
EG UK Theory and Practice of Computer Graphics (2010)
John Collomosse, Ian Grimstead (Editors)

Rendering Large Point Datasets with GPU Shaders

Hugo Aguirre1, Diego Gutierrez1 and James S. Perrin2

1Universidad de Zaragoza, Spain
2University of Manchester, UK

Abstract

This paper demonstrates how programmable GPUs are a powerful tool to display large point datasets at an
interactive frame rate. Point datasets are commonly used to analyse and solve complex problems, but rendering
them is always an expensive task in computational terms. This paper researches the possibilities that GPUs and
shading languages offer for rendering large datasets on modest computers and the improvements in speed and
quality. GPU techniques to represent scalar and vector glyph are also described. The GPU method is compared
with common methods, such as using polygons or textures. The shader glyphs are drawn onto planar primitives
using equations to generate surface, lighting and depth information. The improved computational efficiency allows
the display of larger datasets with a simultaneous increase in visual quality.

Categories and Subject Descriptors (according to ACM CCS): I.3.1 [Computer Graphics]: Graphics processors I.3.7
[Three-Dimensional Graphics and Realism]: Color, shading, shadowing, and texture

1. Introduction

Computer graphics have made significant progress for scien-
tific research in several branches, such as biology, physics,
astronomy, chemistry and medicine. Many researchers study
their datasets in a visual way, which allows them to have
a clearer analysis of individual data relations and the im-
portance of them when analyzed together. The larger the
datasets are the harder it is to handle them and obtain re-
sults. Scientists usually need huge datasets of point data to
understand the behaviour of phenomena. Nevertheless, the
computational cost of visualizing such huge datasets is high
and scientists have to work with samples or fragments of the
datasets. Hence, it is important to make improvements in this
area in order to obtain more efficient methods, consequently
making it possible to use bigger datasets.

Point data’s main characteristic is usually its position in
space. In addition to this, point data can have more addi-
tional attributes which can be shown in visual terms such as
size, colour, direction or shape. Therefore, point data needs
to be represented visually by geometrical shapes. These can
be two-dimensional, such as circles and polygons, or three-
dimensional, such as spheres, polyhedrons, cylinders, cones,
and arrows. The latter have a larger computational cost but
they are usually more visually attractive and widely used in

scientific study. Several of the included references show the
use of three-dimensional shapes.

This research is based on methods proposed in the pa-
pers referred to below. It is remarkable to state that the pa-
pers and documentation found only declare success, but they
do not explain how they developed their methods. Although
our proposal is not entirely new, there are meaningful differ-
ences with former papers since it is not only important how
the sphere is built but also how a large number of spheres
are rendered in real time and how they are passed data. This
paper compares several options to render large datasets in
order to determine future work. An additional aim of this
paper not discussed in the previous work is the rendering of
cones, which are used for spatially oriented data i.e. vectors.
The majority of point data have scalar variables but there
are many cases in scientific visualization where vector data
needs to be analysed; flows and forces. Scalar values can
also be abstractly mapped to direction when looking for cor-
relations in the data.

The final goal of this paper is to show how utilizing the
GPU via Shader programming can improve performance
over established techniques (for spheres and cones). The per-
formance tests use a randomly generated dataset within a
specified region of space to avoid characteristics of a partic-

c© The Eurographics Association 2010.



Hugo Aguirre et al. / Rendering Large Point Datasets with GPU Shaders

ular dataset affecting the results. Results are compared with
the other usual graphic methods. The shader method was
tested with the GLSL 1.1 but GLSL 1.3 can also be used.

2. Previous work

Research with three-dimensional model simulations has
been carried out for a long time. For example, Krogh,
Painter and Hansen [KPH97] examine performance im-
provements in the visualization of large datasets in three-
dimensional simulations. In more recent works, e.g., Liang
et al. [LMC05] use parallel rendering for visualizing molec-
ular dynamics data on supercomputers. Gribble and Parker
[GP07] apply lazy evaluation to avoid expensive lighting ef-
fects. The paper presented by Zemcik et al. [ZTH03] is based
on a custom algorithm design for hardware. While Zemcik
et al. want a specific hardware with high efficiency but low
portability, this paper studies how programmable GPUs al-
low different algorithms to work on different hardware. The
result is that the same algorithm can be both executed or up-
dated on improved GPU hardware.

There are several papers that treat the topic of making ge-
ometrical shapes with shading languages. To implement a
sphere, Toledo and Levy [TL04] suggest using a ray trac-
ing algorithm over polyhedrons including cubes, icosahe-
drons, or points. Taylor [Tay04] achieves good results ren-
dering non-polygonal objects with GPUs. He performed his
research in a similar way to Ranta, Singh, and Narayanan
[RSN06], where each sphere is rendered onto a quad.

The direct use of GPU shaders for certain rendering
techniques allow programmers to maximise the size of the
datasets that their graphic applications can handle. The use
of shading languages is not always an advantage; they can
work very well for some applications, primarily graphic ones
[Pau07]. GPU applications usually offer better performances
for high intensity computations [JZC∗08]. It is hard to debug
errors in GPU programming as is pointed out in numerous
articles [DHH05]. Although there are new proposals in this
area [Hil06], the main method is called visual style. This
means the output colour for the fragment shader is set with
a value in order to flag the content of the variable.

3. Efficient Rendering of Spheres using Shaders

We first consider rendering point datasets without orienta-
tion using the sphere glyph. Although conceptually simple
it is an expensive glyph because of the high number of ver-
tices needed to approximate the smooth surface. Neverthe-
less, spheres are the usual choice due to some advantages. It
the most natural representation of atoms, particles and other
data sample, which means a greater acceptance and under-
standing in scientific research. The fact that it is rotationally
invariant is most useful.

The approach here does not use a polygonal approxima-
tion but computes the surface of the sphere directly. Ranta,

Singh, and Narayanan [RSN06] present a method which uses
a dummy quad to create geometrical shapes using shading
languages. One of the most efficient ways to show a fake
sphere is to draw it onto a plane. However, it presents a se-
ries of difficulties such as lighting and depth computation
since a plane has a flat surface. These problems are solved
within the shader code.

In the vertex shader several operations are carried out. The
quad must maintain its normal pointing at the view plane the
camera moves around, or else the quad will appear edge on.
So billboarding is applied before the position is set. In the
fragment shader the sphere is simulated. In reality, it is a cir-
cle which is lit to look like a sphere giving a sensation of
depth. By default, it is not possible to know where the frag-
ment within the quad is, nor the order in which each frag-
ment is processed. Therefore, assuming an origin at the cen-
tre of the quad, each vertex of the quad is assigned to a local
coordinate, from -1 to 1. These values are interpolated for
each fragment when passed to the fragment shader. A sim-
ple operation gives the distance of the quad fragment from
the centre, fragments further than the radius are eliminated.
This can be done in two ways, setting the opacity to zero
or issuing a discard instruction. If available, the discard in-
struction is faster since the shader jumps to the next fragment
immediately. Otherwise, the fragment’s colour is set, which
is a necessary output.

At this point, the silhouette is achieved but it needs further
work to simulate a sphere (Figure 1a). Lighting is funda-
mental to achieve realistic effects and programmable GPUs
allow using per-fragment lighting to increase visual quality.
The Blinn-Phong lighting model [Bli77] is implemented in
the shader. This model takes advantage of using directional
lights since the half vector, which is needed for lighting op-
erations, is only calculated once per frame. The half vector
is provided by the GLSL core. A new normal is still needed
because it is intended to light the quad as a sphere. In figure
2, the ’x’ and ’y’ normal coordinates are the fragment po-
sition but the ’z’ is still unknown. The line from the centre
to the fragment point, the quad normal and the radius form
a triangle where the length of the base and the radius (the
hypotenuse) are known. Therefore, the height is found and
realistic lighting is created (Figures 1b and 3).

Although fake spheres have been obtained, there is still a
defect in the visualization. There are no intersections among
the glyphs. Spheres are drawn over a flat quad, so the depth
buffer only takes into account whether primitives are in front
or behind each other. This is a problem which appears if
spheres are drawn onto textures too, but for textures, it is not
possible to solve with the fixed pipeline. The depth buffer
of the OpenGL fixed pipeline can not be replaced by an ex-
act formula in the shading code. Furthermore, it is recom-
mended to set the depth buffer with the same equation for all
fragments. This is because it is not possible to guarantee the
same depth results mixing different formulae including the

c© The Eurographics Association 2010.



Hugo Aguirre et al. / Rendering Large Point Datasets with GPU Shaders

(a) Without Lighting (b) Lit (c) Lit and depth

Figure 1: On the left is an example of the technique without lighting. Fake spheres are achieved applying Billboarding to the
quad and eliminating the fragments out of the circle. In the middle lighting is added so a depth sensation is obtained. On the
right the depth is fixed so occlusions are calculated properly.

Figure 2: A new normal (Ns) for the simulated sphere is cal-
culated in order to replace the normal quad (Nq). Thanks to
the ’x’ and ’y’ coordinate of the fragment position, a point
can be found where a triangle can be made with two known
sides: the distance from the centre to the fragment point
(green line) and the radius of the sphere (blue line). So the
’z’ coordinate is known (red line)

Figure 3: Spheres created by different methods. From left to
right: polygons, shaders and two texture methods.

fixed pipeline one [Ros04]. There is not a fixed depth func-
tion to use. Therefore, several functions have been tested and
studied to observe their results. The formulae give similar
visual results. The following equation, appearing in a paper
written by Yuan [Yua08], is chosen due to a slight perfor-
mance benefit.

Z =
Z
∫

f

Z
∫

f −Z
∫

n

(
1−

Z
∫

n
d

)
(1)

After fixing the lighting and depth, the simulated sphere is
achieved (Figure 1c). More investigation is carried out in or-
der to optimize the performance and at the same time, main-
tain the visual outcome.

• GLSL variables can be sent either to the vertex shader
or the fragment shader in several ways: lists, arrays or
buffer objects. The results show that the main advan-
tages are different depending on the graphic card used.
On the one hand, the GeForce 6 card offers good re-
sults for lists and variables sent to vertex shaders. On the
other hand, series 7 and 8 can make most of compres-
sion and communication methods. These graphic cards
utilise PCI Express which improves CPU to GPU com-
munications. This, along with the increase in fragment
processors, means that variables can be sent to the frag-
ment shader if necessary. Moreover, buffer compression
can raise performance up to fifty percent depending on
the series.

• It requires more computation to declare variables which
may not be used than to load programs. The performance
can be raised up to five times by using two short scripts,
one with lighting, one without, rather than a single script
which may be loading unnecessary variables.

• Using different libraries, e.g., ARB or OpenGL 2.0, has a
very little effect on performance.

• Other geometrical shapes can contain the sphere, e.g., a
regular hexagon may be used instead of a quad. Although
this shape has two more vertices, it has a lesser area. Thus,
less fragments are processed which usually assures a bet-
ter performance. Nonetheless, as long as the discard in-
struction is applied performance does not vary. Discard is
executed when the fragment is outside of the radius. As a
consequence, discarded fragments are not taken into ac-
count as a potential bottleneck.

• Swapping CPU load to the GPU in GeForce 6 makes no
improvements. However, on GeForce 7 and 8 cards there

c© The Eurographics Association 2010.



Hugo Aguirre et al. / Rendering Large Point Datasets with GPU Shaders

is a doubling in performance. Specially, rotations and Bill-
boarding perform faster when they are carried out in the
vertex shader rather than in the OpenGL code. In gen-
eral terms, any vector and matrix operations are favoured.
Preparing specific codes for different graphic card gener-
ations can be useful due to the changing nature of shaders.

3.1. Results

Figure 4: Logarithmic diagram (point data/fps) carried out
with a GeForce 6800 Ultra. The test is done for the tech-
niques: polygons (blue), blending texture (yellow), multi-
texture (red) and shaders 1.1 (clear blue).

Figure 5: Logarithmic diagram (point data/fps) carried out
with a GeForce 8800 GTS SLI. The test is done for the tech-
niques: polygons (blue), blending texture (yellow), multi-
texture (red), shaders 1.1 (clear blue) and shaders 1.3
(green).

A performance test, measured in frames per second, is
done with two different graphic cards: GeForce 6800 Ul-
tra and GeForce 8800 GTS SLI. Four techniques, including
shaders, are tested with datasets which are generated ran-
domly and are formed from 100 to 100000 spheres. Results
are shown in the figures 4 and 5. The polygonal mode has
the worst result in performance. It involves a larger load on
the CPU than the other techniques. When datasets are above
10000 spheres, it is not even possible to execute them. Apart

from polygons, shaders have been compared with two tex-
ture approximations. Blending texture mode uses two mod-
ulating images, one for the circle and the other for the light-
ing. Colour is provided by the quad onto which the textures
are applied. Multi-texture mode is focused on directly rep-
resenting the colour on the textures so this technique needs
an image for each desired colour. Both texture modes com-
pete with shaders in GeForce 6 where the GPU does not
have the latest technology. The visualization with textures
is better when they are not close to the camera and pixila-
tion comes apparent. Since textures are reloaded frequently,
a resolution of 256 px2 is chosen to avoid stuttering. The
Blending texture method shows good performance and suits
real time purposes. Using textures is an excellent option for
GeForce 6 and older hardware as their capabilities are suited
very well this task. There is a visual disadvantage since light-
ing is the same for all the spheres. The Multi-texture mode
not only has a significant fall in performance, but also has
a high reload time when the camera rotates. It is not a good
option for dynamic environments. If the method were to ap-
ply a texture for each point data, the former effects would be
more profound. A large use of textures should be avoided.

The shaders method proves to be a good way for cur-
rent and future graphics hardware. Shading language for
1.3 shows significant improvements compared with the for-
mer 1.1 version. The latest GLSL version used allows the
GeForce 8 to reach one million spheres with more than 20
fps. Shaders also show good results with GeForce 8, and
newer graphic cards could manage huge datasets with mil-
lions of data points.

4. Rendering of Spatially Oriented Glyphs

Unfortunately, the sphere cannot be used to represent direc-
tional data. This section examines how to use shaders to ren-
der vector data using cones, which are conveniently avail-
able as an OpenGL primitive. A cone is suitable because it
is able to show the same attributes as the sphere and it adds
direction. A cone is relatively easy to calculate due to its ro-
tational symmetry.

The shader method draws a cone on a flat primitive (a
quad) and applies lighting to simulate the geometry. In the
vertex shader the camera rotation is applied to the point’s di-
rection vector. This result is given in three dimensions but
it must be transformed into two (Cartesian to Polar coordi-
nates) to allow the cones to be drawn onto a plane using two
angles, theta and phi (respectively ’x’ and ’y’ axes). In the
fragment shader the creation of the cone only depends on
theta since phi is used to turn the vertices. Billboarding is
applied before any rotation as before.

Inside the fragment shader it is necessary to know which
fragments from the glyph are kept and which are discarded.
The orientation of the cone is determined from the theta an-
gle, which has been passed from the vertex shader. A cone

c© The Eurographics Association 2010.



Hugo Aguirre et al. / Rendering Large Point Datasets with GPU Shaders

can be thought of as a geometrical shape composed of an el-
lipse and two tangents, which join in the vertex. Both parts
are calculated independently. The base of the cone is defined
through the ellipse canonical equation where the theta value
is shown as the variable ’d’ and determines its angle. If the
result is less than the radius, the fragment belongs to the
base. To obtain the tangent point, equation 2 is used where
’h’ is the ’y’ coordinate of the cone vertex. The ’x’ coordi-
nate is found using the canonical equation again (Figure 6).

x2

12 +
y2

d2 = 1 yt =
d2

h
(2)

Figure 6: This is a drawing representing the cone we aim to
create. The radius, the height and the quad centre are known.
On the other hand, it is necessary to achieve the equation of
the lines to know what fragments, which belong to the cone’s
side, are inside. A tangent needs two points: one is given, but
the tangent point that touches the ellipse has to be calculated.

The tangents are found once the points are calculated, so
it is then possible to determine if the fragment should be dis-
carded. Given the ’y’ component of the fragment’s position,
the component ’y’ belonging to the tangent is the same. The
line equation is useful to find the ’x’ component of the tan-
gent point. The fragment point is inside the lateral surface
of the cone if it obeys the following rules. The ’y’ fragment
must be above the tangent point and beneath the vertex. The
’x’ fragment must be between the negative and positive ’x’
point coordinate belonging the tangent line. Conditions are
summarized in the equation 3. The final result is shown in
figure 7 on the left.

yl < y f < h − xl < x f < xl (3)

Lighting is applied with different equations depending on
if the fragment is located on the base or the conic surface.
This task can be solved with the former equations. Once
known, a new normal is set to define lighting. Rotations have
been split between the vertex and fragment shaders. This al-
ters the usual OpenGL way. Thus, the solution is not guaran-
teed to be invariant respecting the fixed pipeline and lighting
is an approximation due to the difficulty of determining the
normals of a cone, which is drawn onto a plane. The result

can be observed in figure 7 on the right. Quality should be
enough for visual purposes (figure 8).

In this rendering, occlusion has not been implemented,
which can also be added to future work. Nonetheless, this
problem may be solved following similar steps to the former
occasions. An ideal case may be calculated. If fragments that
belong to the base and surface are achieved separately, the
problem is simplified. After that, it may be possible to cal-
culate a new depth using the former equations presented in
this paper and several trigonometric operations in order to
simulate the rotations.

Figure 7: A cone is the final outcome of the spatially ori-
ented glyph. On the left the cone without lighting and on the
right the glyph is lit. The images represent the same cone but
the first one does not allow the direction to be determined.
Therefore, lighting gives precious information.

Figure 8: Rendering thousands of random cones thanks to
the GPU. Despite the disorder, lighting helps to distinguish
where the cones are pointing.

4.1. Results

The performance test is similar to the previous one. It is
measured in frames per second and applied with three dif-
ferent graphic cards: GeForce 6800 Ultra, GeForce 7900
and GeForce 8800 GTS SLI. Two techniques, shaders and
polygons, are tested with datasets which are generated ran-
domly and are formed from 100 to 100000 cones. The fig-
ure 9 shows the result of the performance test. The polyg-
onal mode offers much better results than sphere rendering

c© The Eurographics Association 2010.



Hugo Aguirre et al. / Rendering Large Point Datasets with GPU Shaders

since cones are easier to build with vertices. It is surpris-
ing that polygons have better performance in GeForce 6800
than shaders. Nevertheless, the mode tends to break down
if datasets are above 25000 cones. The other graphic cards
allow shaders to obtain higher performances and to out per-
form the polygonal method. Unlike sphere rendering, the 1.3
version of GLSL does not demonstrate a difference in the
frame rate. Therefore, it is not a fact that the 1.3 version
always improves performance compared to older versions.
Since operations are similar between sphere and cone ren-
dering, it is believed that the bottleneck is generated by the
uniform variables, which are sent by the CPU. Using vertex
buffer may improve the performance but then, 1.4 version is
required. In general, exploiting shader performance requires
a specific study about the program type and the hardware
where it is executed. Most operations are executed in the
vertex and fragment shaders unloading work from the CPU,
which becomes a bottleneck as GPU power grows.

It is remarkable that there is a clear division between
GeForce 6 and the newer graphic cards used. GeForce 6
works very well with OpenGL lists as is seen in sphere ren-
dering but shaders are not very powerful. Series 7 and 8
focus their efforts on Vertex Buffer Objects and other new
ways to improve performance. However, they give poor re-
sults with older techniques (like OpenGL lists). Moreover,
these cards are able to take advantage of better GPU capa-
bilities. Shaders present a good perspective because for each
series, its performance is increased at least up to sixty per
cent.

Figure 9: A cone performance test which is performed on
several GPUs (6800, 7900 and 8800 GeForce). The ’x’ axis
is the dataset sizes and the ’y’ axis is the frames per second.
The test is done for the techniques: polygons (clear blue, red
and blue), shaders 1.1 (brown, rose, pale green) and shaders
1.3 (green).

5. Conclusions

New GPUs are developed almost every year, e.g., Geforce
9 and 200 in 2008 and GeForce 300 in 2009. These graphic

cards contain new hardware features that require new ver-
sions of shading languages to be designed in order to ex-
ploit their capabilities. For these reasons most work based
on graphic card performance comparisons soon obsolete.
Thus, this paper focuses on the techniques. It is expected
that newer research can be derived from this paper as the
principles remain intact. Performance comparisons are only
a performance measure and, if the shown growth among se-
ries continues, graphic cards can be replaced with new ones
to obtain better performance results. If necessary, shaders
scripts can be easily updated since they are loaded by ap-
plications at runtime. Therefore, larger datasets can be ex-
amined with the subsequent card generations. Although the
hardware tested can quickly become out-of-date, this work
provides a better understanding of programming shaders and
it serves as a foundation for new research as presented in fu-
ture work.

GLSL is meant to guarantee a cross-platform compatibil-
ity for any graphic card which support this shading language.
This should be true, but in reality it is not. The reason is that
the need of an implementation is greater than the indepen-
dent hardware matters [KBR04]. Furthermore, each vendor
includes their own GLSL compiler and driver and they are
allowed to create optimized code and to include their own
functions. As a consequence, performance results are highly
variable among graphic card generations, the versions of the
drivers and the version of the GLSL specification supported.

Shader programs (sphere and cone rendering) have se-
rious problems with ATI configuration (HD 4850 graphic
card) which is not able to carry out either 1.1 or 1.3 GLSL
versions. These problems obligate the developer to make
specific shader programs for ATI cards. The 1.3 version
does not offer greater compatibility with a program built for
NVIDIA cards, which is more worrying. A standard should
be set which assures that a code can be compiled correctly
in any card if it supports the version (similar to XML veri-
fications). Support for GLSL often lags behind the vendors
proprietary shader languages.

Newer GLSL versions are focusing on a greater use of
uniform variables in a similar way as CG does. Almost all
built-in variables and matrix functions are effectively re-
moved in GLSL 1.4 version and OpenGL 3 (they are still
available through an extension). The main purpose is that
these operations can be implemented in the shaders speed-
ing up the graphic applications.

At the same time, this philosophy allows programmers to
develop work further and quicker as new features and ver-
sions appear. GeForce 8 shows excellent results for all the
methods presented and suits real time purposes. These re-
sults prove that performance can greatly benefit from shaders
if exploited properly. The visual output is not an aim; never-
theless, programming pixels gives a better chance to improve
visualization by means of a more accurate resolution. Buffer
Objects probably become the best way to swap variables be-

c© The Eurographics Association 2010.



Hugo Aguirre et al. / Rendering Large Point Datasets with GPU Shaders

tween the CPU and GPU since performance is actively in-
creasing. Version 1.4 at GLSL allows them to be used for
any variable; so far they have been restricted to vertex vari-
ables.

In conclusion, shader technology needs to improve its
standards in order to be a powerful tool independent of hard-
ware. On the other hand, it is shown that shaders offer multi-
ple choices to solve problems and performances can be great
as the code is not fixed, but entirely designed by the pro-
grammer.

6. Future work

The work contained in this paper has raised a number of
questions and there is a lot of scope for further research and
development.

Shaders are used to develop spheres and cones in a cheap
way, but they are not the only useful glyphs. Future work on
GPU glyphs could focus on developing more efficient algo-
rithms. Although a hundred thousand point data have been
represented for this research many scientists need millions
of them to analyse their samples. Therefore, it is interest-
ing to investigate the possibilities that OpenGL 3 and GLSL
1.5 (and later specifications) can offer to geometry render-
ing and new hardware architectures. In this work, the sphere
rendering using version 1.3, has been a great step forward in
performance.

GLSL 1.5 version can not only involve greater efficiency,
but it also allows the use of geometry shader that means
an extra functionality which raises the work research pos-
sibilities. This shader can add or remove vertices which can
be useful, for example, in a method where point lines are
used (one vertex each point). The geometry shader could add
(curves) or eliminate (straight lines) vertices depending on
the level of detail required.

Another problem to deal with is the depth buffer. It is
not possible to exactly replicate the computations, and so
if the depth is to be changed, it is necessary to make a new
depth function. Depth is not frequently changed in shader
programs and there are many proposals on how to modify
it, but there is a lack of serious research in this area. Thus,
greater efforts are needed in order to clarify this unclear ele-
ment of GLSL. This becomes increasingly important if these
rendering methods are combined with others, e.g., geometry
rendered by the fixed pipeline. Once a better understanding
is achieved; cone occlusion can be added to future work us-
ing shaders to solve fragment depth.

References

[Bli77] BLINN J. F.: Models of light reflection for com-
puter synthesized pictures. ACM SIGGRAPH Computer
Graphics 11, 2 (Sept. 1977), C219–C231. 2

[DHH05] DOKKEN T., HAGEN T. R., HJELMERVIK

J. M.: The gpu as a high performance computational
resource. In SCCG ’05: Proceedings of the 21st spring
conference on Computer graphics (New York, NY, USA,
2005), ACM, pp. 21–26. 2

[GP07] GRIBBLE C. P., PARKER S. G.: Interactive parti-
cle visualization with advanced shading models using lazy
evaluation. Eurographics Symposium on Parallel Graph-
ics and Visualization (May 2007). 2

[Hil06] HILGART M.: Step-through debugging of glsl
shaders. School of Computer Science, DePaul University,
Chicago, USA (2006). 2

[JZC∗08] JOSELLI M., ZAMITH M., CLUA E., MON-
TENEGRO A., CONCI A., LEAL-TOLEDO R., VALENTE

L., FEIJÓ B. O. M. D., POZZER, C.: Automatic dynamic
task distribution between cpu and gpu for real-time sys-
tems. In CSE ’08: Proceedings of the 2008 11th IEEE
International Conference on Computational Science and
Engineering (Washington, DC, USA, 2008), IEEE Com-
puter Society, pp. 48–55. 2

[KBR04] KESSENICH J., BALDWIN D., ROST R.: The
OpenGL Shading Language. 3Dlabs, Apr. 2004.
GLSLangSpec.Full.1.10.59.pdf. 6

[KPH97] KROGH M., PAINTER J., HANSEN C.: Parallel
sphere rendering. Parallel Comput. 23, 7 (1997), 961–
974. 2

[LMC05] LIANG K., MONGER P., COUCHMAN H.: In-
teractive parallel visualization of large particle datasets.
Parallel Comput. 31, 2 (2005), 243–260. 2

[Pau07] PAUL B.: Characterizing scientific application
performance on gpus. The university of Wisconsin Madi-
son (2007). 2

[Ros04] ROST R. J.: OpenGL(R) Shading Language (Or-
ange Book). Addison-Wesley Professional, Feb. 2004. 3

[RSN06] RANTA S. M., SINGH J. M., NARAYANAN

P. J.: Gpu objects. Indian Conference on Computer Vision
Graphics and Image Processing (2006). 2

[Tay04] TAYLOR R. M.: Directly rendering non-
polygonal objects on graphics hardware using vertex and
fragment programs. UNC Technical Report TR04-023
(2004). 2

[TL04] TOLEDO R., LEVY B.: Extending the graphic
pipeline with new gpu-accelerated primitives. 24th In-
ternational Gocad Meeting (2004). 2

[Yua08] YUAN F.: An iterative programmable graphics
process unit based on ray casting approach for virtual en-
doscopy system. Optica Applicata 2008 38, 3 (2008),
519–530. 3

[ZTH03] ZEMCIK P., TISNOVSKY P., HEROUT A.: Par-
ticle rendering pipeline. Spring Conference on Computer
Graphics 2003 Proceedings (2003). 2

c© The Eurographics Association 2010.


