
CEIG’08, Barcelona, Sept. 3–5 (2008)
L. Matey and J. C. Torres (Editors)

Faster rendering of human skin

Jorge Jimenez and Diego Gutierrez

Universidad de Zaragoza, Spain

Abstract
Rendering realistic human skin is not a trivial task. It means dealing with light diffusion in a multi-layered ma-
terial, where multiple subsurface scattering events take place. Great care must be taken when simulating its ap-
pearance, to avoid an unnatural, waxy look. Recent works in the field of computer graphics have provided us with
the ability to accurately render human skin, both off-line and in real time. The latter takes advantage of modern
graphics hardware, defining light diffusion in texture space. In this paper we leverage this framework and optimize
the irradiance map calculations, which simulate light diffusion in skin. We present three simple yet effective im-
provements implemented on top of the state-of-the-art, real-time rendering algorithm published by d’Eon et al. We
achieve maximum speed-ups in excess of2.7x using the same hardware configuration. Our implementation scales
well, and is particularly efficient in multiple-character scenarios. This should be specially useful for real-time
realistic human skin rendering for crowds.

Categories and Subject Descriptors(according to ACM CCS): I.3.3 [Computer Graphics]: Three-Dimensional
Graphics and Realism

1. Introduction

Translucency is a very common material property: paper,
tree leaves, soap, a candle, fruit... these are all common ob-
jects which present a certain degree of subsurface scattering
(see Figure1), and thus pose a challenging problem in the
field of computer graphics; light transportwithin the objects’
surface must be correctly simulated in order to accurately
capture their appearance.

Skin is a highly translucent material, made up of multiple
translucent layers. We refer the reader to the excellent review
by Igarashi and colleagues [INN05] for a complete break-
down of its components. Each layer scatters light according
to its specific composition, providing the characteristic red-
dish look. The human visual system is very well tuned to
certain aspects of an object’s appearance, and human skin
seems to be one of them: if its shading is a bit off, it will
look waxy, dead.

Subsurface scattering (SSS) is usually described in terms
of the Bidirectional Scattering Surface Reflectance Distri-
bution Function (BSSRDF) [NRH∗77]. The first attempts at
simulating it were based on the assumption that light scat-
ters at a single point on the surface, adding a diffuse term
to account for the overall appearance of SSS effects. Han-

rahan and Krueger [HK99] only took into account single
scattering, whilst Stam [Sta01] extended the idea to sim-
ulate multiple scattering. Jensen and co-workers provided
a huge step forward and made SSS practical, publishing
techniques that were rapidly adopted by the movie indus-
try [JMLH01, JB02]. Based on a dipole approximation of
light diffusion, they were able to capture the subtle softness
that translucency adds to the appearance of skin.

Figure 1: Tree leaves and candle showing high translucency
properties.

Recently, Donner and Jensen extended their dipole-based
model to multiple dipoles, which can also capture the ef-
fects of discontinuities at the frontiers of multi-layered ma-

c© The Eurographics Association 2008.

Jorge Jimenez & Diego Gutierrez / Faster rendering of human skin

terials [DJ05]. They show results with a broad range of ob-
jects, and their skin simulations look particularly impressive.
Unfortunately, the model relies on a high number of param-
eters that need to be measured in advance, which makes its
direct application to rendering a bit cumbersome. The same
authors partially overcome this issue in [DJ06], presenting a
physically-based spectral shading model for rendering hu-
man skin which requires only four parameters. These pa-
rameters specify the amount of melanin, hemoglobin, and
the oiliness of the skin, which suffice to provide spectacular
renderings.

However, the computation time needed for any of these
models is still in the order of several seconds (or even
minutes) per frame, which rules out any real-time appli-
cation. There is a good deal of research aiming to pro-
vide SSS approximations which work sufficiently well, sac-
rificing physical accuracy in exchange of speed. Most of
them impose the burden of heavy precomputation times,
though [HV04, WTL05, WWD∗05]. One of the most pop-
ular techniques, Precomputed Radiance Transfer [SKS02]
imposes additional restrictions, such as fixed geometry that
makes animation of translucent meshes impracticable. Mod-
ern graphics hardware has also been used: Borshukov and
Lewis [BL03] use 2D diffuse irradiance textures, with SSS
simulated by a Gaussian function with a customizable ker-
nel. The technique maps naturally onto GPUs, but it still fails
to capture the most complex subtleties of multiple scatter-
ing within materials. Dachsbacher and Stamminger [SD03]
introduce the concept of translucent shadow maps, a mod-
ified version of shadow maps extended with irradiance and
surface normal information. In concurrent work, Mertens et
al. [MKB∗05] presented their own algorithm for local sub-
surface scattering, which is the same in spirit as [SD03].

The work by d’Eon and colleagues at nVIDIA Corpora-
tion [DLE07, DL07] simplifies the models of Donner and
Jensen [DJ05,DJ06] combining them with the idea of diffu-
sion in texture space [BL03, SD03]. They approximate the
multiple dipole scheme with a sum of Gaussian functions,
obtaining separable multi-layer diffusion profiles which are
combined in a final render pass. Visual inspection of their
results match the off-line renderings of Donner and Jensen,
but they are achieved at real-time frame rates. In this work
we build on [DLE07, DL07] and propose three simple en-
hancements to the technique, which have been tested on a
nVIDIA GeForce 8800. These enhancements allow us to
achieve maximum speed-up factors in excess of 2.7x using
the same hardware configuration.

In the following section we provide an overview of the
work by d’Eon and colleagues, before introducing our three
optimization techniques. We then provide results, with con-
clusions and future work at the end.

2. Efficient Rendering of Human Skin

The work by d’Eon and colleagues [DLE07] shows how
texture-space diffusion [BL03] can be combined with
translucent shadow maps [SD03] to create a very efficient,
real-time rendering algorithm for multi-layered materials
with strong subsurface scattering. They apply it to human
skin, achieving impressive results. Given that the optimiza-
tion techniques we present in this paper build on that work,
we first contextualize it in this section, for the sake of clarity.

The dipole model:To allow for an efficient simulation of
light scattering in highly scattering materials, Jensen et al.
[JMLH01] approximate the outgoing radianceL0 in translu-
cent materials for a dipole diffusion approximation. Thus,
the costly Bidirectional Scattering Surface Reflectance Dis-
tribution Function (BSSRDF) becomes:

Sd(xi , ~ωi ;xo, ~ωo) =
1
π

Ft(xi , ~ωi)R(‖xi −xo‖2)Ft(xo, ~ωo) (1)

Wherexi and~ωi are the position and angle of the incident
light, xo and ~ωo are the position and angle of the radiated
light, Ft is the Fresnel transmittance andR is the diffusion
profile of the material. The model is further simplified in
subsequent work by Jensen and Buhler [JB02].

The multipole model: Donner and Jensen [DJ05] ex-
tend the dipole model to a multipole approximation, de-
fined as a sum of dipoles. The model works well for thin
slabs (thus removing the semi-infinite geometry restriction
in [JMLH01, JB02]), and accounts for surface roughness
and refraction effects at the boundaries. For each pair of
slabs, they analyze the convolution of their reflectance and
transmittance profiles in frequency space (thus performing
faster convolutions instead). They show how the multipole
approach provides a better fit with ground-truth Monte Carlo
simulations than the simpler dipole approximation. Fresnel
reflectance accounts for differences in the indices of refrac-
tion for the boundaries of a slab. In the presence of rough
surfaces, the Torrance-Sparrow BRDF model [TS67] is used
instead. Coupled with a Monte Carlo ray tracer, the authors
show a wide range of simulated materials, such as paper,
jade, marble or human skin. Unfortunately, the model re-
lies on involved precomputations, in the order of a few sec-
onds per frame, which rules out real-time applications of the
method.

The Gaussian approximation: The recent work by
d’Eon and colleagues [DLE07] is based on one key observa-
tion: the reflectance and transmission profiles that the multi-
pole model predicts can be approximated by a weighted sum
of Gaussians. LetR(r) be a radial diffusion profile, then the
error term:

∫ ∞

0
r

(
R(r)−

k

∑
i=1

wiG(vi , r)

)2

dr (2)

c© The Eurographics Association 2008.

Jorge Jimenez & Diego Gutierrez / Faster rendering of human skin

must be minimized, wherewi is the weighting factor andvi
represents variance. Both parameters are user-defined, along
with the number of curvesk, which is usually set between
two and six. The authors report errors between 1.52 and
0.0793 percent for the materials measured in [JMLH01].
This observation allows for a much faster computations,
given that 2D convolutions can now be separated into two
cheaper, 1D convolutions inx andy respectively. Addition-
ally, obtaining the diffusion profile for two slabs put together
does not require a frequency-domain operation, since the ra-
dial convolution of two GaussiansG(v1) andG(v2) is sim-
ply G(v1 + v2). This allows the fact that the long series of
convolutions and additions computed in frequency domain
by [DJ05] can now be efficiently approximated as polyno-
mial multiplications and additions over Gaussians.

Texture-space diffusion:The above mentioned desirable
properties of the diffusion representation allow the sum of
Gaussians to be separated into a hierarchy of irradiance dif-
fusion maps. These are rasterized into an off-screen texture,
using a fragment shader for lighting computations and a ver-
tex shader for mesh-to-texture mapping. The net result is a
series of progressively smaller irradiance maps which when
combined (weighted sum) closely match the non-separable
global diffusion profile by Donner and Jensen [DJ05].

Figure2 shows a scheme of the necessary steps involved
in the nVIDIA shader. Our optimization techniques, ex-
plained in the next sections, are applied during the two most
expensive steps: the irradiance maps calculation and the
subsequent convolutions. Together with the cheaper shadow
maps and sum of convolutions steps, these four steps de-
pend on the number of objects being rendered and/or light
sources (note that only one head is displayed in [DLE07],
while our approach takes multiple objects into account). The
final bloom pass, not optimized with our algorithms, is per-
formed on the final image and thus its computation time does
not increase as the number of objects grows.

3. First Optimization: Culled Irradiance Map

For sufficiently large textures, more than fifty percent of the
rendering time is spent on obtaining the irradiance maps and
convolving them with the different Gaussian functions. We
base our first optimization on the observation that these tex-
tures are obtained for the whole model, regardless of the cur-
rent viewpoint for each frame. We leverage the fact that of
course not all the geometry will be seen at the same time, and
thus we can take advantage of backface culling techniques.
For each pixel in the irradiance maps we can first check
whether it belongs to a point in the model which is visible
in the current frame, since the surface normal is known at
each point, and simply discard those pixels belonging to oc-
cluded parts of the geometry. Visibility information is stored
in the alpha channel (0.0 means occluded, 1.0 means visi-
ble). This simplifies the computation of the maps and sub-

sequent convolutions, given the reduced number of pixels
containing meaningful irradiance values.

During convolution, the Gaussian functions should not be
applied beyond the boundaries of the visibility map stored in
the alpha channel. This would extend the convolution kernel
to pixels where no irradiance information has been stored,
thus potentially producing visible artifacts. To circumvent
this, we modify the backface culling algorithm, extending
it beyond the standard divergence of 90◦. We thus store an
occlusion value if the angle between the surface normal and
the view vector is greater than 105◦, which produces good
results. Figure3 shows the difference between the irradiance
map in [DLE07] and our approach, for a given viewpoint.
Occluded pixels have been highlighted in blue for visualiza-
tion purposes (the red map belongs to the third optimization,
introduced later in the paper).

We note that using vertex normals for backface culling
can be a potential source of error: polygons conforming the
apparent profile of the object are likely to have both visible
and occluded vertices at the same time, and thus the algo-
rithm would discard visible pixels. However, our experience
shows that extending the culling angle to 105◦ greatly avoids
any visible errors, while still providing noticeable speed-ups.
A second possibility to circumvent this is to use attribute
variables to store the normal of each polygon in the vertex
shader.

Implementation issues:The following code illustrates
the simple implementation of this optimization on the GPU.
First we show the vertex shader (Listing1) and pixel shader
(Listing 2) for the irradiance map, followed by the convolu-
tion pixel shader (Listing3). Visibility is computed on the
vertex shader of the irradiance map to take advantage of au-
tomatic hardware pixel interpolation.

Listing 1: Irradiance vertex shader

void main() {
vec4 eye = vec4 (0.0, 0.0, 1.0, 1.0);
vec4 n = gl_NormalMatrix * gl_Normal ;
n = normalize (n);
eyedot = dot (eye, n);
// ... transform vertex, etc.

}

Listing 2: Irradiance pixel shader

void main() {
if (eyedot >= -0.2588) {

// cos(105 ◦)=-0.2588
// ... calculate pixel irradiance
gl_FragColor .a = 1.0;

} else {
gl_FragColor .a = 0.0;

}
}

Listing 3: Convolution pixel shader

c© The Eurographics Association 2008.

Jorge Jimenez & Diego Gutierrez / Faster rendering of human skin

Shadow maps

Irradiance map Convolutions Sum of
convolutions

Optimization

Irradiance map Convolutions Sum of
convolutions

Irradiance map Convolutions Sum of
convolutions

Bloom

Figure 2: The five steps described in [DLE07]. We apply our three optimization techniques to the irradiance map and convolution
processes.

Figure 3: From left to right: irradiance map for a given viewpoint as described in [DLE07]. Culled and clipped irradiance maps:
occluded and clipped pixels are highlighted in blue and red respectively for visualization purposes. Final rendered image.

void main() {
vec4 val = texture2D (irradiancemap,

gl_TexCoord [0].st);
if (val.a > 0.0) {

gl_FragColor = vec4 (vec3 (0.0), 1.0);
// ... apply convolution kernel

} else {
gl_FragColor = vec4 (vec3 (0.0), 0.0);
// ... no convolution

}
}

In OpenGL, it would seem obvious to implement this op-
timization using the depth buffer as a mask, as described in
[HB05], given that in modern graphics hardware pixels are
discarded before the pixel shader is executed†. This depth
buffer could be obtained during the computation of the irra-
diance map, and then transferred to the different convolution
frame buffers. Irradiance maps of the same size could share
the same depth buffer, thus limiting the number of necessary
copies.

† For the specific card used in this work, the nVIDIA G-Force 8800,
this technology is calledearly-zandz-cull.

However, we have observed that the alpha channel imple-
mentation still performs about 10% better than the shared
depth buffer strategy. This may be due to the improvements
in branching efficiency in the NVIDIA GeForce 8800 used
[nVI06]. We thus opt to use the alpha channel instead, and
perform an additional per-pixel check on it before convolv-
ing with the Gaussian functions.

4. Second Optimization: depth-based Irradiance Map

The main idea of our second proposed optimization is to ad-
just the size of the irradiance map according to the depth of
the object being rendered. In the optimal case, rasterizing al-
gorithms obtain each pixel value once per frame. However,
several pixels in texture space (with a fixed texture resolu-
tion) may collapse into one final pixel in image space. This
results in lots of wasted calculations. It is therefore conve-
nient to modulate the size of the irradiance map according to
the viewing distance of the object.

As opposed to mip-mapping techniques, where distances
are considered individually for each pixel, we need to com-
pute only one distance, which will be used for all the pixels
in the current frame. We apply a conservative metric, adjust-
ing the distance according to the pixel nearest to the camera.

c© The Eurographics Association 2008.

Jorge Jimenez & Diego Gutierrez / Faster rendering of human skin

Eye
d

nearest vertex

Figure 4: Distance from the camera (eye) to the nearest ver-
tex in the bounding box.

If that pixel is visualized correctly, the rest (further away)
will be as well. For fast computation of this distance, we ap-
proximate it by the distanced to the nearest vertex of the
object’s bounding box. This is shown in Figure4.

Onced is found, we obtain the sizeT of the irradiance
map on a per-frame basis by using:

s = min(
dre f

d
,1.0) (3)

T = sTmax (4)

whereTmax is the maximum texture size,dre f is the refer-
ence distance for which the irradiance map should have a
size of Tmax∗ Tmax pixels. In our implementation we have
used values ofdre f = 4.5 (this value is dependent of both
model scale and frame resolution) andTmax= 2048, as used
by d’Eon and colleagues [DLE07].

Implementation issues:Allocating frame buffer mem-
ory is a costly process, so performing this operation on the
fly adjusting its size according to the obtainedTmax value
would be impractical. Thus, we only allocate memory once
for the maximum sizeTmax, the same way we would do
without this optimization, and use the OpenGL function
glViewport(0,0,T,T) instead while performing irradi-
ance map calculations. During the convolutions and final
rendering phases, instead of working with texture coordi-
nates(0..1) we limit texture space to the range(0..s).

5. Third Optimization: Clipped Irradiance Map

In a traditional rendering pipeline, those parts of the model
outside the view frustum would be logically clipped, and no
computations would be performed on them. The method pro-
posed in [DLE07], however, computes the complete irradi-
ance maps for the complete model, regardless of which parts
lie beyond the screen limits. This is justified because during
the irradiance maps computations each vertex is mapped to

texture space, and thus conventional clipping cannot be per-
formed on them: their positions in texture space no longer
determine their visibility in the final render step.

We avoid this problem by proposing an additional clip-
ping operation independently of the standard view frustum
clipping, to be performed during irradiance maps calcula-
tions. Given the following plane parameterization:

Ax+By+Cz+D = 0 (5)

we obtain a user-defined view frustum by its six planesΠi
as follows (in clip coordinates):

Π1 = (1,0,0,1)

Π2 = (−1,0,0,1)

Π3 = (0,1,0,1)

Π4 = (0,−1,0,1)

Π5 = (0,0,1,1)

Π6 = (0,0,−1,1)

As done in the first optimization, we could use a value
slightly greater than one for D, so that we calculate some
offscreen pixels that may have impact on the final pixels of
the visible surface due to scattering. However, we have not
observed any visible artifacts in our tests, and thus we use
D = 1.

Figure 5 shows the traditional OpenGL pipeline: given
that the coordinates of each vertex are already obtained
in eye coordinates, transforming them to clip coordinates
would mean a costly, per-vertex multiplication by the corre-
sponding projection matrix. Instead, we transform the planes
Πi in Equation6 to eye coordinates, and perform our clip-
ping there. LetP be the matrix which transforms a vertex
from eye to clip coordinates; we can transform the vectors
definingΠi by applying [SWND97]:

Πeye= ((P−1)−1)TΠclip = PTΠclip (6)

Figure3 shows the resulting clipped pixels of the irradi-
ance map.

Implementation issues:

OpenGL allows a user-defined clipping operation on top
of the automatic clipping performed for the view frustum.
The clipping planesΠi are defined by usingglClip-
Plane . However, this function transforms its parameters
to eye coordinates by default, by using the modelview ma-
trix. It is then necessary to assign the Identity matrix to the
modelview matrix, before defining each clipping plane. We
use the special output variable in the vertex shader called

c© The Eurographics Association 2008.

Jorge Jimenez & Diego Gutierrez / Faster rendering of human skin

Modelview
Matrix

Projection
Matrix

Perspective
Division

Viewport
Transformation

Eye coordinates Clip coordinates Normalized device
coordinates

Window
coordinates

Object
coordinates

Vertex Transformed
Vertex

Figure 5: The OpenGL pipeline. We perform an additional, user-defined optimization in eye coordinates instead of clipping
coordinates.

gl_clipVertex to specify clipping coordinates indepen-
dently from the transformed vertex position. These will be
used to perform the clipping operation with the clipping
planes defined inglClipPlane .

Listing 4 shows the code for the modified part of the ver-
tex shader for the irradiance map:

Listing 4: Irradiance vertex shader
void main() {

vec4 pos = gl_ModelViewMatrix * gl_Vertex ;
// ... calculate irradiance with pos
gl_ClipVertex = pos;

}

We initialize the alpha channel to 0 before computing the
irradiance map. Thus, after obtaining it, all the clipped pixels
will still have a zero value in the alpha channel, since they
are not written by the pixel shader. This has the desirable
effect of propagating the clipping to the Gaussian convolu-
tions, given that, as explained in the first optimization, the
alpha channel is checked before any convolution takes place.

6. Results

We have implemented the technique proposed by d’Eon and
colleagues [DLE07], modifying it to include the three opti-
mization techniques presented in this paper. We have used
a GeForce 8800 GTX on a Core 2 Duo @ 2.4Ghz. Screen
resolution was fixed at 1920x1200 pixels. The head model
contains 25K triangles with 2048x2048 color and normal
maps. We use six irradiance maps, with a maximum res-
olution of 2048x2048, the same as for shadow maps. Fig-
ures6 and7 show the results, rendered in real-time. Figure8
shows a side-by-side qualitative comparison with the off-line
technique by Donner and Jensen [DJ05] and the real-time
shader of d’Eon et al. [DLE07]: visual inspection yields sim-
ilar quality in the final renders. We could not duplicate the
exact settings for our rendering given that some necessary
data like light position or intensity is not included in the pre-
viously mentioned papers. Thus, some slight differences in
tone are expected.

Table1 shows the results of our tests, rendering images
similar to Figure9 with the three optimizations described
in the paper. We varied the number of aligned heads from
one to sixteen, as well as the distance (measured as the dis-
tance from the camera to the center of the middle head).

Figure 8: From left to right: images rendered by Donner and
Jensen [DJ05], d’Eon et al. [DLE07] and our optimized al-
gorithm, for comparison purposes.

Figure 9: Example image used in our tests.

Our optimization techniques shows great scalability, achiev-
ing greater speed-ups as the number of heads increases. This
makes them specially useful in multiple-character situations.
Our depth-based irradiance map technique has a greater im-
pact as the objects move away from the camera, with the op-
posite behavior for the clipped irradiance map optimization.
All together, we achieve speed-up factors between 1.10 and
2.77. We have additionally performed similar tests using an
older GeForce 8600M GS: in that case the speed-up factor
with respect to the non-optimized version of the shader was
even better, between 1.23 and 6.12.

c© The Eurographics Association 2008.

Jorge Jimenez & Diego Gutierrez / Faster rendering of human skin

Figure 6: Real-time rendering using two point light sources and two bloom passes.

Figure 7: Additional real-time renderings using two point light sources and two bloom passes.

Table 1: Speedup as distance and number of heads increases
Distance

Heads 2.5 5 10 20 50 100
1 1.17 1.10 1.39 1.48 1.53 1.61
2 1.40 1.10 1.46 1.63 1.88 1.88
4 1.66 1.39 1.58 1.89 2.10 2.26
8 1.86 1.67 1.95 2.01 2.34 2.59
16 2.01 1.90 2.28 2.41 2.50 2.77

7. Conclusions and Future Work

Our proposed optimization techniques are based on simple
but effective ideas, and can be easily implemented on top
of the work by d’Eon and co-workers. We achieve speed-up
factors of up to 2.77 on a GeForce 8800 GTX, and up to 6.12
on the 8600M GS. The optimizations scale very well as the

number of objects increases, making them suitable for crowd
simulations, games or any other multiple-character scenario.

We have not made use of translucent shadow maps [SD03]
since scaling the technique for more than one light source
is potentially costly. As they are implemented in [DLE07],
they take up to 30% of the rendering time, so the perfor-
mance of our proposed techniques would be expected to
drop similarly, since it does not optimize that part of the
process. However, it is unclear whether the work described
in [DLE07] uses them for both light sources to render their
images. Their influence is limited to a number of specific
situations, such as a thin translucent surface being lit from
behind, although admittedly in those cases they can simu-
late very appealing subsurface scattering effects that we fail
to capture (see Figure10, left). However, for most cases,
the results without translucent shadow maps are very con-
vincing, even in extreme situations where subsurface scat-

c© The Eurographics Association 2008.

Jorge Jimenez & Diego Gutierrez / Faster rendering of human skin

Figure 10: Images rendered with our optimized algorithm
without translucent shadow maps. Left: Scattering within
the ear is not captured properly. Middle: Same image as it
appears in [DJ06] for comparison purposes. Right: Backlit
profile with dominant subsurface scattering still looks plau-
sible.

tering dominates most of the simulated light field (see Fig-
ure10, right). Even though their influence is marginal under
most situations, efficiently implementing translucent shadow
maps for multiple lights is an interesting direction of future
work which we are currently working on.

8. Acknowledgments

The authors would like to thank XYZRGB Inc. for the
high-quality head scan and Josean Checa for his all-
around help. This research has been funded by the projects
UZ2007-TEC06 (University of Zaragoza) and TIN2007-
63025 (Spanish Ministry of Science and Technology). Jorge
Jimenez was funded by a research grant from the Instituto
Tecnológico de Aragón, while Diego Gutierrez was addi-
tionally supported by a mobility grant by the Gobierno de
Aragon (Ref: MI019/2007).

References

[BL03] BORSHUKOV G., LEWIS J. P.: Realistic human
face rendering for "The Matrix Reloaded". InACM SIG-
GRAPH 2003 Sketches & Applications(2003), p. 1. 2

[DJ05] DONNER C., JENSEN H. W.: Light diffusion in
multi-layered translucent materials.ACM Trans. Graph
24, 3 (2005), 1032–1039.2, 3, 6

[DJ06] DONNER C., JENSENH. W.: A spectral BSSRDF
for shading human skin. InProc. of Eurographics Sympo-
sium on Rendering(2006). 2, 8

[DL07] D’EON E., LUEBKE D.: Advanced techniques
for realistic real-time skin rendering. InGPU Gems 3,
Nguyen H., (Ed.). Addison Wesley, 2007, ch. 14.2

[DLE07] D’EON E., LUEBKE D., ENDERTON E.: Effi-
cient rendering of human skin. InProc. of Eurographics
Symposium on Rendering(2007). 2, 3, 4, 5, 6, 7

[HB05] HARRIS M., BUCK I.: GPU flow-control idioms.

In GPU Gems 2, Pharr M., (Ed.). Addison-Wesley, 2005,
pp. 547–555.4

[HK99] HANRAHAN P., KRUEGER W.: Reflection from
layered surfaces due to subsurface scattering. InProc.
ACM SIGGRAPH ’99(1999), pp. 164–174.1

[HV04] HAO X., VARSHNEY A.: Real-time rendering
of translucent meshes.ACM Trans. Graph 23, 2 (2004),
120–142. 2

[INN05] IGARASHI T., NISHINO K., NAYAR S. K.: The
Appearance of Human Skin. Tech. rep., Columbia Uni-
versity, 2005. 1

[JB02] JENSEN H. W., BUHLER J.: A rapid hierarchical
rendering technique for translucent materials.ACM Trans.
Graph 21, 3 (2002), 576–581.1, 2

[JMLH01] JENSEN H. W., MARSCHNER S. R., LEVOY

M., HANRAHAN P.: A practical model for subsurface
light transport. InProc. ACM SIGGRAPH ’01(2001),
pp. 511–518.1, 2, 3

[MKB ∗05] MERTENS T., KAUTZ J., BEKAERT P.,
REETH F. V., SEIDEL H. P.: Efficient rendering of lo-
cal subsurface scattering.Computer Graphics Forum 24,
1 (2005), 41–50.2

[NRH∗77] NICODEMUS F. E., RICHMOND J. C., HSIA

J. J., GINSBERG I. W., L IMPERIS T.: Geometrical con-
siderations and nomenclature for reflectance. National
Bureau of Standards, 1977.1

[nVI06] NVIDIA C ORPORATION: nVIDIA GeForce
8800 GPU Architecture Overview, 2006.4

[SD03] STAMMINGER M., DACHSBACHER C.: Translu-
cent shadow maps. InProc. of the Eurographics Sympo-
sium on Rendering(2003), pp. 197–201.2, 7

[SKS02] SLOAN P. P., KAUTZ J., SNYDER J.: Pre-
computed radiance transfer for real-time rendering in dy-
namic, low-frequency lighting environments.ACM Trans.
Graph 21(2002), 527–536.2

[Sta01] STAM J.: An illumination model for a skin layer
bounded by rough surfaces. InProc. of the 12th Euro-
graphics Workshop on Rendering(2001), pp. 39–52.1

[SWND97] SHREINER D., WOO M., NEIDER J., DAVIS

T.: OpenGL Programming Guide, second ed. Addison-
Wesley, 1997. Appendix F.5

[TS67] TORRANCEK., SPARROWE.: Theory for offspec-
ular reflection from roughened surfaces.Journal of the
Optical Society of America 57(1967), 1104–1114.2

[WTL05] WANG R., TRAN J., LUEBKE D.: Allfrequency
interactive relighting of translucent objects with single
and multiple scattering.ACM Trans. Graph 24, 3 (2005),
1202–1207.2

[WWD∗05] WANG L., WANG W., DORSEY J., YANG

X., GUO B., SHUM H. Y.: Real-time rendering of plant
leaves.ACM Trans. Graph 24, 3 (2005), 712–719.2

c© The Eurographics Association 2008.

