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a b s t r a c t

The capture and analysis of light in flight, or light in transient state, has enabled applications such
as range imaging, reflectance estimation and especially non-line-of-sight (NLOS) imaging. For this last
case, hidden geometry can be reconstructed using time-resolved measurements of indirect diffuse light
emitted by a laser. Transient rendering is a key tool for developing such new applications, significantly
more challenging than its steady-state counterpart. In this work, we introduce a set of simple yet
effective subpath sampling techniques targeting transient light transport simulation in occluded scenes.
We analyze the usual capture setups of NLOS scenes, where both the camera and light sources are
focused on particular points in the scene. Also, the hidden geometry can be difficult to sample using
conventional techniques. We leverage that configuration to reduce the integration path space. We
implement our techniques in a modified version of Mitsuba 2 adapted for transient light transport,
allowing us to support parallelization, polarization, and differentiable rendering.

© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Transient imaging aims to capture and analyze how light prop-
gates through a scene with an ultra-high temporal resolution,
eaching the order of picoseconds, breaking the common assump-
ion of the infinite speed of light. This extended dimensionality on
he temporal domain provides a richer description of how light
ropagates and interacts with matter throughout the scene, and
n consequence about the scene itself [1,2].

As such, transient imaging has had a great impact in the area of
omputer graphics and computer vision, with applications such as
aterial classification [3] and recovery [4], vision through scatter-

ng media [5,6], visualizing light in motion [7], or reconstruction
f partially or fully occluded geometry [8–11]. In this work, we
ocus on the latter topic, the so-called non-line-of-sight (NLOS)
maging problem [12].

The goal of NLOS imaging is to reconstruct a fully or partially
ccluded scene by measuring the back-scattering of the hidden
cene in a secondary visible surface (Fig. 1). This is a funda-
ental problem in many fields, including autonomous driving,
edical imaging, space exploration, and others. Unfortunately,

ransient imaging, in general, requires expensive hardware, in-
luding pulsed illumination and ultrafast cameras, difficult to
alibrate and operate. Transient light transport simulation emerges
as an alternative tool for developing, prototyping and testing such
systems, before building them.

∗ Corresponding author.
E-mail address: droyo@unizar.es (D. Royo).
ttps://doi.org/10.1016/j.cag.2022.07.003
097-8493/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access a
c-nd/4.0/).
However, time-resolved simulation (i.e. transient rendering)
is significantly more expensive than traditional steady-state ren-
dering: Instead of generating a 2D image I(x, y), we generate
a 3D video of the scene I(x, y, t) that records the scene over
time t (see Fig. 2). This requires several orders of magnitude
more samples for reducing variance and introduces an additional
challenge: The light paths generated with classic steady-state
sampling techniques are suboptimal for transient light transport.

In this work, we build upon the transient path integral for-
mulation proposed by Jarabo and colleagues [13] and develop
a new set of sampling techniques particularly targeted to NLOS
configurations (Fig. 1). Our contributions can be summarized as
follows:

• We propose two simple yet effective techniques for gener-
ating both the eye and light subpaths, that generate inter-
mediate virtual irradiance meters and light sources.

• We also add an importance sampling technique that focuses
on finding the hidden geometry, as it can be difficult us-
ing conventional sampling techniques. Together, these three
techniques improve the convergence of NLOS transient path
tracing with little cost.

• We implement our techniques inside a custom transient-
aware version of Mitsuba 2 [14]. It provides many useful
features such as CPU and GPU parallelism, simulation of
the polarization of the light, and could be used for differ-
entiable transient rendering. We compare our results with
a reference implementation [13], with lower computational
complexity, faster convergence and lower rendering times.
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
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Fig. 1. The non-line-of-sight (NLOS) imaging problem aims to recover 3D geometry of hidden objects. Some methods use ultra-fast lasers and detectors for this task,
exploiting the time-resolved properties of light propagation through the scene seen in the relay wall space. We simulate a data capture setup (left): a laser pulse
is emitted towards a visible diffuse wall, scattering illuminating the occluded geometry. Light reflects back to the relay wall and is captured by the camera sensor
(right).
Fig. 2. Cornell box scene, with two diffuse boxes and a small area light. Images
show (a) steady-state and (b–e) transient renders. Adding all the time-resolved
frames of the video achieves the steady-state image in much less than a
millisecond.

• Finally, we demonstrate the usefulness of our data by us-
ing it to reconstruct NLOS scenes using the phasor fields
framework proposed by Liu et al. [10].

2. Related work

Time-resolved imaging. Ultra-fast imaging has found direct appli-
cations in computer graphics and vision [15]. Originally, Raskar
and Davis [16] introduced a basic theoretical framework for
transient light transport analysis. This would later lead to ap-
plications such as range sensing [17,18], light transport decom-
position [1], vision through turbid media [5,6], reconstruction of
hidden geometry (NLOS imaging) [19,8] or reflectance acquisi-
tion [4]. The seminal femto-photography technique presented by
Velten et al. [20,7] used a streak camera to capture time-resolved
videos with an effective exposure time of one picosecond per
frame. Heide et al. [21] proposed a cheaper setup using Photonic
Mixing Devices (PMDs), which sacrifices temporal and spatial res-
olution. Other setups include gated sensors [22]. More recently,
many have embraced the use of single-photon avalanche diodes
(SPADs) [23,24], as they can detect the time of arrival of individ-
ual photons with a temporal precision of tens of picoseconds, and
can be used at long distances or under ambient lighting. Using
simulation, our rendering system can work with arbitrary spatial
and temporal resolutions.

NLOS imaging. One of the most challenging applications of time-
resolved imaging is non-line-of-sight (NLOS) imaging. We dis-
tinguish between two categories: passive and active. Passive
methods rely on environment illumination to localize or estimate
rough motion and structure [25,26]. We focus on active meth-
ods that inject light into the NLOS scene in a controlled way
by illuminating an intermediate relay wall. There exist several
different works leveraging active sensing of the image for NLOS
85
reconstruction, based on filtered backprojection [8,23,22,9], opti-
mization [27–29], deconvolution [11,30], deep learning [31], or by
posing the problem as a virtual waves propagation problem [10].

Transient rendering. This term was originally used by
Smith et al. [32]. The authors propose to extend the rendering
equation as a recursive operator by incorporating the time delays
caused by light propagation. Based on their contribution, other
works emerged that proposed transient variations of Monte Carlo
rendering [33,34]. Other authors focused on the modeling and
simulation of Photonic Mixer Devices (PMDs) [35], a type of
time-of-flight sensor. Later, Jarabo et al. [13] introduced the
transient path integral, which we base our work on, that includes
propagation and scattering temporal delays.

On top of such formulation, several steady-state rendering
algorithms have been adapted, such as bidirectional path trac-
ing [13] or progressive photon beams [36], as well as simplified
models [37,38] or extensions to include polarization [39], or also
include fluorescence [40]. The implementation of our technique
is an extension of the Mitsuba2 library [14] so it can also account
for polarization.

These ideas have also been applied to the NLOS domain:
Hullin [41] and Heide et al. [42] simulate transient light transport
to speed up the expensive data capture. Our proposed technique
is also tailored towards NLOS setups, but mainly focused on
noise reduction for pure transient rendering. Other authors avoid
accounting for paths with more than three bounces, simplifying
the path integral to obtain efficient results for learning-based
reconstruction [28,29]. Our method is not limited in this way.
Rendering longer paths could allow to tackle more challenging
problems, such as seeing behind two corners.

Recently, Yi et al. introduced a novel framework able to dif-
ferentiate the transient path integral [43], with applications such
as NLOS tracking using non-planar relay walls or around two
corners. While untested, our transient rendering implementation
is built on top of Mitsuba2 which is differentiable.

Last, another approach for efficient transient rendering with
Monte-Carlo techniques is through sophisticated importance
sampling techniques that account for the temporal profile of light
transport, both in participating media [13] and surfaces [44]. Our
core contribution lies within this domain: we develop a new
set of simple but effective importance sampling techniques for
transient rendering, which are specific to NLOS setups, and are
particularly challenging for more traditional sampling schemes.

3. Transient path tracing

The goal of a transient rendering algorithm is to extend the
idea of a 2D image by adding a third, temporal dimension. Thus,
obtaining an image I(x, y, t) that contains the radiance of each
pixel (x, y) over time t . If the light emission and geometry do
not change, steady-state is achieved after enough time with
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Fig. 3. Two example paths x̄, x̄′
∈ Ω (black, green) that join the camera with a

light source, with three and four bounces on the geometry respectively. Extend-
ing the path integral formulation to transient state adds the propagation delays
between points, and the possible scattering delays at each point ∆tj, ∆t ′j ∈ ∆T .

∂ I/∂t = 0. In a typical scene, steady-state is achieved in less than
a millisecond (see Fig. 2). As this is smaller than the exposure time
of a conventional camera, it is reasonable to assume the speed of
light to be infinite in a conventional path tracer. However, this is
not our case. For this reason, we use the transient path tracing
algorithm proposed by Jarabo et al. [13], along with a histogram-
based density estimation technique to generate the final I(x, y, t)
result. In this section, we describe the general background which
we base our contributions on.

Temporal delays. First, we analyze the behavior of light in flight.
Suppose an object emits a ray of light at time t0, bouncing k times
on the scene until it reaches the camera at time tk. The duration of
the light path is determined by the propagation times (i.e. time of
flight) between surface intersections from points xj to xj+1, noted
as tof(xj ↔ xj+1), plus the microscopic temporal delays when
interacting with each of the surfaces ∆tj. In most cases, these
delays are negligible even when compared to propagation times.
The time of arrival to the camera sensor can be calculated as

t−i =

i−1∑
j=0

(
tof(xj ↔ xj+1) + ∆tj

)
, ti = t−i + ∆ti, (1)

where tof(·) depends on the medium’s index of refraction η.
Assuming it is constant between bounces, it can be computed as
tof(xj ↔ xj+1) = ∥xj − xj+1∥η/c with c being the speed of light.

Transient path integral. To obtain the value of a pixel I(x, y, t)
we need to look at all the paths that reach pixel (x, y) at time
t . A path x̄ is defined with the list of scene points that it travels
through, x̄ = x0 . . . xk, where x0 is the emitter and xk is the
camera position, as shown in Fig. 3. Note that the exact same
path can propagate light at different time instants if the emission
time t0 is different (e.g. multiple pulses or one longer pulse) or if
the scattering delays ∆xj are different (e.g. fluorescent materials).
These delays are defined as ∆̄t = ∆t0 . . . ∆tk−1. More formally,
the value of I(x, y, t) is obtained using the transient path integral:

I(x, y, t) =

∫
Ω(x,y)

∫
∆T (x̄,t)

f (x̄, ∆̄t) dµ(∆̄t) dµ(x̄), (2)

where f (·) is the light measured for that specific path and scat-
tering delays, which is integrated over the whole path space Ω

and delay space ∆T . It does not integrate over individual vertices
¯
x0 . . . xk: the differential measure dµ(x) denotes area integration
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for surface vertices and volume integration for vertices in partic-
ipating media. Similarly, dµ(∆̄t) denotes temporal integration at
each path vertex, which could account for additional phenomena
e.g. scattering delays that change based on the index of refraction.
Finally, Ω(x, y) and ∆T (x̄, t) denote paths that pass through pixel
(x, y) and arrive at time t respectively. These paths might be none,
due to the propagation delays and t . Note that in a conventional
path tracer we do not need to integrate over ∆T : the propagation
speed is assumed to be infinite, so the propagation and scattering
delays for each path are zero and thus f (·) only depends on x̄.

For our case, the time-resolved path contribution function
f (x̄, ∆̄t) accounts for light emission Le, path throughput T and
sensor importance We:

f (x̄, ∆̄t) = Le(x0 → x1, ∆t0) T(x̄, ∆̄t) We(xk−1 → xk, ∆tk). (3)

The temporal sensor importance We defines spatial, angular and
time-based sensitivity. Likewise, Le models light sources using
t0 to control the emission instant and duration (e.g. Gaussian
r delta laser pulse). The transient path throughput is defined as

T(x̄, ∆̄t) =

[
k−1∏
i=1

ρ(xi, ∆ti)

][
k−1∏
i=0

G(xi, xi+1) V (xi, xi+1)

]
, (4)

here G(xi, xi+1) is the geometry term modeling the effects of
nverse square falloff and Lambert’s cosine law, and V (xi, xi+1)
s the visibility term between xi and xi+1. The scattering kernel
, which defines how much light is scattered at each vertex,
ncludes a temporal delay parameter ∆ti to account for potential
ime delays at each scattering vertex xi. Note that there are
ot any other time-related parameters, as we assume that the
eometry is stationary, at least relative to the speed of light.

onte Carlo path tracing. Providing an analytical solution to
q. (2) is impossible due to the complexity of the search space
or a scene. One of the most common solutions to this is to use
umerical integration methods such as a Monte Carlo estimator:

I ≈
1
N

N∑
i=1

f (x̄i, ∆̄t i)
p(x̄i, ∆̄t i)

. (5)

In other words, we generate N random paths (x̄i, ∆̄t i), drawn
from a spatio-temporal probability distribution p(·), which is de-
fined by the sampling strategy for path and scattering delays. As
discussed by Jarabo et al. [13], the different natures of the propa-
gation delays in x̄ and the scattering delays in ∆̄t make challeng-
ing to find samples f (x̄i, ∆̄t i) that have a non-zero contribution.
This becomes especially important when either ∆ti, Le or We
approach delta functions. For this reason, we reuse all generated
samples along the whole temporal domain, by using histogram
density estimation to reconstruct the transient image I(x, y, t).

4. Non-line-of-sight path tracing

In this section, we introduce our contributions by adapting the
transient path tracing algorithm to simulate NLOS data capture.
The setup described in Fig. 1 uses a single laser beam to generate
a time-resolved image I(xs, ys, t), where (xs, ys) parametrize the
D space of the visible surfaces of the camera (the relay wall).
e define this 2D-to-3D map as Ms(xs, ys) → xs, with xs being a
D point visible from the camera.
A common setup repeats this measurement for multiple laser

ositions on the visible surfaces, which results in a five-
imensional signal I(xl, yl, xs, ys, t), with (xl, yl) parametrizing the

2D space of laser positions. For simplicity, we will refer to the
three-dimensional case I(xs, ys, t), since extending to five dimen-
sions just requires repeating the same experiment, changing the
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Fig. 4. Transient image of a Z letter captured in an NLOS setup. Each time instant
shows the radiance at each point, reflected by the relay wall and captured by
the sensor with 10 ps of exposure time.

orientation of the laser. Analogous to Ms(xs, ys), we define this
mapping as Ml(xl, yl) → xl.

Our implementation is based on a forward path tracer, in
which the paths start from the sensor and each path vertex is
stochastically selected from the previous one. The probability
distribution corresponding to a forward path tracer (the denomi-
nator in Eq. (5)) with delta scattering delays ∆̄t i can be expressed
as:

p(x̄, ∆t) = p(xk)
k−1∏
i=0

p(xi|xi+1), (6)

as the path is traced from the camera xk to the light source x0.
Our contributions are three sampling techniques that affect the
probability distribution functions associated to different vertices
along this path. These are tailored for NLOS scenes, which are
challenging due to the main part of the geometry being hidden
both from the sensor and the light source.

Relay wall space. The key difference between conventional line-
of-sight (LOS) images and their NLOS counterparts lies in the
topology of (x, y). While LOS images aim to reconstruct a con-
tinuous signal, where (x, y) are continuous on the image plane,
NLOS captures use sparse points in the visible surfaces, following
arbitrary distributions. The reason is that typical setups are based
on well-collimated sensors that only measure light coming from
differential solid angle centered on a specific direction ωs. There-
fore, for each measurement in (x, y), the sensor importance We is
a singular function in the spatio-temporal domain, as

We(xk−1 → xk, ∆tk) = δ(xp − xk) δ(ωs − ωk−1) Kt (∆tk), (7)

with δ(·) the Dirac delta, xp the position of the sensor directed
at ωs = norm(Ms(xs, ys) − xp) and ωk−1 = norm(xk−1 − xk)
normalized directions, and Kt (∆tk) the temporal importance. The
distribution of these vertices for each path, i.e. p(xk−1|xk), is
uniform and regular along the relay wall space.

In our examples we show a planar relay wall space, used in
classical NLOS setups, but any parametrizable 2D surface can be
used. Thus, each (x, y) coordinate represents the projection of one
point in the relay wall. A rectangular sampling grid is typically
used so, in this case, the image resolution matches the number
of sampled points in the horizontal and vertical directions. Fig. 4
shows an example image I(x, y, t) at different instants t using
histogram estimation.

Laser sampling. In a typical NLOS capture setup, light is emitted
from a laser towards the visible surfaces (the relay wall), there-

fore resulting in emission in a differential solid angle, modeled i
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Fig. 5. Laser sampling overview. We cannot draw explicit connections to
the emitter xe directly as it is occluded. Instead, our approach samples the
illuminated point in the relay wall xl .

as
Le(x0 → x1, ∆t0) = δ(xe − x0) δ(ωl − ω0) E(∆t0), (8)

ith xe the position of the laser, ωl = norm(xe − Ml(xl, yl)) and
0 = norm(x0 −x1), and E(∆t0) the emitted radiance of the laser

over time. However, paths in the search space Ω generated us-
ing conventional sampling techniques have a zero-probability of
finding the light source through an indirect interaction given the
delta functions in Eq. (8), as it is only illuminating a differential
spot in the relay wall. One could use a small area light instead,
but this approach still results in a very slow convergence rate.

Our laser sampling technique is inspired by next-event estima-
tion, which draws explicit connections between every path vertex
and light source. We cannot apply next-event estimation directly,
as we need to connect the path vertices to the relay wall and not
the laser origin. For this reason, we need to search for the laser
light source through a bounce in the geometry.

Consider a laser emitter targeted at Ml(xl, yl) = xl, also
illustrated in Fig. 5. We can analytically compute the contribution
from the laser xe to any other point x through the relay wall xl:

L̂e(x0 → x, ∆t0) = δ(xe − x0)T(xl → x, ∆tl) E(∆t0), (9)

where T(xl → x, ∆tl) denotes partial throughput from xl to x:

T(xl → x, ∆tl) = ρ(xl, ∆tl)G(xl, x) V (xl, x), (10)

with V (·) the visibility term. The geometry term G(·) models light
scattering on the relay wall as

G(xl, x) =
|n · norm(xl − x)| |nl · norm(x − xl)|

∥xl − x∥2
, (11)

ith n and nl used to denote the surface normals at x and xl
respectively. In order, Eq. (11) considers the scattering kernel,
Lambert’s cosine law and inverse square falloff respectively. This
technique is similar to creating a virtual point light source located
at the relay wall. While bidirectional path tracing can also be
used for this purpose, our approach is much simpler, as it fits
the purpose of NLOS scenes introducing very little overhead. Only
one point xl is illuminated, thus this vertex must be included in
a path for its contribution to be non-zero. In our laser sampling
technique, we always sample this vertex, so the probability distri-
bution for the vertex x1, illuminated by a light source in x0, that
s,

p(x1|x2) = p(x1) = δ(xl − x1), (12)
s a delta function independent of p(x2). However, performing
nly laser sampling produces biased results that ignore longer
aths, such as interreflections in the hidden geometry. For this
eason, our laser sampling technique is combined with the clas-
ical sampling strategy of the forward path tracer using multiple

mportance sampling (MIS) at every interaction.
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idden geometry sampling. The main goal of NLOS capture is to
easure the back-scattering of the hidden geometry (see Fig. 4).
his geometry can only be found through an indirect bounce on
he relay wall (either from the point of view of the sensor or the
mitter) and can be far from the wall. In a forward path tracer,
he generated vertices usually follow a probability distribution
(xj−1|xj) that either targets the reflectance distribution (which,
n general, is unlikely to reach the geometry) or the light source
ocation (which is also far from the hidden geometry). Thus,
uch a strategy presents a low probability of finding the hidden
eometry given its small projected solid angle to a point in the
elay wall.

For this sampling technique, we generate a random vertex x
n the surface of the hidden geometry. Its contribution can be
omputed with T(x → xs, ∆x) as per Eq. (10). We cast a shadow
ray to estimate the visibility term V (x, xs). The probability of each
sample is

p(xk−2|xk−1) = p(xk−2) = 1/A, (13)
here A is the total surface area of the hidden geometry. Unlike

aser sampling, this approach alone will not produce biased re-
ults. Nonetheless, using MIS along conventional reflectance sam-
ling techniques can yield better results if the hidden geometry
s close to the relay wall.

. Results

mplementation details. In the real world, a camera sensor is not
able to absorb any radiant flux over a delta time period, as the
resulting energy would be zero. As a consequence, we use a
discretization of the temporal domain, following previous works
on transient rendering [34] For binning, samples for each pixel
are accumulated on a time histogram ranging from times bstart to
bend, which can be seen as the temporal sensitivity of We. Each
bin has equal width bwidth, as detailed in Fig. 6. For an histogram
with B bins, it must hold that bend = bstart +B · bwidth. The ith bins
f all the per-pixel histograms are combined to obtain one frame
f the transient render.
Also, as mentioned, trying to find a random path that falls in

specific bin with a non-zero contribution is inefficient. Instead,
ach random path is stored on its corresponding ith bin based
n the time of arrival at the sensor tk, with index i = (tk −

start)/bwidth only if bstart ≤ tk ≤ bend. Histogram binning has
trade-off between high temporal resolution and faster conver-
ence of the algorithm depending on the chosen bin width bwidth

and the number of samples per pixel. Note that histograms are
the most naive and most inefficient forms of density estima-
tion [45], and more effective forms for reconstructing the tempo-
ral domain in transient rendering have been proposed [13]. The
application of these sophisticated density estimation techniques
is orthogonal to our contribution and left as future work.

Our techniques have been implemented in the Mitsuba 2
rendering system. All of the following tests have been performed
on an Intel Xeon Gold G140 at 3.7 GHz with 256 GB of main
memory. However, the system can work with much less memory
and computing power thanks to its efficiency. Table 1 shows
an overview of the complexity of each of the scenes described.
Generally, NLOS scenes in this work are simpler as they focus on
computational imaging applications instead of photorealism.

Line-of-sight scenes. Fig. 2 shows a standard Cornell Box with two
cubes and a small area light source in the ceiling. All elements
consist of diffuse materials. The time-resolved images show a
separation between the direct and indirect bounces. After some
time, the color bleeding effect of the red and green walls can
be seen on the white back wall. Fig. 7 shows two scenes. The

Bistro scene showcases complex geometry with an area light
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Fig. 6. Histogram density estimation for pixel (x, y) in the Teapot scene, using
multiple configurations of bin widths bwidth and samples per pixel spp. Ground
truth temporal profile is obtained using much finer bin width and larger number
of samples per pixel to approximate the continuous result.

Table 1
Triangle count for the scenes described in this work. Each type is ordered from
less complex to more complex light interactions.
Type Scene # triangles

Line-of-sight

Teapot 6, 320
Cornell box 33
Bistro 2, 832, 120
Contemporary bathroom 592, 186

Non-line-of-sight

Z letter 40
NLOS letters 27
Bunny 4, 968
Lucy 499, 516
White room 1, 219, 212

located in the sky. The Bathroom scene has a rectangular area
light source located in the window. For this reason, objects that
are closer to the emitter and camera appear first. Note how the
reflection of the mirror appears after the rest of the scene has
been illuminated, as the resulting paths are longer.

Non-line-of-sight scenes. Fig. 1 shows an example of simulated
captured data. Current NLOS reconstruction algorithms are lim-
ited when working with complex geometry, which can produce
multipath interference and result in a low-quality reconstruction.
For this reason, we choose to use planar, simple objects. Fig. 4
uses a Z letter composed of two parallel lines joined by a diagonal
line. Note that, for practical reasons in the NLOS cases, we do not
take into account the time of flight of the first and last bounces
that join the laser and sensor with the relay wall, and the laser
is always pointed at the center of this wall. As the laser emitter
illuminates the center of the relay wall, the diagonal part of the
letter has the shortest path and thus appears first at 60 ps. Later,
at 240 ps, paths that contain the two parallel lines start to appear,
creating two additional wavefronts on the top and bottom halves.

Our laser and hidden geometry sampling techniques reduce
the noise introduced by the Monte Carlo estimation, as seen in
Figs. 8 and 9. Note how the forward path tracing algorithm finds
either very few paths (Fig. 8) or none (Fig. 9) that contribute
to the final result. Adding hidden geometry sampling improves
this issue. However, the effects of laser sampling are much more
noticeable, as the projected solid angle of the illuminated area
in the relay wall is much smaller than the projected solid angle

of the hidden geometry, making it a larger issue for forward
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s

Fig. 7. Line-of-sight transient renders of the Bistro and the Bathroom scenes. Respectively, they are lit with an area light located in the sky and the bathroom
window. The images show (a) steady-state and (b–e) transient renders. Note how the reflection on the bathroom mirror appears after the wall is illuminated, as its
corresponding paths take more time.
Table 2
Render time for each of the proposed methods for the data shown in Fig. 8 (Close) and Fig. 9 (Far).

Forward path tracing Laser sampling Hidden geometry sampling Both

Close 37 m 21 s 45 m 13 s 80 m 16 s 88 m 40 s
Far 34 m 12 s 40 m 30 s 68 m 32 s 85 m 00 s
Fig. 8. Ablation test for our techniques in the NLOS letters scene, using 200,000
amples per pixel with a 256 × 256 resolution. The bottom row shows time-
resolved radiance for the (x, y) pixel at the top. Without laser sampling, we use
a light projector with a small solid angle to simulate illuminating a tiny area
in the relay wall. The ground truth has been obtained using several orders of
magnitude more samples per pixel.
89
Fig. 9. Ablation test for our techniques in the NLOS letters scene, with the same
configuration as described in Fig. 8. In this setup, the four hidden letters are
separated three times as much from the relay wall. This makes our techniques
much more effective when compared to conventional forward path tracing.
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Fig. 10. NLOS renders of the Lucy and White room scenes, rendered with 1M samples per pixel with a 256 × 256 resolution. Both scenes are closed rooms, with
he relay wall placed to close the four walls. The render times for each scene are 360.3 and 243.7 min, respectively. The front view (second column) depicts the
cene viewed from the relay wall.
Fig. 11. Convergence analysis based on the number of samples per pixel in the
NLOS letters scene. Error is computed as the mean squared error of each signal
with respect to the ground truth mentioned in Fig. 9.

Fig. 12. Processing of the simulated data presented in Fig. 9 with the phasor
ields-based NLOS reconstruction algorithm [10] for a scene computed with each
f the proposed methods, for 200,000 samples per pixel.

ath tracing. Bidirectional path tracing can also solve the light
ource issue, however, our method is simpler and can be im-
lemented in a forward path tracing algorithm without adding
noticeable overhead. Finally, combining both laser and hidden
eometry sampling greatly improves convergence, further reduc-
ng the variance of the results obtained with laser sampling. The
ffects of our sampling techniques are more noticeable if the
idden geometry is further away (Fig. 9). Note how moving the
idden geometry further away from the relay wall decreases the
omputation time, as more paths end prematurely, also when
erforming MIS.
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Table 2 shows the computation time for each of the mentioned
cases. Our methods require more time, but provide better results
proportionally. Fig. 11 shows a convergence analysis based on
the number of samples per pixel used to render the NLOS letters
scene. As stated before, the laser sampling technique alone is
more effective than hidden geometry sampling, but combining
both sampling strategies together provides better results by an
order of magnitude.

The resulting render is used by NLOS imaging algorithms,
obtaining successful reconstructions of the hidden geometry with
a fraction of the cost of other capture setups, as seen in Fig. 12.
It does not suffer from the noise introduced by real captures,
which could be seen as good or bad. Nevertheless, other authors
have used synthetic scenes that mimic reality [18], showing that
the simulated data fits well with data captured with physical
hardware and thus can be used as a replacement.

Lastly, Fig. 10 shows two complex scenes in closed rooms,
based on the Z-NLOS dataset [46]. They are challenging scenes for
NLOS reconstruction algorithms, mainly because of the multipath
interference caused by indirect bounces. Note how the multiple
wavefronts that appear in the relay wall are caused by the hidden
geometry, and how their time is related to the distance of each
geometry point to the emission source in the center of the relay
wall.

Polarization. As our implementation is done in Mitsuba 2, it
allows for the simulation of polarization of the light. Fig. 13 shows
a Cornell Box scene with three spheres: two have a dielectric ma-
terial and one has a conductor material. It shows the polarization
state of the light using the four Stokes vector components, for
both the steady and transient states. Note how light bouncing on
the spheres changes its polarization over time.

6. Conclusions

In this work we have implemented a transient forward path
tracing algorithm following the transient path integral [13] into
Mitsuba 2, extending it to support simple sampling techniques
targeting NLOS capture setups. Our technique reduces the path
integration search space by targeting scene geometry hidden
behind an intermediate wall and illuminated with a tiny area
light, effectively improving the convergence of the algorithm by
a large factor.

Point sampling in the relay-wall space allows simulating the
behavior of capture devices typically used in non-line-of-sight
environments. In our work, we have made use of flat shaped relay
walls, but our technique can be applied to any parametrizable 2D
surface. Still, the reconstruction framework by Liu et al. [10] is
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Fig. 13. Cornell box scene. It contains three spheres, from left to right: dielectric
(diamond), conductor (aluminum) and another thin dielectric. Polarization is
represented using Stokes vectors. S0 represents irradiance i.e. the intensity of the
eam represented using grayscale. S1 uses green and red values to represent the
redominance of horizontally vs vertically polarized light, respectively. Similarly,
2 represents the predominance of linear vs perpendicular diagonal polarization,
nd S3 represents the predominance of right-circularly vs left-circularly polarized
ight. The top row shows the steady-state render, while the bottom three rows
how transient renders at different time instants.

nly designed for planar surfaces, and simulating capture setups
ith curved or irregular relay walls could be used to test other
econstruction algorithms or develop new ones.

The proposed laser sampling technique, that creates a virtual
oint light (VPL) in the relay wall, greatly reduces variance in the
imulation. As with all VPL-based methods, this is a form of bidi-
ectional path tracing [47] with single-segment light subpaths. Of
ourse, larger light subpaths could be used for larger variance
eduction via MIS, but that would make the wavefront-based
PU implementation in Mitsuba 2 significantly more complex
hile introducing some overhead due to a quadratic growth
n shadow connections during MIS. Going beyond, the guiding
echnique we propose for sampling the contribution of hidden
bjects could introduce additional complexity in the computation
f the path contributions, resulting in a form of tridirectional path
racing [48].

Lastly, we have implemented our technique on top of the
itsuba 2 rendering software, so in practice we take advantage
f its parallelization and vectorization capabilities and its ability
o include more sophisticated light transport information such as
olarization, extending it to transient state. Additionally, Mitsuba
can also be used as a differentiable renderer, so our imple-
entation, while still unexplored, could also apply differentiable

endering in the non-line-of-sight domain. For this and other
uture paths of research, we provide the source code of our
pproach.1

RediT authorship contribution statement

Diego Royo: Conceptualization, Software, Validation, Visual-
zation, Writing – original draft. Jorge García: Software, Valida-
ion, Visualization. Adolfo Muñoz: Conceptualization, Validation,

1 https://github.com/diegoroyo/mitsuba2-transient-nlos
91
Writing – review & editing, Supervision. Adrian Jarabo: Concep-
tualization, Validation, Writing – review & editing, Supervision.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

This work has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 re-
search and innovation programme (project CHAMELEON, Grant
No 682080), the EU MSCA-ITN programme (project PRIME, Grant
No 956585) and MCIN/AEI/10.13039/501100011033 (project VIR-
TUALIGHT, Grant PID2019-105004GB-I00). Additionally, Diego
Royo was supported by a Gobierno de Aragón (2021–2025) pre-
doctoral grant.

References

[1] Wu D, Velten A, O’Toole M, Masia B, Agrawal A, Dai Q, et al. Decomposing
global light transport using time of flight imaging. Int J Comput Vis
2014;107(2):123–38.

[2] Marco J, Jarabo A, Nam JH, Liu X, Cosculluela MA, Velten A, et al. Virtual
light transport matrices for non-line-of-sight imaging. In: Proceedings of
the IEEE/CVF international conference on computer vision. 2021. p. 2440–9.

[3] Su S, Heide F, Swanson R, Klein J, Callenberg C, Hullin M, et al. Material
classification using raw time-of-flight measurements. In: Proceedings of
the IEEE conference on computer vision and pattern recognition. 2016. p.
3503–11.

[4] Naik N, Zhao S, Velten A, Raskar R, Bala K. Single view reflectance capture
using multiplexed scattering and time-of-flight imaging. In: Proceedings of
the 2011 SIGGRAPH Asia conference. 2011. p. 1–10.

[5] Heide F, Xiao L, Kolb A, Hullin MB, Heidrich W. Imaging in scattering
media using correlation image sensors and sparse convolutional coding.
Opt Express 2014;22(21):26338–50.

[6] Wu R, Jarabo A, Suo J, Dai F, Zhang Y, Dai Q, et al. Adaptive polarization-
difference transient imaging for depth estimation in scattering media. Opt
Lett 2018;43(6):1299–302.

[7] Velten A, Wu D, Jarabo A, Masia B, Barsi C, Joshi C, et al. Femto-
photography: Capturing and visualizing the propagation of light. ACM
Trans Graph 2013;32(4).

[8] Velten A, Willwacher T, Gupta O, Veeraraghavan A, Bawendi MG, Raskar R.
Recovering three-dimensional shape around a corner using ultrafast
time-of-flight imaging. Nature Commun 2012;3(1):1–8.

[9] Arellano V, Gutierrez D, Jarabo A. Fast back-projection for non-line of sight
reconstruction. Opt Express 2017;25(10):11574–83.

[10] Liu X, Guillén I, La Manna M, Nam JH, Reza SA, Huu Le T, et al.
Non-line-of-sight imaging using phasor-field virtual wave optics. Nature
2019;572(7771):620–3.

[11] O’Toole M, Lindell DB, Wetzstein G. Confocal non-line-of-sight imaging
based on the light-cone transform. Nature 2018;555(7696):338–41.

[12] Maeda T, Satat G, Swedish T, Sinha L, Raskar R. Recent advances in imaging
around corners. 2019, arXiv.

[13] Jarabo A, Marco J, Munoz A, Buisan R, Jarosz W, Gutierrez D. A framework
for transient rendering. ACM Trans Graph 2014;33(6):1–10.

[14] Nimier-David M, Vicini D, Zeltner T, Jakob W. Mitsuba 2: A retargetable
forward and inverse renderer. ACM Trans Graph 2019;38(6):1–17.

[15] Jarabo A, Masia B, Marco J, Gutierrez D. Recent advances in tran-
sient imaging: A computer graphics and vision perspective. Vis Inform
2017;1(1):65–79.

[16] Ramesh R, Davis J. 5D time-light transport matrix: What can we reason
about scene properties? Tech. Rep., 2008.

[17] Gupta M, Nayar SK, Hullin MB, Martin J. Phasor imaging: A gener-
alization of correlation-based time-of-flight imaging. ACM Trans Graph
2015;34(5):1–18.

[18] Marco J, Hernandez Q, Munoz A, Dong Y, Jarabo A, Kim MH, et al.
DeepToF: Off-the-shelf real-time correction of multipath interference in
time-of-flight imaging. ACM Trans Graph 2017;36(6):1–12.

[19] Kirmani A, Hutchison T, Davis J, Raskar R. Looking around the corner using
ultrafast transient imaging. Int J Comput Vis 2011;95(1):13–28.

[20] Velten A, Wu D, Jarabo A, Masia B, Barsi C, Lawson E, et al. Relativistic
ultrafast rendering using time-of-flight imaging. In: ACM SIGGRAPH 2012
talks. 2012. p. 1.

https://github.com/diegoroyo/mitsuba2-transient-nlos
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb1
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb1
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb1
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb1
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb1
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb5
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb5
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb5
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb5
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb5
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb6
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb6
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb6
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb6
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb6
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb7
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb7
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb7
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb7
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb7
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb8
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb8
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb8
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb8
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb8
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb9
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb9
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb9
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb10
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb10
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb10
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb10
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb10
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb11
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb11
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb11
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb12
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb12
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb12
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb13
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb13
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb13
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb14
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb14
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb14
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb15
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb15
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb15
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb15
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb15
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb16
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb16
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb16
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb17
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb17
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb17
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb17
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb17
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb18
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb18
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb18
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb18
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb18
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb19
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb19
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb19


D. Royo, J. García, A. Muñoz et al. Computers & Graphics 107 (2022) 84–92
[21] Heide F, Hullin MB, Gregson J, Heidrich W. Low-budget transient imaging
using photonic mixer devices. ACM Trans Graph 2013;32(4):1–10.

[22] Laurenzis M, Velten A. Nonline-of-sight laser gated viewing of scattered
photons. Opt Eng 2014;53(2):023102.

[23] Buttafava M, Zeman J, Tosi A, Eliceiri K, Velten A. Non-line-of-sight
imaging using a time-gated single photon avalanche diode. Opt Express
2015;23(16):20997–1011.

[24] O’Toole M, Heide F, Lindell DB, Zang K, Diamond S, Wetzstein G. Recon-
structing transient images from single-photon sensors. In: Proceedings of
the IEEE conference on computer vision and pattern recognition. 2017. p.
1539–47.

[25] Baradad M, Ye V, Yedidia AB, Durand F, Freeman WT, Wornell GW, et al.
Inferring light fields from shadows. In: Proceedings of the IEEE conference
on computer vision and pattern recognition. 2018. p. 6267–75.

[26] Batarseh M, Sukhov S, Shen Z, Gemar H, Rezvani R, Dogariu A. Passive
sensing around the corner using spatial coherence. Nature Commun
2018;9(1):1–6.

[27] Xin S, Nousias S, Kutulakos KN, Sankaranarayanan AC, Narasimhan SG,
Gkioulekas I. A theory of Fermat paths for non-line-of-sight shape recon-
struction. In: Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition. 2019. p. 6800–9.

[28] Iseringhausen J, Hullin MB. Non-line-of-sight reconstruction using efficient
transient rendering. ACM Trans Graph 2020;39(1):1–14.

[29] Tsai C-Y, Sankaranarayanan AC, Gkioulekas I. Beyond volumetric Albedo–A
surface optimization framework for non-line-of-sight imaging. In: Pro-
ceedings of the IEEE/CVF conference on computer vision and pattern
recognition. 2019. p. 1545–55.

[30] Young SI, Lindell DB, Girod B, Taubman D, Wetzstein G. Non-line-of-
sight surface reconstruction using the directional light-cone transform. In:
Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition. 2020. p. 1407–16.

[31] Chen W, Wei F, Kutulakos KN, Rusinkiewicz S, Heide F. Learned feature
embeddings for non-line-of-sight imaging and recognition. ACM Trans
Graph 2020;39(6):1–18.

[32] Smith A, Skorupski J, Davis J. Transient rendering. Technical Report,
Citeseer; 2008, UCSC-SOE-08-26.

[33] Adam A, Dann C, Yair O, Mazor S, Nowozin S. Bayesian time-of-flight for
realtime shape, illumination and albedo. IEEE Trans Pattern Anal Mach
Intell 2016;39(5):851–64.
92
[34] Jarabo A. Femto-photography: Visualizing light in motion. 2012.
[35] Keller M, Kolb A. Real-time simulation of time-of-flight sensors. Simul

Model Pract Theory 2009;17(5):967–78.
[36] Marco J, Guillén I, Jarosz W, Gutierrez D, Jarabo A. Progressive transient

photon beams. In: Computer graphics forum, vol. 38. (6):Wiley Online
Library; 2019, p. 19–30.

[37] Chen W, Ling H, Gao J, Smith E, Lehtinen J, Jacobson A, et al. Learning to
predict 3d objects with an interpolation-based differentiable renderer. Adv
Neural Inf Process Syst 2019;32.

[38] Pan X, Arellano V, Jarabo A. Transient instant radiosity for efficient
time-resolved global illumination. Comput Graph 2019;83:107–13.

[39] Baek S-H, Heide F. Polarimetric spatio-temporal light transport probing.
ACM Trans Graph 2021;40(6):1–18.

[40] Jarabo A, Arellano V. Bidirectional rendering of vector light transport.
In: Computer graphics forum, vol. 37. (6):Wiley Online Library; 2018, p.
96–105.

[41] Hullin MB. Computational imaging of light in flight. In: Optoelectronic
imaging and multimedia technology III, vol. 9273. International Society
for Optics and Photonics; 2014, 927314.

[42] Heide F, O’Toole M, Zang K, Lindell DB, Diamond S, Wetzstein G. Non-line-
of-sight imaging with partial occluders and surface normals. ACM Trans
Graph 2019;38(3):1–10.

[43] Yi S, Kim D, Choi K, Jarabo A, Gutierrez D, Kim MH. Differentiable transient
rendering. ACM Trans Graph 2021;40(6):1–11.

[44] Pediredla A, Veeraraghavan A, Gkioulekas I. Ellipsoidal path connections
for time-gated rendering. ACM Trans Graph 2019;38(4):1–12.

[45] Silverman BW. Density estimation for statistics and data analysis, vol. 26.
CRC Press; 1986.

[46] Galindo M, Marco J, O’Toole M, Wetzstein G, Gutierrez D, Jarabo A. A
dataset for benchmarking time-resolved non-line-of-sight imaging. In: IEEE
international conference on computational photography. IEEE; 2019, URL
https://graphics.unizar.es/nlos.

[47] Veach E, Guibas LJ. Optimally combining sampling techniques for Monte
Carlo rendering. In: Proceedings of the 22nd annual conference on
computer graphics and interactive techniques. 1995. p. 419–28.

[48] Anderson L, Li T-M, Lehtinen J, Durand F. Aether: An embedded domain
specific sampling language for Monte Carlo rendering. ACM Trans Graph
2017;36(4):1–16.

http://refhub.elsevier.com/S0097-8493(22)00120-0/sb21
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb21
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb21
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb22
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb22
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb22
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb23
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb23
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb23
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb23
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb23
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb26
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb26
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb26
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb26
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb26
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb28
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb28
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb28
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb31
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb31
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb31
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb31
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb31
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb32
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb32
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb32
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb33
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb33
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb33
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb33
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb33
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb34
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb35
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb35
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb35
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb36
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb36
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb36
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb36
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb36
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb37
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb37
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb37
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb37
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb37
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb38
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb38
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb38
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb39
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb39
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb39
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb40
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb40
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb40
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb40
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb40
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb41
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb41
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb41
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb41
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb41
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb42
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb42
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb42
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb42
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb42
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb43
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb43
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb43
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb44
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb44
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb44
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb45
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb45
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb45
https://graphics.unizar.es/nlos
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb48
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb48
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb48
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb48
http://refhub.elsevier.com/S0097-8493(22)00120-0/sb48

	Non-line-of-sight transient rendering
	Introduction
	Related work
	Transient path tracing
	Non-line-of-sight path tracing
	Results
	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References


