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Figure 1: Different fabrics have both different visual appearance and mechanical properties. We create replicas of several common woven
fabrics, like the cotton or silk shown in the image, covering a wide range of movements in a set of video stimuli. Then, we combine the
appearance of each fabric with the dynamics of the other ones and vice versa, and perform psychophysical experiments to study the relative
importance of appearance and dynamics when perceiving cloth.

Abstract1

Physical simulation and rendering of cloth is widely used in 3D2

graphics applications to create realistic and compelling scenes.3

However, cloth animation can be slow to compute and difficult to4

specify. In this paper, we present a set of experiments in which we5

explore some factors that contribute to the perception of cloth, to6

determine how efficiency could be improved without sacrificing re-7

alism. Using real video footage of several fabrics covering a wide8

range of visual appearances and dynamic behaviors, and their sim-9

ulated counterparts, we explore the interplay of visual appearance10

and dynamics in cloth animation.11
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1 Introduction14

3D animation is becoming more and more sophisticated. With the15

evolution of rendering algorithms, motion capture techniques and16

physics simulators, new productions progressively offer more com-17

plex shots and more stunning visuals. However, it is often the18

case that intricately modeled details and complex simulations are19

employed to create scene elements that may go unnoticed by the20

viewer, which is not a very efficient use of resources.21

This leads to the following question, which we aim to investigate22

in this paper: Do all elements of a simulation need to be phys-23

ically correct in order to achieve realism? Given the very large24

space of possible parameters, we focus here on a very common sce-25

nario where physically-based simulations are employed in current26

3D application areas: the rendering and animation of photo-realistic27

cloth. In particular, we analyze the interplay of visual appearance28

and dynamics and how it affects the viewer. The goal is to analyze29

when (and if) a simplified simulation can be used in the presence30

of a very accurate shader, or vice versa. Do both appearance and31

dynamics need to be perfectly simulated in order to convey the de-32

sired impression? Can different strategies be employed depending33

on the particular types of fabric being depicted?34

To answer these questions, we first captured videos of seven dif-35

ferent real cloth samples made of different fabrics covering a wide36

range of visual appearances and dynamic behaviors. We also cre-37

ated photo-realistic synthetic versions that emulated the real cloth38

samples as closely as possible. Given these seven ground-truth an-39

imations, we rendered all possible combinations of appearance and40

dynamics, yielding a 7x7 stimulus matrix where only the diagonal41

elements had matching characteristics. We then conducted two per-42

ceptual experiments, where participants were asked to match these43

stimuli with the ground-truth filmed videos, and were also asked to44

identify which animation had mismatching motion and appearance45

properties.46

To our knowledge, this is the first effort towards understanding the47

relative weightings of appearance and dynamics on the perception48

of photo-realistic animated cloth. Although we focus here on the49

particular case of cloth simulation, our methodology could be ex-50

tended to other scenarios. Our results may be useful to guide a51

better distribution of resources when planning shots involving cloth52

simulations, or could affect how shot approvals are done. For in-53

stance, if the perception of a given fabric is strongly influenced by54

its visual appearance and less by its dynamics, then viewing the55

simulation without a reasonable depiction of the final shader to be56

employed, and vice versa, would not be sufficient to predict the final57

result.58



Figure 2: Comparison between the real fabrics and the CG replicas. From left to right: burlap, canvas, denim, linen, cotton, polyester satin
and sheer silk. The images show renders, the insets are close up pictures of the real fabrics in the case of the first five rows. In the case of the
last two fabrics on the right (polyester satin and sheer silk), the weaving pattern is too small to notice at normal viewing distances. Thus, for
polyester satin the inset shows the fabric wrapping a cylinder along the warp and weft directions to show the viewing and lighting dependent
anisotropic highlights. For the sheer silk, the inset shows the real fabric draping the swivel stool.

2 Related Work59

Perceptually-based computer graphics is an active research field.60

The key idea is to take into account the limits of the human visual61

system to improve the efficiency of realistic image synthesis and62

animation. We refer the interested reader to the many existing sur-63

veys and courses (e.g., [O’Sullivan et al. 2004; Bartz et al. 2008;64

McNamara et al. 2011]), and focus here on appearance and dynam-65

ics.66

Appearance Many approaches focus on generating visually67

plausible materials. Pellacini et al. [2000], Westlund and Meyer68

[2001] and Ferwerda et al. [2001] developed psychophysically-69

based models for gloss perception. Wills et al. [2009] per-70

formed similar experiments to derive a perceptual space of mea-71

sured BRDFs. Vangorp et al. [2007] evaluated the influence of72

shape and illumination on surface gloss perception, showing how73

objects with smooth bumps provide more cues than simpler ones74

like spheres. Other studies include translucency and subsurface75

scattering [Fleming and Bülthoff 2005; Gkioulekas et al. 2013], or76

surface texture and reflectance [Dana et al. 1999; Filip et al. 2008;77

Jarabo et al. 2014] . Fleming and colleagues [2001; 2003] con-78

ducted reflectance matching experiments to demonstrate that peo-79

ple can recognize material properties more accurately under natural80

illumination than under artificial lights. Other examples focus on81

perceptually guided global illumination [Myszkowski 2002; Stokes82

et al. 2004]. Ramanarayanan and colleagues [2007; 2008] evaluated83

the effects of changes in environment lighting over different shapes84

and materials. Through several transformations in the illumination85

maps, such as warping or blurring, they found that many objects86

had the same appearance (they are visually equivalent) when illu-87

minated by both transformed and original maps. Similar studies88

evaluated the effect of approximations in illumination on the per-89

ception of complex animated scenes [Jarabo et al. 2012] or materi-90

als [Křivánek et al. 2010].91

Dynamics Some studies have evaluated the effects of degrad-92

ing or distorting physically-based simulations on the perceived93

plausibility of animations, e.g., [O’Sullivan et al. 2003; Yeh et al.94

2009; Han et al. 2013]. Similar studies have also been conducted95

in the context of cartoons [Garcia et al. 2008]. Other works96

focus on collisions; O’Sullivan et al. [1999] developed a model97

of collision perception for real-time animation, while Dingliana98

and O’Sullivan [2000; 2001] examined the perception of detail99

simplifications for LOD rigid-body physically-based animation.100

Some other works evaluate the perception of dynamics on animated101

characters. Reitsma et al. [2003] studied the visual tolerance of102

ballistic motion for character animation, finding that horizontal103

velocity errors are more detectable than vertical. Vicovaro et104

al. [2012] evaluated the plausibility of altered throwing motions.105

Finally, Hoyet et al. [2012] conducted several phsycophysical106

experiments to measure the perceived realism of pushing interac-107

tions, evaluating the influence of timing errors or force mismatches.108

109

Two previous studies are relevant to our work. McDonnell et110

al. [2006] evaluated the perceptual impact of different geomet-111

ric and image-based LOD representations of animated cloth, and112

guidelines for developing crowd systems with realistic clothed hu-113

mans were presented. Most recently, Sigal et al. [2015] developed a114

perceptual control space for cloth dynamics, mapping the complex115

parameters from any physical simulator to a few intuitive and mean-116

ingful parameters learned from a set of perceptual experiments.117

3 Stimuli Creation118

In order to cover a reasonable range of different fabric appearances119

and dynamics, we chose seven commonly used woven cloths.120

In approximate order of more to less stiff, the selected fabrics121

are: Burlap (also commonly known as Sackcloth), Canvas,122

Denim, Linen, Cotton, Polyester satin and sheer Silk. We123

acquired real samples of all of them, cut into squares of 1x1124

meters. They all are of roughly the same albedo, in order to avoid125

color being a confounding factor for the experiments (see Figure 2).126

127

Figure 3: Lighting studio setup for capturing the video footage of
the real cloth samples, from bottom and side views.

We then recorded videos of all the fabrics in a studio with diffuse128

black walls, floor, and roof, using two spot lights placed at about 45129

degrees from the focal plane (Figure 3). Every piece of cloth was130

recorded while draping over a flat swivel stool which then spins,131

in order to show as many mechanical and dynamic properties of132

the fabric as possible (e.g., shape of the folds, angle of swing).133

View-dependent appearance features for each fabric are also visible134

in this way. We ensured that the movement was as similar as135

possible for each fabric.136

137

To create computer generated replicas of the reference fabrics, we138

needed to emulate both the appearance and the dynamics. Note that139



appearance refers to the spatially varying reflected radiance of the140

cloths, which depends on several factors such as the texture pat-141

tern or the optical properties of the fabrics (e.g.: albedo or surface142

scattering). All pieces of cloth were rendered using path tracing143

with deferred shading [Eisenacher et al. 2013], simulating rough di-144

electric materials with diffuse transmittance, together with albedo,145

bump and opacity textures. For these, a set of close-up pictures146

perpendicular to the fabrics was taken to generate tileable seam-147

less textures representing patches of 30x30 cm. The only exception148

was polyester satin; given its more anisotropic reflectance and color149

shifts, we relied on the empirical microcylinder model of Sadeghi150

and colleages [2013]. Figure 2, shows the appearance of the final151

CG replicas.152

The dynamics of the different fabrics were simulated by model-153

ing the cloth as a triangular mesh, along with proximity forces to154

prevent primitives near each other from colliding, as proposed by155

Baraff and Witkin [1998]. Similarly, we use additional constraints156

for cloth-object collisions. If continuous time collisions remain af-157

ter the initial solve, we rely on the robust collision algorithm from158

Bridson et al. [2002], augmented by a fail-safe that cancels impact159

while maintaining sliding motion [Harmon et al. 2008]. We re-160

lied on physical parameters given by the manufacturer when avail-161

able (such as density and thickness, e.g., burlap weighs 207g/ m2
162

with 0.69mm thickness, while the values for silk are 207g/ m2 and163

0.69mm); all the remaining parameters were manually adjusted to164

obtain a result as close as possible to the real cloth properties (see165

Figure 4).166

We then rendered all possible combinations of appearance and dy-167

namics, yielding 7x7=49 videos (six seconds each) replicating the168

movement in the recorded video. Thus for each row (column) of169

the matrix, only one rendered video matches the appearance with170

the correct dynamics. In addition, to study the effect of viewing171

distance on the perception of mismatched properties, we rendered172

all of the stimuli at three different camera distances, resulting in173

resolutions of 1728x1123, 1000x650 and 520x338 from close to174

far viewing distances respectively. A selection from this full set175

of 49x3=147 videos is included in this submission as supplemen-176

tary material (the full set exceeds the upload limit). Note that we177

rendered all videos with the swivel stool rotating in the opposite di-178

rection from the real videos, to avoid that participants would base179

their judgments on exact visual matching.180

4 Experiments181

To answer the questions set out in our introduction, we conducted182

two perception experiments with 63 naive participants (34F/29M,183

aged 18–27) with varying levels of experience in computer graph-184

ics. We counterbalanced the order in which they performed Exper-185

iment 1 and Experiment 2, to avoid ordering effects.186

4.1 Experiment One: Ground Truth comparison187

The goal of the first experiment is twofold: firstly, to evaluate how188

effective the simulations were at capturing the appearance and dy-189

namics of the real stimuli; and secondly, to determine whether ei-190

ther dynamics or appearance were more important when animating191

photo-realistic cloth.192

We chose an experimental design where each participant only193

watches a subset of the stimuli, in order to avoid fatigue effects.194

Thus, the stimuli are distributed among participants ensuring that195

each video is seen by 45 different people, and each person sees 105196

different samples of the total set of 147.197

Two equally calibrated screens of the same model were used for the198

Figure 4: Comparison between the movements of the real cloth
smaples and the CG replicas. The first row shows the cotton ro-
tating at the maximum speed. The second row shows the burlap at
the frame just before starting to stabilize. Note that the real and
CG samples are rotating in the same direction in these images just
for comparison, but do so in opposite directions during the experi-
ments to avoid exact image matching. To emulate the cloth motion,
we paid special attention to the number, size and shape of the folds
created (both at static and dynamic frames), the amount of bounc-
ing, the effect of air forces, and the maximum height and width
reached when rotating. For further comparisons, a selection of the
videos are included in the supplementary material.

Figure 5: Two screen layout for the experiment 1. On the left,
the navigation screen with the seven real (ground truth) reference
fabrics. Each thumbnail has a radio button for selection and a
replay button. On the right, the CG cloth that is currently being
displayed.

experiment (Dell U2311H IPS FullHD 23”). On the right screen,199

one of the 147 rendered videos is shown, and the participant is200

asked the question: ’Which of the reference cloths on the left best201

matches the one on the right?’. The participant can answer by202

choosing any of the seven reference cloths shown in thumbnails203

on the left (Figure 5). She can replay any of these reference ground204

truth videos again, as many times as needed until an answer is given205

(there is no time limit). Each time a reference video is replayed at206

full resolution on the left, the current CG replica that is being eval-207

uated is played on the right for comparison purposes. Both videos208

are synchronized, but the cloths rotate in opposite directions to dis-209

courage exact visual pattern matching.210

At the start of the experiment, we ensure all participants have famil-211

iarized themselves with all real stimuli. All participants are shown212

a representative frame of every one of the seven reference videos as213

a thumbnail on the left screen. They view all of the videos by click-214

ing on each of these thumbnails, and the corresponding six-second215

video is played on the right screen. They can repeat each one as216

many times as needed. The experiment took between 25 and 45217

minutes, separated in two halves by a 5-minute break.218



Figure 6: Experiment 1 results, summarized as a radar graph and
collapsed over distance (which had no effect). The colored areas
in the graph represent how often each Response was given for the
Appearance/Dynamics combinations depicted on the perimeter.

Experiment One: Results. Because of the way we designed our219

experiment, we were able to cross-tabulate all participant responses220

by summarizing them in a Multi-way Frequency Table. The variable221

combinations for which frequency counts were calculated were: (1)222

Distance x 3 (close, medium, far), (2) Appearance x 7 (denoted A-223

Burlap, A-Canvas, A-Cotton, A-Denim, A-Linen, A-Polyester, A-224

Silk), (3) Dynamics x 7 (D-Burlap – D-Silk) and (4) Response x 7225

(R-Burlap – R-Silk). The results are shown in Figure 6.226

We then analyzed these data using Log-Linear Analysis, which al-227

lows us to find the best model to fit the observed data. In the case228

of Figure 6, the best model was (2,4), (3,4), meaning that there was229

a main effect of both Appearance(2) and Dynamics (3) on the Re-230

sponse (4) given. However, the distance from the camera had no231

effect on the responses. From Figure 6 we can see that appear-232

ance dominated the responses for three fabrics: Burlap, Silk and233

Polyester. There was more confusion between the other materials.234

We also looked at how often Dynamics affected the choices, and235

the only material where dynamics was very influential was for Silk,236

where the green line in the figure shows how the response was al-237

ways silk when the dynamics were silk, and silk was also often238

picked when the appearance was a different material (e.g., see the239

green spike for A-Burlap).240

4.2 Experiment Two: Identifying Mismatches241

The main goal of this experiment is to determine how accurate par-242

ticipants were at identifying mismatches between the appearance243

and dynamics of photo-realistic cloth animations. First, as in Ex-244

periment One, participants are shown the seven real videos at the245

beginning and are allowed to replay them until they become famil-246

iar with them. Once the test begins, one of the recorded videos247

is shown on the left screen while two CG videos from our stim-248

uli matrix are shown side-by-side on the right screen. One of the249

CG videos is always the corresponding replica of the real video250

shown, with matching appearance and dynamics, while the other251

one has been rendered with either the appearance or the dynam-252

ics from a different cloth. The order is randomized for each pair253

Figure 7: Experiment 2 results, summarized as a radar graph and
collapsed over distance (which had no effect). The outermost labels
on the perimeter indicate the “correct” fabric, while the innermost
ones show the mis-matched one. The two line graphs indicate the
percentage of mismatches accurately detected for the two types of
mismatch: appearance or dynamics.

of stimuli. This leads to 252 combinations in total: 7 fabrics x254

12 mismatched options (6 each for appearance and dynamics) x 3255

viewing distances. The participant is asked which of the two sim-256

ulated cloths on the right is most similar to the ground-truth cloth257

video shown on the left. There is no time limit, and the participant258

is allowed to replay the videos as often as necessary.259

As in the previous experiment, we opted for an experimental design260

where each participant only watches a subset of the stimuli in order261

to avoid fatigue effects. Thus, the stimuli are distributed so as to262

ensure that each stimulus pair is seen by 45 different people, and263

each person sees 180 different samples of the total set of 252.264

This experiment lasted between 50 and 70 minutes, again divided265

in two parts by a break of 5–10 minutes. The experiment was per-266

formed using the same screens and controlled settings as in Exper-267

iment One.268

Experiment Two: Results. As in the previous experiment, we269

were able to cross-tabulate all participant data by summarizing270

the percentage of correctly identified mismatches in a multi-way271

frequency table, and statistically analyzed them using Log-Linear272

Analysis. Again, distance had no effect on the results, but both273

Appearance, Dynamics, and their interaction did. The results are274

shown in Figure 7. We can again see that appearance mismatches275

were most easily detected for most, but not all, fabrics, whereas276

participants were more confused about the dynamics mismatches.277

5 Conclusions278

In this paper, we have presented the results of two perceptual exper-279

iments where we explored the interactions of appearance and dy-280

namics of seven common woven fabrics. We demonstrate how ap-281

pearance dominates over dynamics, except for the few cases where282

dynamics are very characteristic, such as in the case of silk. We283

also found that these effects are robust across different viewing dis-284

tances.285



As future work, it would be interesting to consider some other fac-286

tors that may have an effect on the perception of moving cloth (e.g.287

different illumination conditions such as environment lighting), or288

to explore more deeply the influence of the most important fac-289

tors of cloth simulation considered here (e.g. BRDF and spatial290

frequency of the textures in the case of the appearance, dynamics291

parameters in the case of motion synthesis). Finally, performing a292

similar study with animated characters wearing clothes made from293

these fabrics would allow us to confirm our findings in more eco-294

logically valid and familiar scenarios.295
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