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Time-resolved illumination provides rich spatiotemporal
information for applications such as accurate depth sensing
or hidden geometry reconstruction, becoming a useful asset
for prototyping and as input for data-driven approaches.
However, time-resolved illumination measurements are
high-dimensional and have a low signal-to-noise ratio, ham-
pering their applicability in real scenarios. We propose a
novel method to compactly represent time-resolved illumi-
nation using mixtures of exponentially modified Gaussians
that are robust to noise and preserve structural information.
Our method yields representations two orders of magnitude
smaller than discretized data, providing consistent results in
such applications as hidden-scene reconstruction and depth
estimation, and quantitative improvements over previous
approaches. © 2022 Optica Publishing Group

https://doi.org/10.1364/OL.465316

Introduction. Transient imaging methods analyze time-
resolved light transport at very high temporal resolutions, with
applications such as reconstruction of hidden geometry [1,3,4],
object detection through scattering media [5], or material clas-
sification [6], with promising advances over recent years [7].
Current capture methods combine ultra-fast lasers with sen-
sors such as single-photon avalanche diode (SPAD) arrays [8,9],
providing dense spatial scanning and picosecond temporal reso-
lution that yield rich spatiotemporal information of the captured
scene.

These capture setups, however, introduce several limitations.
First, analyzing the spatiotemporal structure of indirect illumi-
nation is fundamental in many transient imaging applications,
but multiply scattered light can become too attenuated when
reaching the sensor. Consequently, imaging applications may be
subject to measurements with a low signal-to-noise ratio (SNR),
which can decrease their performance. Second, dense temporal
and spatial resolutions of the measurement space result in high
memory and bandwidth requirements (with datasets of tens or
hundreds of gigabytes) [10], which can become a bottleneck in
light transport analysis and application design.

In this work, we provide a method for lightweight representa-
tions of time-resolved illumination with a threefold benefit: the

representation space is up to two orders of magnitude smaller
than the source data and two times smaller than previous com-
pression approaches, it is robust to noise, and it preserves
structural information fundamental in transient imaging applica-
tions. We rely on mixtures of exponentially modified Gaussian
(EMG) distributions and design an optimization procedure that
accounts for spatial gradients to preserve structural information.

Several previous works propose alternative representations
of time-resolved light pulses with different goals. Note that
none of these methods is structure-aware, as they only use
temporal information from single points in the scene. Peters
et al. [11] use Pisarenko and maximum entropy spectral esti-
mates to reconstruct transient pulses and improve data quality
by removing multipath interference in range imaging. For these
same purposes, Kadambi et al. [12] recover per-pixel sparse
time profiles expressed as a sequence of impulses. Other works
are based on linear inverse problems [13], solved by numer-
ical optimization, and frequency-domain reconstructions [14],
which introduce Fourier analysis to reduce systematic errors.
Closer to our representation space, Wu et al. [15] analyze
direct and indirect illumination components by representing
light pulses as a combination of one Gaussian and one EMG.
Heide et al. [5] recover time-resolved illumination in turbid
media from correlation-based sensors by sparsely encoding light
with EMG distributions. Directly related to our goal, Liang et al.
[2] recently introduced feature-based compact representations of
time-resolved illumination using deep encoder–decoder neural
architectures. However, their approach is biased toward line-of-
sight training data and fails to preserve structural information
that is fundamental in modern transient imaging applications.
As shown in Fig. 1, our method yields representations of pre-
viously captured transient illumination histograms with higher
quality that preserve structural information, providing signifi-
cantly better performance on hidden geometry reconstructions
than feature-based methods, even with a higher compression
ratio.

Inspired by previous works [5,15], we propose to use EMG
distributions to compactly represent time-resolved illumination.
Consider a transient camera, which adds a third temporal dimen-
sion T for an image I with size W × H, i.e., I[i, j, t] ∈ RW×H×T .
A time-resolved pixel Ip[t] ∈ R1×1×T at p = {i, j} represents the
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Fig. 1. Application of our method to non-line-of-sight (NLOS) data for a real scene. Top: original captured signal histogram. Bottom:
adding noise to the histogram to simulate an exposure time 200 times shorter. The four letters in the scene are then reconstructed following
the work of Liu et al. [1]. Right: results for the original captured and compressed signals obtained using the autoencoder network proposed
by Liang et al. [2] and our method.

accumulation of light paths with a timestamp t traveling from the
light sources to the sensor pixel p after being scattered through
the scene elements. Time-resolved illumination typically has the
temporal shape of aggregated radiance pulses with exponential
decay. This behavior stems from multi-bounce convolutions of
the source illumination pulse with the scene geometry. EMG
distributions model a Gaussian with a parameterized exponen-
tial decay, and therefore arise as a convenient function to model
the physical behavior of different illumination bounces in time
[5,15]. We therefore propose to represent the response of a
pulsed source measured at an ultra-fast sensor pixel by aggre-
gating EMG distributions in a mixture model. We analyze the
benefits of our method on real data captured on non-line-of-
sight (NLOS) configurations [1] and simulated datasets [16,17],
which have proved to faithfully represent data captured with real
hardware. We demonstrate the consistency of our representation
in such applications as NLOS reconstruction [1] and line-of-
sight (LOS) depth estimation based on amplitude-modulated
continuous-wave (AMCW) time-of-flight (ToF) sensors [16].

EMGs. An EMG distribution is defined as

EMG(t; h, µ,σ, τ) =
hσ
τ
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where h controls the pulse amplitude, τ controls the exponential
decay rate, and the mean µ and standard deviation σ control
the peak position and width of the Gaussian distribution. The
complementary error function, erfc(·), is defined as

erfc(x) =
2
√
π

∫ ∞

x
e−t2 dt. (2)

In our method, we model the aggregation of multi-bounce
light paths on a time-resolved single pixel Ip[t] as an EMG
mixture model (EMGMM) with K EMGs, denoted I′p[t]:

Ip[t] ≈ I′p[t] = EMGMM(t; hp, µp,σp, τp, K)

=

K∑︂
k=1

EMG(t; hk, µk,σk, τk),
(3)

where each ap term represents a vector of K EMG parameters
ak with k = 1, . . . , K for the estimation of pixel p.

We formulate the estimation of a transient pixel Ip[t] ≈ I′p[t]
as an optimization problem, which attempts to compute the best

Fig. 2. Left: EMGMM with K EMG modules. Right: EMG sub-
structure with four parameters and one input connected to the
probability mass function (PMF) node corresponding to Eq. (1).
We use exponential functions to ensure h,σ, τ>0. As t ∈ [0, 1] is
normalized, a sigmoid function is applied to µ.

EMGMM parameterization {hp, µp,σp, τp} in order to minimize
the pixel loss function Lp:

arg min
hp ,µp ,σp ,τp

Lp(Ip, I′p), (4)

where Lp is lower when both time-resolved illumination dis-
tributions are more similar. Since we are working with EMG
distributions, we define Lp based on the Kullback–Leibler diver-
gence (KLD) [18], a statistical distance metric used to measure
the difference of probability distributions. For a pixel Ip and its
reconstruction I′p, the KLD is defined as

DKL(I′p ∥ Ip) =
∑︂
t∈T

I′p[t] log
(︃ I′p[t]
Ip[t]

)︃
. (5)

Note that KLD is asymmetric, and also produces low errors
where I′p ≈ 0 and high errors where Ip ≈ 0. To avoid these
extreme cases, we use its asymmetric property to finally
construct our pixel loss function Lp:

Lp(Ip, I′p) = DKL(Ip ∥ I′p) + DKL(I′p ∥ Ip)

=
∑︂
t∈T

(Ip[t] − I′p[t])(log (Ip[t]) − log (I′p[t])).
(6)

Given that Lp [Eq. (6)] and EMGs [Eqs. (1) and (2)] are
differentiable, we use stochastic gradient descent to optimize for
the best parameters in an EMG-based differentiable pipeline, as
shown in Fig. 2. For an input time t, the pipeline should output
the pixel intensity at that time I′p[t].

Other loss functions, such as the mean square error (MSE)
[2], tend to be biased toward large-valued regions in the tem-
poral domain, which may lead the optimization to fall into
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Table 1. KLD Loss LI =
∑︁

p Lp(Ip, I ′p) in a Region of the
Staircase NLOS Scene [17]a

KLD Loss MSE Loss
Lp Lp + Lg (S) Lp + Lg (R) Lp + Lg (R)

LI 0.012 0.010 0.008 0.010
aUsing K = 64 for pixel-independent (Lp), and Sliding (S) and Random

(R) structure-aware fitting (Lp + Lg). The Random fitting is also tested with
an MSE loss.

local minima. Our KLD-based optimization reduces the error
more uniformly across the entire temporal domain, as shown in
Table 1, compared with the MSE-based approach.

For practical reasons, we pre-process the optimization input
as follows: we first clip the temporal domain of each pixel Ip[t]
to t ∈ [tstart, T], where Ip[tstart] is the first non-zero value. We
then normalize the clipped temporal domain to t ∈ [0, 1] by sub-
tracting tstart and dividing by the resulting length T ′ = T − tstart.
The EMGMM [Eq. (3)] is evaluated in a reparameterized time
interval t ∈ [0, 1], where the reference pixel Ip[t] does not have
leading zeros. We store tstart, T ′ along with the 4K EMGMM
parameters hp, µp,σp, τp, and revert the clipping and normaliza-
tion to compute the loss [Eq. (6)], resulting in a compression
factor of T/(4K + 2) and an optimization runtime within O(KT).

Reconstructing a transient image. Eq. (4) defines the opti-
mization scheme to represent a single pixel Ip[t], with p = {i, j}
using an EMGMM. In a full transient image≡ I[i, j, t], neighbor-
ing pixels usually present a significant spatiotemporal structure.
We propose an optimization methodology to use spatiotem-
poral information to improve the pixel representation in a
transient image with a twofold benefit. First, reduction of noise
in low-SNR areas by leveraging noisy information from nearby
pixels. Second, preserving the spatial structure of the signal
by accounting for the spatial gradient. In particular, we use the
N × N window around each pixel p, denotedW(p, N) ≡ W and
defined as all pixels p′ where ∥p′ − p∥∞<N/2. We introduce a
spatial gradient loss term Lg that fosters consistency between
neighboring pixels, reducing the influence of per-pixel noise:

Lg(IW , I′W) =
∑︂
t∈T

(︂
∥Gup(IW , t) − Gup(I′W , t) ∥2

+ ∥Gdown(IW , t) − Gdown(I′W , t) ∥2

+ ∥Gleft(IW , t) − Gleft(I′W , t) ∥2

+ ∥Gright(IW , t) − Gright(I′W , t) ∥2

)︂
.

(7)

Each gradient G is defined for a neighborhood W where each
element is computed using its immediate neighbors as⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Gup(IW , t) = I[i, j − 1, t] − I[i, j, t]
Gdown(IW , t) = I[i, j + 1, t] − I[i, j, t]
Gleft(IW , t) = I[i − 1, j, t] − I[i, j, t]
Gright(IW , t) = I[i + 1, j, t] − I[i, j, t]

, p = {i, j} ∈ W, (8)

adding zero-padding on the image to satisfy the calculation for
edge pixels. The final optimization problem is

arg min
hW ,µW ,σW ,τW

Lg(IW , I′W) +
∑︂
p∈W

Lp(Ip, I′p), (9)

reconstructing N × N pixels in the image simultaneously. The
resulting optimization accounts for a number of EMGMMs, as
in Fig. 2, for each pixel in the neighborhood, calculating the

gradient afterwards. Typical values are N ∈ {3, 5, 7}. From our
experiments, N = 5 provides the best trade-off between perfor-
mance and time, with little difference from other values. Also,
the data need to be pre-processed, as explained previously. The
value of tstart is obtained as the minimum for all pixels p ∈ W

based on the first pixel that receives a photon. The compression
ratio for the whole neighborhood is (N2 · T)/(N2 · 4K + 2), with
an execution time of the optimization within O(N2KT).

Initialization. Since our optimization is based on a stochastic
gradient descent, a good initialization is crucial to avoid conver-
gence to bad local minima. Light transport in real-world scenes
decays exponentially: short, high-energy paths arrive early and
have higher temporal frequency, while lower-energy, multiply
scattered paths with longer optical lengths are smooth and arrive
later in time. We use these observations to estimate convenient
initial values for the peak µ, width σ, and decay rate τ of each
of the K EMG modeled pulses. Note that the amplitude h is just
a scale factor, so we arbitrarily initialize it as h = 1.

For each parameter, we initialize values vi in log space, which
provides a 5–10% error improvement with respect to linear-
space initialization for a similar number of epochs. We uniformly
sample ξi ∈ [log(vmin), log(vmax)] and then convert to linear range
as vi = exp(ξi). First, we sample K values for µ and

√
K values for

σ and τ, of which we generate all possible K combinations. The
first bounces with smaller µ are narrower, so they are assigned
the smaller values of σ and τ. This is done for each of the values
of K of µ and (σ, τ) pairs. Under this initialization, illumination
pulses centered at later timestamps µ will have a wider support
σ and a slower decay τ.

To reconstruct an image I[i, j, t] ∈ RW×H×T , the order for which
we optimize the pixels is important when using spatial consis-
tency, as in Eq. (9). A first approach would be to slide through
the N × N image pixels while optimizing each pixel neighbor-
hood. This can produce square artifacts, so we use a Random
sampling of the image and optimize a number of neighborhoods
until every pixel has converged. Our quantitative analysis, given
in Table 1, shows that, while the Sliding approach provides bet-
ter results than independently fitting each pixel, the Random
approach provides the best results overall.

Results. We evaluate the performance of signal compression
for our Single-pixel [Eq. (4)] and Structure-aware [Eq. (9)] mod-
els, and compare it with that of the 3D convolutional autoencoder
network recently proposed by Liang et al. [2], designed for the
same purposes.

In our method, the number of EMG components K intro-
duces a trade-off between quality and efficiency. Figure 3 shows
a comparison with the Single-pixel model. K = 4 is enough to
surpass deep-learning methods, increasing temporal similarity
for higher values of K. Execution times range from 5 s per pixel
with K = 4 EMGs, to 10 s with K = 64 EMGs (Intel Xeon Gold
6140 CPU, using 10 threads). Figure 4 uses K = 64 EMGs.

Fig. 3. Temporal slices and KLD loss metric LI =
∑︁

p Lp(Ip, I′p)
in the Bathroom scene [16], comparing each compressed image I′
with its original I for different numbers K of EMGs, yielding much
better performance than previous work [2].
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Fig. 4. Signal representation of a 10 × 10 region of Staircase
[17], as in Fig. 5. The last row shows a spatial slice Ip[t] for the
pixel p marked with a cross. The vertical dotted lines correspond to
four temporal slices at different instants (A–D).

Fig. 5. Comparison for a LOS Church scene [16]. Our method
using Single-pixel mode (green) outperforms previous works
(orange) in both signal reconstruction (spatial and temporal slices)
and AMCW ToF depth estimation (bottom right).

It showcases the importance of the 5 × 5 window with spatial
gradient constraints, added in the Structure-aware model, com-
pared with the Single-pixel model. Following this, Fig. 1 shows a
real-world NLOS imaging application, where the capture setups
produce noisier measurements, compared with simulated data.
Our work provides a higher-quality representation of both the
signal and hidden geometry reconstruction, while also improv-
ing on the robustness to noise. The compression ratio is also
higher, T/(4 · K + 2) ≈ 42, reducing the resulting file size from
365 mebibytes to 8.7 mebibytes. Finally, Fig. 5 shows results for
a LOS scene [16] with K = 16, resulting in approximately 62
times less parameters than the original signal with the Single-
pixel model. This almost doubles the compression ratio of the
autoencoder network of Liang et al. [2], while providing more
accurate representations, as shown in the spatial (A–D) and tem-
poral (bottom left) slices of I[i, j, t]. The bottom-right images
of Fig. 5 show a comparison with a practical application of
AMCW ToF depth estimation, where our output (right) yields
more consistent depth results than the output of Liang et al.
(center) [2].

In conclusion, we present a method to efficiently represent
time-resolved light transport data based on EMGs, significantly
reducing the number of coefficients required to represent time-
resolved transport. Our optimization loss, based on first-order
spatial differences, preserves the spatial structure and reduces
noise, both fundamental aspects in transient imaging applica-
tions. We demonstrate the benefits of our method in both LOS

and NLOS scenarios, overcoming previous approaches targeted
to transient light transport compression. Relating the EMG
components of our representation to higher-order illumination
bounces may help to increase the quality of scene-understanding
applications such as multipath interference correction in depth
imaging or hidden-scene reconstruction. Additionally, analysis
of the frequency components of our EMG-based representation
could be exploited in wave-based NLOS imaging algorithms
[1,3] to improve their computational efficiency.
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