighting ratios. Given that we
obviously cannot provide error measures in those cases, we
provide visual validation of the results by rendering a synthetic
object with the lighting scheme returned by our algorithm. Fig. 7,
left, shows the original image and an untextured version of the 3D
through light source detection. Computers and Graphics (2010),
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objects to be rendered. The image on the right shows the results
of illuminating the 3D objects with the output returned by our
algorithm. The chosen light probe was one of the mushrooms.
Fig. 8 shows additional examples of uncontrolled input images
with synthetic objects rendered into them; the head of the doll
and the whole human figure were used as light probes,
respectively. Note how our system is robust enough even if the
light probe is composed of multiple objects with very different
BRDFs (such as the skin, glasses and hair in the doll image). The
shadows cast onto the original images were generated by shadow
mapping and synthetic planes manually set at approximately the
right locations when placing the synthetic objects.

5.3. Image compositing

Finally, we applied the illumination information obtained by our
method to a well-known problem in computer graphics: compositing
Table 1
Real measured light directions (R), value returned by our algorithm (A) and

absolute error (E) for the zenith y and azimuth f angles in the scenes depicted in

Fig. 5.

Light 1 Light 2 Light 3

/ h / h / h

Apple 1
R �15.00 40.00 165.00 �40.00 – –

A 5.71 35.31 162.25 �64.03 – –

E 20.71 4.69 2.75 24.03 – –

Apple 2
R 90.00 �70.00 – – – –

A 94.54 �65.70 – – – –

E 4.54 4.3 – – – –

Apple 3
R 180.00 0.00 0.00 0.00 – –

A 168.50 14.48 0.0 11.31 – –

E 12.50 14.48 0.00 11.31 – –

Guitar
R 180.00 10.00 30.00 �45.00 260.00 45.00

A 185.71 29.66 25.64 �49.19 272.29 41.48

E 5.71 19.66 4.36 4.19 12.29 3.16

Quilt
R 10.00 �35.00 120.00 �10.00 – –

A 24.70 �51.79 162.25 4.74 – –

E 14.70 16.79 42.25 14.74 – –

Fig. 6. Left: input image, La fragua de Vulcano by Diego de Velazquez (1630), oil on can

vertical (green) gradients. Note how the user can select parts of an object, avoiding, for

Right: a synthetic OpenGL render with the light source detected for the arm.

ðf,yÞ ¼ ð136:17,39:10Þ for the body. (For interpretation of the references to color in thi

Please cite this article as: Lopez-Moreno J, et al. Compositing images
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two images with different illumination environments into a single
image with coherent illumination. In image compositing, color and
intensity can be adjusted with relatively straightforward techniques
including Poisson-based approaches [41] and color transfer algo-
rithms [42]. Although such algorithms go a long way toward
matching the color schemes, they do not match the illumination
direction on objects. Thus, if strong localized lighting exists in either
the source or the target images, the result will look out of place.

For compositing we used the following approach: first, we
analyzed the background image with our light detection method.
Second, we extracted a coarse 3D shape of the image to be
inserted. Third, we relit this shape using the lights’ directions and
intensities from the first step and pasted it in the final image.

We first needed to produce a plausible depth map of every
object in the scene to be relit. This can be achieved in a number of
ways [43,6], but we chose to follow a simple method [38] based
on the interpretation of luminance as depth values [38]. This
approach has been successfully used before in the context of
image-based material editing [38] or light transport editing [44].
A bilateral filter [45] was applied to the result to remove high-
frequency details. The obtained depth values D(x,y) represented
the camera-facing half of the object. For image relighting, we
additionally needed an approximation of the far side of the object,
which aids in the casting of shadows and the computation of
diffuse interreflections. As our input did not allow us to infer this
geometry with any decent accuracy, we reconstructed this
backfacing geometry simply by mirror-copying the front half of
the recovered geometry, in accordance with our global convexity
assumption. Again, the obvious inaccuracies of this approach are
masked by the limitations of our visual perception, as our final
results show. To prepare our recovered geometry for relighting,
we finally computed a normalized surface normal n(x, y) for each
pixel belonging to the object from the gradient field rzðx,yÞ.

Once the 3D shape is known, several rendering approaches are
available, and there are no limitations on the complexity of the BRDF
employed. For demonstration purposes, we used a combination of
Lambert’s and Phong’s models to represent the surface reflectance
[46]. The new texture of the object was generated from the original
image using the original hue and saturation channels and the high-
frequency component of the original luminance channel (extracted
by means of a bilateral filter [38]). Figs. 9 and 10 show examples of
the aforementioned relighting technique, which was used in
combination with light detection to obtain the composition of the
flute in Fig. 11. As input for the relighting phase and because of the
white balance/albedo ambiguity in the lightprobe, the user has to set
vas. Middle: areas used as light probes showing the computed horizontal (red) and

instance, the black albedo of the hair on the head or the shadows in the right leg.

The light direction was estimated as ðf,yÞ ¼ ð139:97,33:04Þ for the arm and

s figure legend, the reader is referred to the web version of this article.)

through light source detection. Computers and Graphics (2010),
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a base luminance level and a color per light source. The directions
and relative intensities are provided by our method. In our
experiments we found that this kind of input was feasible for an
unskilled user if the tuning was done interactively once the object
was inserted with all the lights set as white by default.
Fig. 7. Rendering synthetic objects into the images. Left, top: original input image

(light probe highlighted). Left, bottom: 3D models lit according to the output of

our light detection algorithm. Right: final result with the 3D models textured and

inserted into the image.

Fig. 8. Additional examples of synthetic objects rendered into images using t

Fig. 9. Two new images relit with ou
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6. Discussion and future work

We have presented a novel light detection algorithm for single
images that only requires the silhouette of any object in the image
as additional user input. Our method yields a result in less than 4 s
using a 512�512 version of the original image. Although it works
on lower resolution images, higher-resolution images have a
smaller effect on the accuracy of the technique. It may seem that
the average error of our method is too high in comparison with
previous works in the field; however, compared with those works,
we are not limited to detecting just one light source, and no
knowledge of the actual 3D geometry is required. Moreover, our
psychophysical study confirmed that our results are below a
threshold where illumination inconsistencies tend to go unno-
ticed by human vision.

We have shown good results both with controlled lighting
environments (where the light positions were measured and thus
numerical data could be compared) and uncontrolled settings
(with free images downloaded from the internet and with
synthetic objects rendered with the results of our algorithm).
Furthermore, we have introduced a novel image compositing
he results of our algorithm. Left: synthetic teapot. Right: synthetic cone.

r method. Inset: original image.

through light source detection. Computers and Graphics (2010),

dx.doi.org/10.1016/j.cag.2010.08.004


Fig. 10. A more dramatic lighting change. Left, original image. Right, the altered version, resembling moonlight as it would possibly be shot by a cinematographer.

Fig. 11. Demonstration of our compositing method. The crumbled papers were chosen as light probe. From left to right: original image. Image of a flute to be inserted. Final

composition after light detection and relighting.

Fig. 12. Spheres rendered with information from the Guitar image in Fig. 5. Left:

using the image as an environment map. Middle: using the real measured data.

Right: using the results of our algorithm. Our algorithm provides a much better

solution if the light sources are not present in the original image.
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method based on our light detection method. Our algorithm could
help photographers mimic a given lighting scheme inspired by
any other shot for which a reduced set of light directions (namely,
the typical three-light setup made up of key, fill and rim lights) is
preferable.

It could be argued that because humans are not particularly
good at detecting light sources, simpler algorithms that approx-
imate light sources could be employed instead. For instance, in the
context of rendering synthetic objects into existing images, one of
the most popular recent approaches is to build an environment map
from the image. While this approach would provide reasonable
results in certain cases (as shown in [38]), it would fail if the main
light sources were actually outside the image. One such example
would be the Guitar image in Fig. 5. If we were to render an object
into the image, it would appear unrealistically dark. Fig. 12 shows a
sphere rendered with the actual measured lights for that scene
compared with the results from rendering with an environment
map and using the lights detected by our algorithm.

Several existing applications could benefit from our system,
specifically those based on combining pictures from an existing
stack to create novel images. These kinds of applications are
gaining popularity because of, among other factors, the existence
of huge databases and their accessibility through the internet.
Some examples include Photo Clip Art [7], Interactive Digital
Photomontage [8] and Photo Tourism [9].
Please cite this article as: Lopez-Moreno J, et al. Compositing images
doi:10.1016/j.cag.2010.08.004
We assumed global convexity for the chosen de facto light probes
in the images. Although this assumption is true for most objects, the
algorithm will return wrong values if a concave object is chosen
instead. Our algorithm will also fail in the presence of purely
through light source detection. Computers and Graphics (2010),
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reflective or transparent (refractive) objects chosen as light probes,
which break our assumption about shading. In these cases, an
approach similar to [22] may be more suitable, although previous
knowledge about the geometry of the objects in the image
would be needed. As future work, we would like to address these
cases.

Additionally, the novel compositing method introduced in a
previous section has three aspects that need further research. First
the recovered 3D shape is obtained by means of a simple shape
derived from the shading approach, which might produce wrong
and unexpected results with certain light configurations. Given
the plausible results we obtained with such a simple method, we
intend to test more sophisticated 3D shape recovery algorithms
[47,48]. Second, regarding the recovered texture of the object to
be relit, our approach is valid for images in which the original hue
and saturation values are available for most pixels. This assump-
tion works in our examples where shadows are not harsh or cover
a small portion of the image (frontal flashlight) or when high
dynamic range information is available (hue and saturation values
are captured even for pixels in low luminance areas). Hence, for a
broader range of scenarios, we plan to research approaches like
learning-based filtering and belief propagation [49] to obtain a
more accurate separation between the reflectance and the
shading of the object before the relighting process. Finally, we
intend to validate our composition results by means of additional
psychophysical studies.
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