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Abstract
Commonly used direct rendering techniques simulate light transport for a complete scene, specified in terms of
light sources, geometry, materials, participating media,etc. On the other hand, inverse rendering problems take as
input a desired light distribution and try to find the unknownparts of the scene needed to get such light field. The
latter kind, where inverse reflector design is included, is traditionally solved by simulation optimization methods,
due to the high complexity of the inverse problem. In this paper we present an inverse reflector design method
which handles surfaces asNURBS and simulates accurately the light transport by means of a modified photon
mappingalgorithm. The proposed method is based on an optimization method, calledpattern search, in order to
compute the reflector needed to generate a target near light field. Some assumptions are determined in order to
reduce the complexity of the problem, such as a rotationallysymmetric reflector or its perfectly specular reflective
behavior. The optimization method specifies the reflector shape by handling a NURBS curve as a generatrix,
sequentially modifying the position and weights of its control points in order to obtain the reflector solution. Areas
of applications of inverse reflector design span from architectural lighting design to car headlamps design.

Categories and Subject Descriptors(according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism

1. Introduction

Inverse rendering problems differ from traditional directren-
dering techniques in the direction of the data flow during the
computation process. While direct techniques compute the
light transport from a completely specified three dimensional
scene, the inverse process starts with a desired light distribu-
tion and tries to find the unknown information of the ren-
dering equation such as geometry, materials, light sources,
etc.

The rendering equation [Kaj86] can be rewritten in its
compact form [Arv95] [Mar98] as follows

L = Le+ K̂ĜL (1)

whereLe stands for the initial light introduced in the sys-
tem (emitted light),K̂ is an operator that describes how sur-
faces reflect light (materials),̂G indicates how light travels
among surfaces (geometry) andL is the light reflected from
surfaces. According to the type of unknown information in
(1), a classification of inverse rendering problems was given

by Patow and Pueyo [PP03] (see Table1). Our work falls
in the subgroup of inverse geometry problems, where the
unknownĜ in (1) is the shape of a reflector surface of an
optical set (a luminaire), modeled as a rotationally symmet-
ric surface by handling a NURBS curve generatrix. Inverse
geometry problems and methods have a high importance in
industrial lighting design (car headlights, street lamps,archi-
tectural indoor lighting design, etc.).

Table 1: Classification of Inverse Rendering problems (af-
ter Patow and Pueyo [PP03]). Question marks stand for un-
known information, check marks stand for known informa-
tion. Asterisk superscript stands for partially known infor-
mation.

L Le K̂ Ĝ
Direct rendering ? X X X

Inverse lighting X
∗ ? X X

Inverse reflectometry X
∗

X ? X

Inverse combined problems X
∗ ? ? X

Inverse geometry X X X ?
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Additionally, the nature of the solving algorithm applied
to retrieve the unknown information leads to another tax-
onomy [LJPP06]. On one hand, direct-solving approaches
avoid to solve the rendering equation by building the in-
verse problem as a system of equations. On the other hand,
indirect-solving algorithms are based in optimization meth-
ods, which require evaluating the traditional direct rendering
problem at each iteration. This paper takes the latter strategy
in order to perform the inverse reflector design by means of
a pattern search optimization algorithm.

This paper presents as main contributions an inverse re-
flector design method, by means of handling the represen-
tation of a rotationally symmetric reflector with a NURBS
curve generatrix [PT97], simulating the light transport with
a modified photon mapping technique [Jen01] and optimiz-
ing the design process with the pattern search algorithm of
Hooke and Jeeves [HJ61].

The remainder of this paper is organized as follows: Sec-
tion 2 presents previous work on the inverse rendering and
inverse geometry fields. Section3 puts forward a theoretical
background on optimization. In Section4 the inverse design
method is developed. The paper ends with the results in Sec-
tion 5 and conclusions and future work in Sections6 and7.

2. Related Work

Solving an inverse rendering problem is a task that usually
either relies on a theoretical approach or tries to apply a nu-
merical solution [LJPP06].

Ramamoorthi and Hanrahan introduced in [RH01] a
signal-processing framework which describes the reflected
light field as a convolution of the lighting and the Bidirec-
tional Reflectance Distribution Function (BRDF), and ex-
presses it mathematically as a product of spherical harmonic
coefficients of the BRDF and the lighting. By viewing in-
verse rendering as a deconvolution, the authors showed why
inverse rendering problems are ill-conditioned when soft
shading features are present; which was previously observed
by Marschner and Greenberg [MG97]. While in Ramamoor-
thi and Hanrahan’s work [RH01] lighting is assumed to
come from infinity and occlusion is ignored, Durand et al.
[DHS∗05] overcome these limitation, considering complex
blockers and light transport by taking into account angu-
lar and spatial variation. Recently, Ramamoorthi and Han-
rahan [RH01] developed a full gradient analysis of the basic
shading steps, showing the relationship between spatial, and
angular effects.

Early works on inverse geometry had restrictive assump-
tions on ray reflections, such as the one by Wescott and
Norris [WN75]. More recent works by Wang [Wan96] and
Oliker [Oli08] overcome this limitation. While the work by
Wang introduced the design of reflectors assuming distant
sources (a far field problem) and differential geometry for-
mulation, Oliker presented a near field formulation with ro-

tationally symmetric reflectors. Numerical approaches, gen-
erally make use of spline-based surfaces and polygons to
model the desired reflector together with an optimization
method to find the shape. In this sense, Neubauer [Neu94]
found a B-spline reflector by applying a Powell optimization
method. Other authors used Genetic Algorithms to overcome
the problem of minimizing the nonlinear problem in inverse
surface design, such as Doyle et al. [DCC99] and Choi et
al. [CKP∗07]. Doyle et al. [DCC99] performed a computer
simulation, consisting of a 2D optical reflector modeled us-
ing a Bezier curve with a point light source. They compute
light distributions in the near, middle and far fields using a
ray-tracing approach, automating the design process through
the use of a differential evolutionary strategy. Similarly, Choi
et al. [CKP∗07] introduce a design method of dome pendant
prismatic luminaires by means of a micro genetic algorithm.
Finally, Patow et al. [PPV04] proposed a technique for the
design of reflector surfaces from a desired far field radiance
distribution and geometrical constraints imposed by industry
needs. They proposed a regular grid structure for the repre-
sentation of the reflector surface and Monte Carlo light trac-
ing for the computation of radiance transport.

In this paper we propose a method for inverse designing
rotationally symmetric reflectors given a desired near field
irradiance distribution. Our proposed method differs from
previous work in the following ways:

• The representation of the rotationally symmetric reflec-
tor is based on a NURBS curve generatrix. We choose
this representation due to two reasons. First, the use of
this approach, instead of a polygon mesh (as in Patow et
al. [PPV04]), drastically reduces the dimension of the op-
timization problem. Second, NURBS curves are widely
used in CAD applications and industrial design. The
use of NURBS, instead of B-splines (such as Neubauer
[Neu94]), also gives more flexibility designing shapes due
to the extra parameter to handle the weight of each control
point.

• We use traditional photon mapping [Jen01] in order to
solve the rendering equation, thus accurately simulating
inter-reflections and caustics generated by the reflector.
We introduce a modification in the photon storing proce-
dure, just storing the particles which interact with the near
field of study, allowing to store more photons for a more
accurate irradiance estimate. As opposed to the work of
Doyle et al. [DCC99], we perform a 3D physically-based
global illumination simulation.

• We use the pattern search algorithm from Hooke and
Jeeves [HJ61] in order to find the optimal reflector shape.
This kind of direct searches tries to guess patterns of ever-
improving solutions in order to reduce the number of ex-
pensive evaluations of the objective function.
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3. Optimization

Inverse rendering, and hence inverse reflector design, can
be seen as a type of mathematical problem, usually called
optimization. Optimization can be defined as the process of
finding the conditions that give the maximum or minimum
value of a function. Therefore, an optimization problem can
be stated as follows

min
ϑ∈Ω

f (ϑ), with Ω ⊆ Rn (2)

where ϑ ≡ (ϑ1, . . .,ϑn) is a n-dimensional vector inRn,
called thedecision variable, f : Rn → R is termed theobjec-
tive functionandΩ is theconstraint setor feasible region. If
Ω = Rn the optimization problem isunconstrained, whereas
Ω ⊂ Rn makes the problemconstrainedto the regionΩ.

A vectorϑ∗ is a local minimumif it is not worse than its
neighbors; that is, there is anε > 0 such that

f (ϑ∗) ≤ f (ϑ), ∀ϑ ∈ Ω, with ‖ϑ−ϑ∗‖ < ε (3)

with ‖ · ‖ being the Euclideanl2-norm. On the other hand, a
global minimumis a vectorϑ∗ such that

f (ϑ∗) ≤ f (ϑ), ∀ϑ ∈ Ω (4)

The local or global minimum is said to bestrict if the in-
equalities in (3) and (4) are also strict for allϑ 6= ϑ∗.

In order to minimizef and obtain a local or global min-
imum, optimization methods have to be used. Generally,
an optimization method is an iterative process, which starts
with an initial decision variableϑ0 (or an initial set of deci-
sion variables) and generates a sequence of ever-improving
solutionsϑ0, . . . ,ϑk, by means of a given iterative rule. The
iterative process stops when a convergence rule is satisfied.
In the best case, this sequence converges towards the global
minimum ϑ∗ of f . In the worst case, the method can get
trapped in a local minimum, having to be restarted in order
to try to scape from it.

Depending on the nature of the objective functionf dif-
ferent optimization methods can be applied. Iff is continu-
ous and differentiable, gradient based methods can be used.
Classical algorithms of this type include the steepest descent
method, the conjugate gradient method and the Newton’s
method [SY06]. But when the derivatives of the objective
functions are unavailable, as in inverse reflector design, di-
rect search methods fit as a good option [Rao96].

Pattern search is a subclass of these direct search algo-
rithms, which involve the direct comparison of objective

function values and do not require the use of explicit or ap-
proximate derivatives. Torczon [Tor97] introduced the gen-
eral class of pattern search methods for unconstrained op-
timization, demonstrating that the class of methods unified
various distinct direct search techniques, such as the origi-
nal pattern search of Hooke and Jeeves [HJ61], the Powell’s
method [Pow64], the Rosenbrock’s method [Ros60] or the
Simplex method [NM65].

4. The Inverse Design Method

Having so far established the definition of the optimization
problem in Section3, we can now reformulate it in terms
of our inverse reflector design problem. Therefore, it can be
stated as the minimization of an error metric (the objective
function) between the irradiance distribution generated in a
near field by a given reflector (the decision variable) and a
desired near field irradiance distribution. In order to evaluate
the actual irradiance distribution in the near field, and thus
compute the value of the error metric, a modified global illu-
mination light transport technique, called photon mapping,
is used. A pattern search optimization algorithm is used in
order to find the optimal reflector that minimizes de error
metric.

4.1. The Decision Variable: NURBS Representation

NURBS have become the standard for curve and surface de-
scription in industry. We chose this representation for the
reflector shape due to the fact that provide a unified math-
ematical basis for representing both analytic shapes (conic
sections, quadric surfaces, etc.), as well as free-form entities
such as reflector antennas, car bodies, ship hulls or aircraft
fuselages [PT97]. On the other hand, NURBS also allows to
specify and vary easily its continuity degree in order to meet
the wide range of needs in the industrial design.

A pth-degree NURBS curve is defined by

C(u) =
∑n

i=0 Ni,p(u)wiPi

∑n
i=0 Ni,p(u)wi

a≤ u≤ b (5)

where Pi are thecontrol points, wi are theweights and
Ni,p(u) are thepth-degree B-spline basis function defined
on the non-periodic and non-uniform knot vectorU [PT97].

We use a NURBS curveC to define a generatrix profile of
a rotationally symmetric reflectorR. In this way our method
can define the shape of the reflector by moving the con-
trol pointsPi and varying its weightswi . Less control points
defining the curve will represent a global shape for the re-
flector, whilst more control points will allow to make local
modifications and introduce fine surface features. Due to the
nature of the generatrix, control points are specified in 2D
coordinates such thatPi ≡ (xi ,yi).

The optimization method specified in Section4.5governs
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the shape of the reflector by means of the decision variable
ϑ described in (2), and not directly handling the NURBS
curve. Therefore, this decision variable is now stated as the
sequence of control points and weights as follows

ϑ ≡ (x0,y0,w0, . . . ,xi ,yi ,wi, . . . ,xn,yn,wn) (6)

therefore obtaining a decision variableϑ in R3(n+1). Using
a NURBS curve with three control points (e.g. enough to
define a conic section), the dimension of the optimization
problem would be nine, whereas using directly a polygon
mesh would make necessary a higher quantity of vertices.

The choice of a NURBS curve then reduces the dimension
of the optimization problem, while gives more flexibility to
the design of the surface.

4.2. The Near Field: Irradiance samples

The near field is that part of the space nearest to the reflector.
Beyond the near field is the infinite far field. Therefore, while
far field distributions, which assume a distant light source,
are usually represented just in terms of angular variation,the
near field representations adds spatial variation. We chose
near field representation due to its real application: optical
sets (generally a light source plus a reflector surface) are
usually built in or hanged from ceilings or placed on pole-
shaped supports, and generates a given light field on the floor
and the surrounding area. Therefore, we can see the near
field in our framework as the zone near the luminaire (floor,
walls, road, etc.) where we want a desired light distribution.

We formally define the near fieldF(R) as a set of points
pi uniformly distributed on a given surfaceS. At each point
pi , the incoming irradianceEi(R) due to the presence of the
reflectorR can be computed by means of the global illumi-
nation algorithm described in Section4.4.

Therefore, in our framework, the near field can be either
specified as a real 3D object with material properties, affect-
ing to the inverse computation of the reflector, or it can be
set as an invisible object, just registering the light that pass
through. This aspect is important in our framework, because
it allows to introduce a model of the environment where the
luminaire is going to be finally placed, and thus optimize
even more its behavior.

4.3. The Objective Function: RMS Error

To measure the fitness of the computed reflector an objective
function has to be chosen. The objective function that we
have used is the Root Mean Squared Error (RMSE) between
the near fieldF(R) generated by a reflectorRand the desired
irradiances in a near fieldF(R∗). Therefore, the RMSE met-
ric is expressed as follows

f (R) = RMSE(R) =

√

∑N
i=1(Ei(R)−Ei(R∗))2

N
(7)

whereEi(R
∗) stands for the desired irradiance at the point

pi in the near field andN is the total number of points in
the desired near field. The RMSE metric gives an idea of the
mean deviation of the irradiance samples in the near field in
irradiance units (W/m2).

4.4. The Simulation: Photon Mapping

In order to compute the irradiance distribution arriving tothe
near field, we use the traditional photon mapping algorithm
[Jen01] with a modification on the storing process of pho-
tons. The photon mapping algorithm is a two-pass method.
First, photons are traced from light through the scene, stor-
ing each interaction in a specialk nearest neighbor(k-NN)
structure totally decoupled from the geometry, calledpho-
ton map. Second, irradiance estimates are performed using
density estimation techniques on the photon map.

Using photon mapping has the advantage that the error in
the estimation of the irradiance is of low frequency (bias)
rather than the high frequency noise (variance) in Monte
Carlo ray tracing. Other advantages of using photon map-
ping include using arbitrary complex geometry and BRDFs
for the reflector surface. The photon mapping algorithm also
makes possible the accurate computation of caustic effects
due to the reflection of light in specular surfaces, such as the
case of a reflector surface. Finally, this rendering algorithm
allows to simulate inter-reflections in the bounding volume
of the reflector surface. In this manner, the photon mapping
offers to our framework a full global solution of the light
distribution generated by the presence of a reflector.

The outline of the behavior of the photon algorithm in our
framework is as follows:

• Stage 1: Photon Tracing

– Photons are emitted from a diffuse point light of power
Φ. Each photon carries a part of that power. Again, ar-
bitrary complex light sources could be used using spe-
cific sampling techniques. In scenes with sparse geom-
etry, such as the one treated in this paper, many pho-
tons do not hit any object. In order to reduce this waste
of time, we use projection maps [JC95]. In that way, all
the emitted photons are directed towards the reflector
surface.

– Photons are traced through the scene in the same way
as ray tracing. When a photon interacts with a surface,
it can be either absorbed, reflected or transmitted. This
is done statistically, based on the material properties
of the reflector by means of the Russian Roulette tech-
nique [BES96].
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– The original algorithm stores the photons in the photon
map structure whenever an interaction happens. In our
method, only photons interacting with the near field
are important. Therefore, as a modification of the orig-
inal photon mapping algorithm, we only store photons
that hit or go through the near field studied, after in-
teracting with the reflector. In that sense we can store
more photons in the photon map in order to compute
more accurate irradiance estimates in the near field.

• Stage 2: Irradiance Estimate

– To compute the irradiances values along the near field,
the algorithm perform a irradiance estimate at each
point pi on the near field. An irradiance estimate is
a density estimate, such that

Ei =
1

πr2

N

∑
j=1

K(‖pi − phj‖)Φ j (8)

whereK is akernelused to weight the flux contribu-
tions Φ j from each photon based on their distance to
the pointpi . N is the number of photons used to com-
pute the estimate and is also called thebandwidth, and
r is the radius of the bounding sphere includind theN
photons of the estimate.
Increasing the bandwidth of the kernel, the variance is
reduced, but the bias is increased in the irradiance es-
timation, blurring highlights and caustics. This artifact
is not desirable in our simulation, due to the intrin-
sic connection between caustics and the ever-present
curvature of the reflector surfaces [MH92]. In order to
cushion this increasing bias we use the Silverman ker-
nel [SWH∗95], which has a better behavior than others
widespread kernels [Sch03].

4.5. The Optimization Method: Hooke and Jeeves

Recalling (2), Direct Searchmethods are optimization algo-
rithms that neither compute or explicitly approximate deriva-
tives of f in order to minimize it. Pattern search methods are
included in this latter group, and the common behavior is
that they use a pattern of points that is independent of the
objective functionf .

Torczon introduced in [Tor97] the general class ofPat-
tern Searchoptimization methods, where the method which
we use, developed by Hooke and Jeeves [HJ61], is included.
Torczon introduced generalizations to define important con-
cepts common to all pattern search methods, such aspat-
tern, exploratory moveand the search method itself. Further-
more, in her work proposes a detailed global convergence
theory [Tor97].

Among all of existing pattern search methods we select
the original local search algorithm of Hooke and Jeeves
[HJ61], due to its simplicity. The Hooke-Jeeves algorithm
is a variant of theCoordinate Search, first described by

Davidon [Dav91], which incorporates apattern stepin or-
der to accelerate the search process from previous successful
movements, in an opportunistic way.

The Hooke-Jeeves starts with an initial guess decision
variable ϑ0 and a real valued step size∆, and itera-
tively found ever-improving solutions by sequencing an ex-
ploratory step [Dav91] and a pattern step.

4.5.1. Exploratory step: Coordinate Search

The coordinate search step performs exploratory moves
around a base pointϑk, finding new trial points by using a
real valued step∆, getting at the end a new pointϑk+1. Given
a trial point ϑk+1 ≡ (ϑ1, . . . ,ϑi, . . . ,ϑn) two exploratory
moves are defined for each coordinatei from 1 ton

ϑk
i+ ≡ (ϑ1, . . . ,ϑi +∆, . . .,ϑn) (9)

ϑk
i− ≡ (ϑ1, . . . ,ϑi −∆, . . .,ϑn) (10)

The coordinate search starts the process by performing the
exploratory moves onϑk+1 = ϑk; first ϑk+1

i+ , and thenϑk+1
i− ,

on coordinatei = 1. The first successful move update the
new trial pointϑk+1. So, if f (ϑk+1

i+ ) < f (ϑk+1) thenϑk+1 =

ϑk+1
i+ , whilst if f (ϑk+1

i− ) < f (ϑk+1) then ϑk+1 = ϑk+1
i− . If

neither of them success thenϑk+1 is not updated. After that,
this process is again repeated for coordinatei + 1, starting
with the new trial pointϑk+1. In the best case, and after iter-
ating over all then coordinates, the exploratory step returns a
pointϑk+1 6= ϑk which assures thatf (ϑk+1) < f (ϑk). In the
worst case, the pointϑk+1 is the same as the starting point
ϑk, after 2n trial points were evaluated.

4.5.2. Pattern Step

The main idea of the pattern step is to investigate whether
further progress is possible in the main promising direction.
This assumption, let the algorithm advance faster, hopefully
towards the global minimum, avoiding some extra expensive
evaluations of the objective function.

Given iteratesϑk−1 andϑk, the pattern step performs an
evaluation off atak = ϑk +α(ϑk−ϑk−1), with α as an ac-
celeration factor. The trial pointak is temporarily accepted,
even if f (ak) ≥ f (ϑk). The algorithm performs then a co-
ordinate search around the trial pointak. If the coordinate
search succeeds, then the point returned is accepted as the
new iterateϑk+1. If not, the algorithm compute a new coor-
dinate search aroundϑk. If the latter fails again, the step∆ is
reduced for the next iteration.

5. Results

We have tested our framework with a theoretical known so-
lution: the light distribution produced by a paraboloid re-
flector. The paraboloid is the rotationally symmetric surface
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generated by a half-parabola (a kind of conic section). In our
test problem we define the half-parabola as follows

Rpar(t) = (2at, a(1− t2)+h) t ≥ 0, a> 0, h> 0 (11)

wherea stands for the distance between the focus and the
vertex of the parabola andh is the distance between the focus
and the desired near field.

0 2 4 6 8 10

0

1

2

3

4

5

Reflector Parabola

Figure 1: The parabolic reflector. Top: the NURBS curve
generatrix. Bottom: the desired irradiance distribution on
the near field.

The parabola has two main interesting optical features
[BW86]. First, rays emitted from its focus are reflected in a
parallel way (e.g. perpendicular to the near field). Second,
a spherical wavefront emitted from the focus, is reflected
as a planar wavefront. Therefore, if we place a diffuse light
source in the focus of the parabola defined in (11), we can
express the irradianceEI

i arriving to a pointpi in a near field
at a distanceh from the focus, and after a reflection in the
surface, as follows

EI
i =

Φ

4πa2(1+
‖pi‖

2

4a2 )2
(12)

whereΦ is the power of the diffuse light source and‖pi‖
is the distance between the pointpi and the focus, projected
into the near field. On the other hand, the irradianceED

i that
directly comes from the light source (without any previous
reflection) is stated as

ED
i =

Φ
4πh2 (

1
√

1+ ‖pi‖
2

h2

)3 (13)

We can now add (12) and (13) in order to compute the
total irradianceEi that arrives to the near field due to direct
and indirect illumination.

In our results we performed an inverse design of a
paraboloid reflector witha = 5cm. In order to enforce the
near field based design of the reflector we chose a value of
5cmfor the distanceh between the light source and the near
field. Such configuration produce a maximum irradiance of
2W/m2 just in the near field point below the light source.
Figure 1 shows the parabola along with the desired near
field. The selected parabola can be modeled as a NURBS
curve with control pointsP0 = (0,a+h), P1 = (a,a+h) and
P2 = (2a,h), and weightsw0, w1 andw2 with value 1.

In order to run the inverse design, an initial reflector has to
be determined as input to the optimization algorithm. Figure
2 shows the three initial reflectors selected, named reflectors
A, B andC. Figure3 shows three views of the objective func-
tion RMSE, marked with the initial errors of the reflectors
A, B and C, and the global minimum P (the parabolic reflec-
tor). As we stated in Section4.1, all reflectors are designed
and handled by means of a NURBS curve via the decision
variableϑ. In our tests we define all the reflectors just like
the objective parabola: a NURBS curve with three control
points (and a weight for each one). Therefore the problem
has dimension nine, but we fix seven of them to their final
values, reducing the optimization problem to theR2 space.
The decision variable is thenϑ = (w1,x2), wherew1 is the
weight of the control pointP1 andx2 is thex coordinate of
the control pointP2. The initial decision variable for reflec-
tor A is ϑ0 = (1.6,9), for B is ϑ0 = (1.8,7) and forC is
ϑ0 = (

√
2/2,5) (hemi-spheric reflector).

We performed eight tests with the three latter reflectors
varying two parameters of the Hooke-Jeeves algorithm: the
step size∆ and the acceleration factorα. Table2 shows the
optimal reflectorsϑ∗ obtained for each test. Figure4 shows
the sequences of the ever-improving solutions on a contour-
line plot of the RMSE function to optimize.

From these results it can be seen that when the initial re-
flector ϑ0 is in the concave region of the global minimum
ϑ∗ = (1,10), the algorithm converges towardsϑ∗, indepen-
dently of the parameters∆ andα (reflectorA). In other cases,
like the reflectorB, a fine tunning of the initial step size∆ has
to be performed, in order to not fall in a local minimum. Ex-
treme cases, like the hemi-spheric reflector C, are not able to
scape from deep local minima due to its surrounding orog-
raphy.
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Reflector C

Figure 2: Initial reflectors A, B and C for the tests in Table2. Top: The NURBS curves of initial reflectors A, B and C (red
lines), compared with the desired parabola (black lines) and the obtained reflector (dashed green lines). Middle: the irradiance
distribution generated by these initial reflectors in the near field. Bottom: the irradiance distribution generated by the obtained
reflectors.

6. Conclusions

We have presented a comprehensive framework for inverse
designing rotationally symmetric reflectors given a desired
near field of irradiances distribution.

We use a NURBS curve to represent the generatrix of the
reflector surface. In this sense, we reduce the dimension of
the optimization problem, overcoming the problem present
in polygon based works [PPV04]. Additionally, the use of
NURBS, instead of other Spline approaches [Neu94], gives
more flexibility to the design process.

For the simulation stage, a modified photon mapping tech-
nique is applied. The original algorithm [Jen01] gives a full
global solution to the light interaction with the reflector,

while our modification in the photon storing process only
registers the particles that interact with the near field, saving
memory space and giving more accuracy in the irradiance
estimate. As opposed to other works this is done in three
dimensional space [DCC99]. The specification of the near
field is general enough to represent the environment close to
the reflector, such as floor, walls, etc.

Finally, the strategy chosen to perform the optimiza-
tion of the selected RMSE function as objetive function is
the Hooke-Jeeves algorithm [HJ61]. This algorithm, based
in exploratory moves and optimistic progression, achieves
good results if the initial reflector belongs to a moderately
convex zone of the RMSE function, regardless of the dimen-
sionality of the problem.

c© The Eurographics Association 2008.
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Figure 3: Several views of the RMSE function in the surrounding area ofthe global minimum given by the parabolic reflector
P, showing the error of the initial reflectors A, B and C. For the sake of clarity, only the range of values between0 and4 of the
RMSE function is shown.

Table 2: Comparative results for several tests performed on initialreflectors A, B and C (see Figure2). Starting step size∆ has
a value of1cm for coordinate x2 and0.5 for weight w1. The acceleration factorα has a value of1. ϑ0 is the decision variable
for the initial reflector,ϑ∗ is the optimal reflector computed, RMSE(ϑ∗) is the fitness value of the optimal reflectorϑ∗, k stands
for the number of iterates in the sequenceϑ0, . . . ,ϑk.

Refl. Step size Acceleration ϑ0 ≡ (w1,x2) ϑ∗ ≡ (w1,x2) RMSE(ϑ∗) k iterations time
1 A ∆ α (1.6, 9) (1, 9.99668) 0.00343334 14 25 17m25s
2 A 2∆ α (1.6, 9) (1, 9.99844) 0.00404593 10 20 15m55s
3 A ∆/2 α (1.6, 9) (1.00094, 10.0002) 0.00405967 23 33 27m08s
4 A ∆ 2α (1.6, 9) (0.999999, 10.0336) 0.00896852 9 19 15m01s
5 A ∆ α/2 (1.6, 9) (1.00125, 9.99141) 0.00437376 12 23 16m32s
6 B ∆ α (1.8, 7) (2.28375, 4.8125) 0.403432 8 18 14m16s
7 B 2∆ α (1.8, 7) (1.00125, 9.99687) 0.00445291 18 28 23m01s
8 C ∆ α (

√
2/2, 5) (0.689429, 5.20508) 0.0878155 5 15 12m17s

7. Future Work

A deeper observation has to be performed in the connection
between the topology of the surface (curvature, orientation,
etc.) and the irradiances generated at the near field. That fact
can give us some clues about a good heuristic to direct the
optimization process. In this sense, other kind of decision
variables could feed the inverse design, based on curvatures
instead of moving control points and weights.

Other alternatives to the Hooke-Jevees algorithm can be
taken into account, such as Evolutionary Strategies and Ge-
netics Algorithms [Bäc95], or other heuristics such as Sim-
ulated Annealing [KGV83] or Particle Swarm [KE95]. To-
gether with the study of other optimization methods, new
error metrics and distance function could be studied in order
to model the objective function.

In the simulation process, the irradiance estimate is cru-
cial to get a physically based approach in order to meet the
industry needs. In this sense, approaches such as the work of
Schregle [Sch03] can be very interesting in order to reduce
bias and variance in the density estimation.

Although our problem is stated in terms of inverse geom-
etry, the generality of our model would allow an extension

for the recovery of an unknown BRDF or the resolution of
an inverse lighting problem. Additionally, cases based on in-
dustrial reflector design have to be tested along with other
academic examples, as the one presented in this paper.
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