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Fig. 1. We present ScanGAN360, a generative adversarial approach to scanpath generation for 360◦ images. For a given 360◦ scene,
ScanGAN360 generates realistic scanpaths (center ), outperforming state-of-the-art methods (left) and mimicking the human baseline
(right).

Abstract— Understanding and modeling the dynamics of human gaze behavior in 360◦ environments is crucial for creating, improving,
and developing emerging virtual reality applications. However, recruiting human observers and acquiring enough data to analyze their
behavior when exploring virtual environments requires complex hardware and software setups, and can be time-consuming. Being
able to generate virtual observers can help overcome this limitation, and thus stands as an open problem in this medium. Particularly,
generative adversarial approaches could alleviate this challenge by generating a large number of scanpaths that reproduce human
behavior when observing new scenes, essentially mimicking virtual observers. However, existing methods for scanpath generation
do not adequately predict realistic scanpaths for 360◦ images. We present ScanGAN360, a new generative adversarial approach to
address this problem. We propose a novel loss function based on dynamic time warping and tailor our network to the specifics of 360◦

images. The quality of our generated scanpaths outperforms competing approaches by a large margin, and is almost on par with the
human baseline. ScanGAN360 allows fast simulation of large numbers of virtual observers, whose behavior mimics real users, enabling
a better understanding of gaze behavior, facilitating experimentation, and aiding novel applications in virtual reality and beyond.

Index Terms—Scanpath generation, 360◦ images, virtual reality, generative adversarial models, saliency, human behavior.

1 INTRODUCTION

Virtual reality (VR) is an emerging medium that unlocks unprece-
dented user experiences. To optimize these experiences, it is crucial to
understand how people explore immersive virtual environments [19].
However, this depends on gathering large amounts of data from many
observers exploring multiple virtual environments, which requires com-
plex hardware and software setups and is a time-consuming task. This
burden could be alleviated by modeling time-dependent visual explo-
ration of a given 360◦ scene, where gaze behavior predictions from
the model serve as virtual observers of the scene. These models are
important for many applications in VR, including designing and edit-
ing VR content [49], generating realistic gaze trajectories of digital
avatars [18], understanding dynamic visual attention and visual search
behavior [67], or developing new rendering, display, and compression
algorithms, among others.

Current approaches that model how people explore virtual environ-
ments often leverage saliency prediction [4,38,50]. While this is useful
for some applications, the fixation points or regions predicted by these
approaches do not account for the time-dependent visual behavior of
the user, making it difficult to predict the order of fixations, or give
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insight into how people explore an environment over time. To handle
this temporality, some recent work has explored scanpath prediction in
360◦ images [4–6, 70]. However, these algorithms do not adequately
model how people explore immersive virtual environments, resulting
in erratic or non-plausible scanpaths.

Scanpath prediction has also been explored for conventional 2D
images [7, 14, 54]. However, virtual environments are inherently dif-
ferent from traditional images: they offer a larger space to interact
with, and users fully control the camera or viewpoint (i.e., they decide
where to look at), seeing only a part of a larger scene at each moment.
For instance, a region of interest in a traditional image can be seen
regardless of the starting point, and therefore many users could direct
their attention to it. However, in 360◦ content, a region of interest may
or may not fall in the view of an observer. This adds another degree
of freedom to the way in which users explore a scene, allowing them
the freedom to fixate on other parts of the scene. This generally leads
to more complex and varied gaze patterns between users [50], hence
hampering the precision of existing 2D techniques, which are trained
on controlled conditions with the whole stimuli visible to the observer
for a shorter period of time. Moreover, traditional methods are trained
on sets of data that present certain biases, such as the center bias [31],
where most of the gaze information falls in the center of the image.
However, these biases vary in virtual environments, where, for instance,
gaze has been shown to be directed to the whole equator, rather than
just the center of the image. The patterns employed by conventional
2D models or present in data from conventional 2D images are not
representative of viewing behavior in virtual environments [50]) and
could therefore reduce their applicability on them.

In this work, we present ScanGAN360, a novel framework for scan-
path generation for 360◦ images (Figure 1). Our model builds on a
conditional generative adversarial network (cGAN) architecture, for



which we discuss and validate two important insights that we show are
necessary for realistic scanpath generation. First, we propose a novel
loss function based on a spherical adaptation of dynamic time warping
(DTW); DTW is a metric for measuring similarity between two time
series, such as scanpaths, which to our knowledge has not been used
so far in this context. Second, we present a parameterization of the
scanpaths specifically tailored to 360◦ content. These insights allow us
to demonstrate state-of-the-art results for scanpath generation in 360◦
images, close to the human baseline and far surpassing the performance
of existing methods. Further, our approach is the first to enable robust
scanpath prediction over long time periods of up to 30 seconds, and,
unlike previous work, our model does not rely on saliency, which is
typically not available as ground truth.

Our model produces about 1,000 scanpaths per second, which en-
ables fast simulation of large numbers of virtual observers, whose
behavior mimics that reported for real users [50], without requiring
complex setups or time-consuming experiments. Using ScanGAN360,
we also explore applications in virtual scene design, which is useful
in video games, interior design, cinematography, and tourism, and
scanpath-driven video thumbnail generation of 360◦ images, which
provides previews of VR content for social media platforms. Beyond
these applications, we propose to use ScanGAN360 for applications
such as gaze behavior simulation for virtual avatars or gaze-contingent
rendering.

Our contributions can be summarized as follows:

• We present a generative adversarial approach with an architecture
and loss function specifically designed for scanpath generation
in 360◦ images and a parameterization of the scanpaths tailored
to this kind of content, and show that it is able to outperform
existing approaches both qualitatively and quantitatively using
metrics specifically designed for scanpath evaluation.

• Our model is able to generate around 1,000 scanpaths per second,
whose behavioral aspects and exploratory patterns closely mimic
those of captured, real human scanpaths [50].

• We show how our model can also be useful for tackling different
open problems in VR, including assisting virtual scene design,
or generating scanpath-driven video thumbnails of static 360◦
images.

Our code and pre-trained model are publicly available at:
https://webdiis.unizar.es/˜danims/projects/ScanGAN360.

2 RELATED WORK

Modeling and predicting attention The multimodal nature of
attention [37], together with the complexity of human gaze behavior,
make this a very challenging task. Many works devoted to it have relied
on representations such as saliency, which is a convenient representation
for indicating the regions of an image more likely to attract attention.
Early strategies for saliency modeling have focused on either creating
hand-crafted features representative of saliency [8, 23,24,36, 59,69], or
directly learning data-driven features [29, 57]. With the proliferation of
extensive datasets of human attention [9, 24, 46, 50, 66], deep learning–
based methods for saliency prediction have been successfully applied,
yielding impressive results [14, 43, 44, 58, 60, 61, 64].

However, saliency models do not take into account the dynamic
nature of human gaze behavior, and therefore, they are unable to model
or predict time-varying aspects of attention. Being able to model and
predict dynamic exploration patterns has been proven to be useful,
for example, for avatar gaze control [12, 48], video rendering in vir-
tual reality [33], or for directing users’ attention over time in many
contexts [10, 45]. Scanpath models aim to predict visual patterns of
exploration that an observer would perform when presented with an
image. In contrast to saliency models, scanpath models typically focus
on predicting plausible scanpaths, i.e., they do not predict a unique scan-
path and instead they try to mimic human behavior when exploring an
image, taking into account the variability between different observers.

Ellis and Smith [16] were pioneers in this field: They proposed a gen-
eral framework for generating scanpaths based on Markov stochastic
processes. Several approaches have followed this work, incorporating
behavioral biases in the process in order to produce more plausible
scanpaths [31, 34, 55, 56, 68].

In recent years, different deep learning approaches have been pro-
posed to predict human scanpaths. Some of them have resorted to
saliency prediction as a proxy for gaze estimation, either with deep
convolutional models [7, 21, 26, 29, 60], or with iterative representa-
tion learning [63]. Further, some works have leveraged the benefits of
recurrent neural networks to inherently model the temporal nature of
scanpaths, either based on region-of-interest and inhibition-of-return
strategies [54] or attentive modules [14]. Different from these works,
we tackle the problem of scanpath prediction in 360◦ images from a
generative perspective, and without resorting to saliency, which is not
usually available as ground truth. We refer the reader to the state of the
art review by Kümmerer et al. [28] for an exhaustive comparison of
previous approaches on scanpath prediction.

Attention in 360◦ images Predicting plausible scanpaths in 360◦
rather than 2D imagery is a more complex task: Observers do not only
scan a given image with their gaze, but they can now also turn their
head or body, effectively changing their viewport over time. Several
works have been proposed for modeling saliency in 360◦ images [11,38,
40,50,51,65]. However, scanpath prediction has received less attention.
In their recent work, Assens et al. [5] generalize their 2D model to
360◦ images, but their loss function is unable to reproduce the behavior
of ground truth scanpaths (see Figure 4, third column). A few works
have focused on predicting short-term sequential gaze points based on
users’ previous history for 360◦ videos [21, 32, 42, 62, 65], but they are
limited to small temporal windows (from one to ten seconds). For the
case of still images, a number of recent methods focus on developing
improved saliency models and principled methods to sample from
them [4, 6, 70], or rely on additional inputs such as head orientation at
each time step [22] or historical and task-related data [20].

Instead, we directly learn dynamic aspects of attention from ground
truth scanpaths by training a generative model in an adversarial manner,
with an architecture and loss function specifically designed for scan-
paths in 360◦ images. This allows us to (i) effectively mimic human
behavior when exploring scenes, bypassing the saliency generation and
sampling steps, and (ii) optimize our network to stochastically generate
360◦ scanpaths, taking into account observer variability.

3 OUR MODEL

We adopt a generative adversarial approach, specifically designed for
360◦ content in which the model learns to generate a plausible scanpath,
given the 360◦ image as a condition. In the following, we describe the
parameterization employed for the scanpaths, the design of our loss
function for the generator, and the particularities of our conditional
GAN architecture, ending with details about the training process.

3.1 Scanpath Parameterization
Scanpaths are commonly provided as a sequence of two-dimensional
values corresponding to the coordinates (i, j) of each gaze point in the
image. When dealing with 360◦ images in equirectangular projections,
gaze points are also often represented by their latitude and longitude
(φ ,λ ), φ ∈ [− π

2 ,
π

2 ] and λ ∈ [−π,π]. However, these parameteriza-
tions either suffer from discontinuities at the borders of a 360◦ image,
or result in periodic, ambiguous values. The same point of the scene
can have two different representations in these parameterizations: any
longitude λ , λ +2π represents the same meridian. This includes the
leftmost (λ=-180◦) and rightmost (λ=180◦) borders of the 360º im-
age. This ambiguity may hinder the learning process. We therefore
resort to a three-dimensional parameterization of our scanpaths, where
each gaze point p = (φ ,λ ) is transformed into its three-dimensional
representation P = (x,y,z) such that:

x = cos(φ)cos(λ ); y = cos(φ)sin(λ ); z = sin(φ).

This transformation assumes, without loss of generality, that the
panorama is projected over a unit sphere. We use this parameterization
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Fig. 2. Illustration of our generator and discriminator networks. Both networks have a two-branch structure: Features extracted from the 360◦ image
with the aid of a CoordConv layer and an encoder-like network are concatenated with the input vector for further processing. The generator learns to
transform this input vector, conditioned by the image, into a plausible scanpath. The discriminator takes as input vector a scanpath (either captured or
synthesized by the generator), as well as the corresponding image, and determines the probability of this scanpath being real (or fake). We train them
end to end in an adversarial manner, following a conditional GAN scheme. Please refer to the text for details on the loss functions and architecture.

for our model, which learns a scanpath P as a set of three-dimensional
points over time. Specifically, given a number of samples T over
time, P = (P1, ...,PT ) ∈ R3×T . The results of the model are then con-
verted back to a two-dimensional parameterization in terms of latitude
(φ = atan2(z,

√
x2 + y2)) and longitude (λ = atan2(y,x)) for display

and evaluation purposes.

3.2 Overview of the Model
Our model is a conditional GAN, where the condition is the RGB 360◦
image for which we wish to estimate a scanpath. The generator G is
trained to generate a scanpath from a latent code z (drawn randomly
from a uniform distribution, U (−1,1)), conditioned by the RGB 360◦
image y. The discriminator D takes as input a potential scanpath (x or
G(z,y)), as well as the condition y (the RGB 360◦ image), and outputs
the probability of the scanpath being real (or fake). The architecture of
both networks, generator and discriminator, can be seen in Figure 2, and
further details related to the architecture are described in Section 3.4.

3.3 Loss Function
The objective function of a conventional conditional GAN is inspired
by a minimax objective from game theory, with an objective [39]:

min
G

max
D

V (D,G) =

Ex[logD(x,y)]+Ez[log(1−D(G(z,y),y)].
(1)

We can separate this into two losses, one for the generator, LG, and
one for the discriminator, LD:

LG = Ez[log(1−D(G(z,y),y))], (2)

LD = Ex[logD(x,y)]+Ez[log(1−D(G(z,y),y))]. (3)

While this objective function suffices in certain cases, as the com-
plexity of the problem increases, the generator may not be able to
learn the transformation from the input distribution into the target one.
One can resort to adding a loss term to LG, and in particular one that
enforces similarity to the scanpath ground truth data. However, using
a conventional data term, such as MSE, does not yield good results
(Section 4.3 includes an evaluation of this). To address this issue, we
introduce a novel term in LG specifically targeted to our problem, and
based on dynamic time warping [41].

Dynamic time warping (DTW) measures the similarity between
two temporal sequences, considering both the shape and the order of
the elements of a sequence, without forcing a one-to-one correspon-
dence between elements of the time series. For this purpose, it takes
into account all the possible alignments of two time series r and s,
and computes the one that yields the minimal distance between them.
Specifically, the DTW loss function between two time series r ∈ Rk×n

and s ∈ Rk×m can be expressed as [15]:

DTW(r,s) = min
A
〈A,∆(r,s)〉, (4)

where ∆(r,s) = [δ (ri,s j)]i j ∈Rn×m is a matrix containing the distances
δ (·, ·) between each pair of points in r and s, A is a binary matrix that
accounts for the alignment (or correspondence) between r and s, and
〈·, ·〉 is the inner product between both matrices.

In our case, r = (r1, ...,rT ) ∈ R3×T and s = (s1, ...,sT ) ∈ R3×T are
two scanpaths that we wish to compare. While the Euclidean distance
between each pair of points is usually employed when computing
δ (ri,s j) for Equation 4, in our scenario that would yield erroneous
distances derived from the projection of the 360◦ image (both if done
in 2D over the image, or in 3D with the parameterization described in
Section 3.1). We instead use the distance over the surface of a sphere,
or spherical distance, and define ∆sph(r,s) = [δsph(ri,s j)]i j ∈ Rn×m

such that:

δsph(ri,s j) =

2arcsin
(

1
2

√
(rx

i − sx
j)

2 +(ry
i − sy

j)
2 +(rz

i − sz
j)

2
)
,

(5)

leading to our spherical DTW:

DTWsph(r,s) = min
A
〈A,∆sph(r,s)〉. (6)

We incorporate the spherical DTW to the loss function of the generator
(LG, Equation 2), yielding our final generator loss function L ∗

G:

L ∗
G = LG +λ ·Ez[DTWsph(G(z,y),ρ)], (7)

where ρ is a ground truth scanpath for the conditioning image y, and
the weight λ is empirically set to 0.1.



While a loss function incorporating DTW (or spherical DTW) is not
differentiable, a differentiable version, soft-DTW, has been proposed.
We use this soft-DTW in our model; details on it can be found in Section
S1 in the supplementary material or in the original publication [15].

3.4 Model Architecture

Both our generator and discriminator are based on a two-branch struc-
ture (see Figure 2), with one branch for the conditioning image y and
the other for the input vector (z in the generator, and x or G(z,y) in
the discriminator). The image branch extracts features from the 360◦
image, yielding a set of latent features that will be concatenated with
the input vector for further processing. Due to the distortion inher-
ent to equirectangular projections, traditional convolutional feature
extraction strategies are not well suited for 360◦ images: They use a
kernel window where neighboring relations are established uniformly
around a pixel. Instead, we extract features using panoramic (or spheri-
cal) convolutions [13], which have been shown to perform better for
equirectangular content [65]. Spherical convolutions are a type of di-
lated convolutions where the relations between elements in the image
are not established in image space, but in a gnomonic, non-distorted
space. These spherical convolutions can represent kernels as patches
tangent to a sphere where the 360◦ is reprojected, and therefore allow
the network to learn spatial relations of 360◦ content, such as longitu-
dinal continuities or spherical distortions. Once the main features are
extracted (see Figure 2), we resort to traditional convolutions to process
the remaining latent information.

In our problem of scanpath generation, the location of the features
in the image is of particular importance, hence we train our model to
learn a mapping from the image domain to coordinates. To facilitate the
spatial learning of the network, as well as to help stabilize the training
process, we use the recently presented CoordConv strategy [35], which
gives convolutions access to their own input coordinates by adding
extra coordinate channels. We do this by concatenating a CoordConv
layer to the input 360◦ image (see Figure 2). Without CoordConv, the
network would be forced not only to learn the salient image features,
but also their explicit coordinate location in the input image. Since
convolutional neural network (CNN) architectures are designed to be
shift invariant, using explicit coordinates as input eases the learning
process. An ablation study in Section 4.3 shows the effectiveness of
using CoordConv.

Although our model has no explicit module to handle time-
dependence, our generator implicitly learns the sequentiality from
the training data by optimizing the DTW-based loss function, which is
specifically tailored for handling temporal sequences. This optimization
process enforces our generator to generate scanpaths whose temporal
component is coherent with that of the ground-truth scanpaths.

3.5 Dataset and Training Details

We train our model using Sitzmann et al.’s [50] dataset, composed of 22
different 360◦ images and a total of 1,980 scanpaths from 169 different
users. Each scanpath contains gaze information captured during 30
seconds with a binocular eye tracking recorder at 120 Hz. We sample
these captured scanpaths at 1 Hz (i.e., T = 30), and reparameterize them
(Section 3.1), so that each scanpath is a sequence P = (P0, ...,P29) ∈
R3×T . Given the relatively small size of the dataset, we perform data
augmentation by longitudinally shifting the 360◦ images (and adjusting
their scanpaths accordingly); specifically, for each image we generate
six different variations with random longitudinal shifting. We use 19
of the 22 images in this dataset for training, and reserve three to be
part of our test set (more details on the full test set are described in
Section 4). With the data augmentation process, this yields 114 images
in the training set.

During our training process we use the Adam optimizer [27], with
constant learning rates lG = 10−4 for the generator, and lD = 10−5 for
the discriminator, both of them with momentum = (0.5,0.99). Further
training and implementation details can be found in the supplementary
material.

4 RESULTS AND ANALYSIS

We evaluate the quality of the generated scanpaths with respect to
the captured, ground truth scanpaths, as well as to other approaches.
We also analyze behavioral aspects of our scanpaths, and compare
them to those reported for real human observers by previous work.
We additionally ablate our model to illustrate the contribution of the
different design choices.

We evaluate or model on two different test sets. First, using the
three images from Sitzmann et al.’s dataset [50] left out of the training
(Section 3.5): room, chess and robots. To ensure our model has an
ability to generalize, we also evaluate it with a different dataset from
Rai et al. [46]. This dataset consists of 60 scenes watched by 40 to 42
observers for 25 seconds. Thus, when comparing to their ground truth,
we cut our 30-second scanpaths to the maximum length of their data.
Please also refer to the supplementary material for more details on the
test set, as well as further evaluation and results.

Qualitative results of our model can be seen in Figure 3, which,
for scenes with different layouts, shows: the scene, a sample ground
truth scanpath, and three of our generated scanpaths sampled from the
generator. Our model is able to produce plausible, coherent scanpaths
that focus on relevant parts of the scene. In the generated scanpaths
we observe regions where the user focuses (points of a similar color
clustered together), as well as more exploratory behavior. The generated
scanpaths are diverse but plausible, as one would expect if different
users watched the scene (the supplementary material contains more
ground truth scanpaths, showing this diversity). Further, our model
is not affected by the inherent distortions of the 360◦ image. This is
apparent, for example, in the market scene: The central corridor, narrow
and seemingly featureless, is observed by generated virtual observers.

Scanpath similarity metrics Evaluating scanpath similarity quan-
titatively is not a trivial task, and a number of metrics have been pro-
posed and used in the literature [2,7,17,54], each focused on a different
context or aspect of gaze behavior. Proposed metrics can be roughly
categorized into: (i) direct measures based on Euclidean distance; (ii)
string-based measures based on string alignment techniques (such as
the Levenshtein distance, LEV); (iii) curve similarity methods; (iv) met-
rics from time-series analysis (like DTW, on which our loss function
is based); and (v) metrics from recurrence analysis (e.g., recurrence
measure REC and determinism measure DET). We refer the reader to
supplementary material and the review by Fahimi and Bruce [17] for an
in-depth explanation and comparison of existing metrics. Here, we in-
clude a subset of metrics that take into account both the position and the
ordering of the points (namely LEV and DTW), and two metrics from
recurrence analysis (REC and DET), which have been reported to be
discriminative in revealing viewing behaviors and patterns when com-
paring scanpaths. We nevertheless compute our evaluation for the full
set of metrics reviewed by Fahimi and Bruce [17] in our supplementary
material.

Since for each image we have a number of ground truth scanpaths,
and a set of generated scanpaths, we compute each similarity metric
for all possible pairwise comparisons (each generated scanpath against
each of the ground truth scanpaths), and average the result. In order
to provide an upper baseline for each metric, we also compute the
human baseline (Human BL) [63], which is obtained by comparing
each ground truth scanpath against all the other ground truth ones, and
averaging the results. In a similar fashion, we compute a lower baseline
based on sampling gaze points randomly over the image (Random BL).

Quantitative results in Table 1 further show that our generated scan-
paths are close to the human baseline (Human BL), both in the test set
from Sitzmann et al.’s dataset, and over Rai et al.’s dataset. A value
close to Human BL indicates that the generated scanpaths are as valid
or as plausible as the captured, ground truth ones. Note that obtaining a
value lower than Human BL is possible, if the generated scanpaths are
on average closer to the ground truth ones, and exhibit less variance.

4.1 Comparison to Other Methods
We compare ScanGAN360 to three methods devoted to scanpath pre-
diction in 360◦ images: SaltiNet-based scanpath prediction [4, 6] (we



Fig. 3. Results of our model for two different scenes: market and mall from Rai et al.’s dataset [46]. From left to right : 360◦ image, ground truth
sample scanpath, and three scanpaths generated by our model. The generated scanpaths are plausible and focus on relevant parts of the scene, yet
they exhibit the diversity expected among different human observers. Please refer to the supplementary material for a larger set of results.

Table 1. Quantitative comparisons of our model against SaltiNet [6]
and Zhu et al. [70]. We also compare against upper (human baseline,
Human BL) and lower (randomly sampling over the image, Random
BL) baselines. Arrows indicate whether higher or lower is better, and
boldface highlights the best result for each metric (excluding the ground
truth Human BL). ∗SaltiNet is trained with Rai et al.’s dataset; we include
it for completeness.

Dataset Method LEV ↓ DTW ↓ REC ↑ DET ↑

Test set from
Sitzmann et al.

Random BL 52.33 2370.56 0.47 0.93
SaltiNet 48.00 1928.85 1.45 1.78

ScanGAN360 (ours) 46.15 1921.95 4.82 2.32
Human BL 43.11 1843.72 7.81 4.07

Rai et al.’s
dataset

Random BL 43.11 1659.75 0.21 0.94
SaltiNet∗ 48.07 1928.41 1.43 1.81
Zhu et al. 43.55 1744.20 1.64 1.50

ScanGAN360 (ours) 40.99 1549.59 1.72 1.87
Human BL 39.59 1495.55 2.33 2.31

will refer to it as SaltiNet in the following), PathGAN [5] and Zhu
et al.’s method [70]. For comparisons to SaltiNet we use the public
implementation of the authors, while the authors of Zhu et al. kindly
provided us with the results of their method for the images from Rai
et al.’s dataset (but not for Sitzmann et al.’s); we therefore have both
qualitative (Figure 4) and quantitative (Table 1) comparisons to these
two methods. In the case of PathGAN, no model or implementation
could be obtained, so we compare qualitatively to the results extracted
from their paper (Figure 4, third column).

Since our model is generative, it can generate as many scanpaths as
needed and model different potential observers. In order to perform a
fair comparison, we carry out our evaluations on a random set of 100
scanpaths generated by our model, to match the number of generated
scanpaths available for competing methods. Nevertheless, we have
also analyzed the stability of our generative model by computing our
evaluation metrics for a variable number of generated scanpaths (see
Section 4.3).

Table 1 shows that our model consistently provides results closer to
the ground truth scanpaths than Zhu et al.’s and SaltiNet. The latter is
based on a saliency-sampling strategy, and thus these results indicate
that indeed the temporal information learnt by our model is relevant
for the final result. Our model, as expected, also amply surpasses the
random baseline. In Figure 4 we see how PathGAN scanpaths fail to
focus on the relevant parts of the scene (see, e.g., snow or square), while
SaltiNet exhibits a somewhat erratic behavior, with large displacements
and scarce areas of focus (train, snow or square show this). Finally,
Zhu et al.’s approach tends to place gaze points at high contrast borders
(see, e.g., square or resort).

4.2 Behavioral Evaluation
While the previous subsection employs well-known metrics from the
literature to analyze the performance of our model, in this subsection
we perform a higher-level analysis of its results. We assess whether

the behavioral characteristics of our scanpaths match those which have
been reported from actual users watching 360◦ images [50].

Exploration time Sitzmann et al. measure the exploration time
as the average time that users took to move their eyes to a certain
longitude relative to their starting point, and measure how long it
takes for users to fully explore the scene. Figure 5 (left) shows this
exploration time, measured by Sitzmann et al. from captured data, for
the three scenes from their dataset included in our test set (room, chess,
and robots). To analyze whether our generated scanpaths mimic this
behavior and exploration speed, we plot the exploration time of our
generated scanpaths (Figure 5, center left) for the same scenes and
number of scanpaths. We can see how the speed and exploration time
are very similar between real and generated data. Individual results per
scene can be found in the supplementary material.

Fixation bias Similar to the center bias of human eye fixations
observed in regular images [24], the existence of a Laplacian-like
equator bias has been measured in 360◦ images [50]: The majority
of fixations fall around the equator, in detriment of the poles. We
have evaluated whether the distribution of scanpaths generated by our
model also presents this bias. This is to be expected, since the data
our model is trained with exhibits it, but is yet another indicator that
we have succeeded in learning the ground truth distribution. We test
this by generating, for each scene, 1,000 different scanpaths with our
model, and aggregating them over time to produce a pseudo-saliency
map, which we term aggregate map. Figure 5 (right) shows this for
two scenes in our test set: We can see how this equator bias is indeed
present in our generated scanpaths.

Inter-observer congruency It is common in the literature analyz-
ing users’ gaze behavior to measure inter-observer congruency, often by
means of a receiver operating characteristic (ROC) curve. We compute
the congruency of our “generated observers” through this ROC curve
for the three scenes in our test set from the Sitzmann et al. dataset (Fig-
ure 5, center right). The curve calculates the ability of the ith scanpath
to predict the aggregate map of the corresponding scene. Each point in
the curve is computed by generating a map containing the top n% most
salient regions of the aggregate map (computed without the ith scan-
path), and calculating the percentage of gaze points of the ith scanpath
that fall into that map. Our ROC curve indicates a strong agreement
between our scanpaths, with around 75% of all gaze points falling
within 25% of the most salient regions. These values are comparable
to those measured in previous studies with captured gaze data [30, 50].

Temporal and spatial coherence Our generated scanpaths have
a degree of stochasticity, to be able to model the diversity of real hu-
man observers. Works from vision science have shown a relationship
between spatial and temporal mechanisms in gaze behavior at different
levels. For instance, Kapoula [25] showed that fixation duration on
subsequent points of interest can be determined directly by the combi-
nation of the processing done at the current fixation, and the basis of
partial information available in peripheral vision when the eye was at



Fig. 4. Qualitative comparison to previous methods for five different scenes from Rai et al.’s dataset. In each row, from left to right: 360◦ image, and a
sample scanpath obtained with our method, PathGAN [5], SaltiNet [6], and Zhu et al.’s [70]. Note that, in the case of PathGAN, we are including the
results directly taken from their paper, thus the different visualization. Our method produces plausible scanpaths focused on meaningful regions, in
comparison with other techniques. Please see text for details, and the supplementary material for a larger set of results, also including ground truth
scanpaths.

Fig. 5. Left : Exploration time for real captured data (left) and scanpaths generated by our model (center left). Speed and exploration time of our
scanpaths are on par with that of real users. Center right : ROC curve of our generated scanpaths for each individual test scene (gray), and averaged
across scenes (magenta). The faster it converges to the maximum rate, the higher the inter-observer congruency. Right : Aggregate maps for two
different scenes, computed as heatmaps from 1,000 generated scanpaths. Our model is able to produce aggregate maps that focus on relevant
areas of the scenes and exhibit the equator bias reported in the literature.

the preceding fixation. Thus, each gaze point is conditioned not only
by the features in the scene, but also by the previous history of gaze
points of the user. If two users start watching a scene in the same re-
gion, a certain degree of coherence between their scanpaths is expected,
that may diverge more as more time passes, up to a point where, as
the whole scene has been explored, patterns start to converge again.
This has already been reported in VR, where users’ attention tends to
converge after approximately 17 seconds [50]. To assess whether our
scanpaths actually follow a coherent pattern, we analyze the temporal
coherence of generated scanpaths that start in the same region. We
generate a set of random scanpaths for each of the scenes in our test
dataset, and separate them according to the longitudinal region where
the scanpath begins (e.g., [0◦,40◦), [40◦,80◦), etc.). Then, we estimate
the probability density of the generated scanpaths from each starting
region using kernel density estimation (KDE) for each timestamp (see
Figure 6). During the first seconds, gaze points tend to stay in a smaller
area, and closer to the starting region; as time progresses, they exhibit a
more exploratory behavior with higher divergence, and eventually may

reach a convergence close to regions of interest. It is also possible to
see how the behavior differs depending on the starting region. More
results can be found in the supplementary material.

4.3 Ablation Studies and Model Stability

We also evaluate the contribution of different elements of our model to
the final result. For this purpose, we analyze a standard GAN strategy
(i.e., using only the discriminative loss), as the baseline. Figure 7 shows
how the model is unable to learn both the temporal nature of the scan-
paths, and their relation to image features. We also analyze the results
obtained by adding a term based on the MSE between the ground truth
and the generated scanpath to the loss function, instead of our DTWsph
term (we compute a traditional MSE loss, since the only previous
generative approach for scanpaths [5] relied on it for their loss term).
However, MSE only measures a one-to-one correspondence between
points, considering for each time instant a single point, unrelated to the
rest. This hinders the learning process, leading to non-plausible results
(Figure 7, second row). This behavior is corrected when our DTWsph



Fig. 6. In order to verify whether our scanpaths are meaningful and realistic, we analyze their exploratory behavior over time, depending on the
starting point. For this figure, we take a set of 1,000 scanpaths starting at two different longitudinal ranges (depicted in red in the first image of each
row, including ranges from 0◦ to 20◦ (i.e., the left-most part of the image), and from 160◦ to 180◦ (i.e., the center of the image)). For each of them, we
show the kernel density estimation (KDE) of gaze points at four different timestamps t = {2,10,20,30} seconds. The scanpaths’ behavior is initially
more exploratory, albeit linked to the starting region, and eventually converges over time.

Table 2. Quantitative results of our ablation study. Arrows indicate
whether higher or lower is better, and boldface highlights the best result
for each metric (excluding the ground truth Human BL). Please refer to
the text for details on the ablated models.

Metric LEV ↓ DTW ↓ REC ↑ DET ↑
Basic GAN 49.42 2088.44 3.01 1.74

MSE 48.90 1953.21 2.41 1.73
DTWsph (no CoordConv) 47.82 1988.38 3.67 1.99

DTWsph (ours) 46.19 1925.20 4.50 2.33
Human Baseline (Human BL) 43.11 1843.72 7.81 4.07

Table 3. Quantitative results of our model for sets of generated scanpaths
with different number of samples. Our results are stable regardless of
the number of generated samples.

Dataset # of samples LEV ↓ DTW ↓ REC ↑ DET ↑

Test set from
Sitzmann et al.

100 46.19 1925.20 4.50 2.33
800 46.10 1916.26 4.75 2.34

2500 46.15 1921.95 4.82 2.32
Human BL 43.11 1843.72 7.81 4.07

Rai et al.’s
dataset

100 40.95 1548.86 1.91 1.85
800 40.94 1542.82 1.86 1.86

2500 40.99 1549.59 1.72 1.87
Human BL 39.59 1495.55 2.33 2.31

is added instead, since it is specifically targeted for time series data and
takes into account the actual spatial structure of the data (Figure 7, third
row). The corresponding quantitative measures over our test set from
Sitzmann et al. can be found in Table 2. We also analyze the effect
of removing the CoordConv layer from our model: Results in Table 2
indicate that the use of CoordConv does have a positive effect on the
results, helping learn the transformation from the input to the target
domain.

As previously mentioned, our model is stochastic by nature. This
means that the scanpaths that it generates for a given scene are al-
ways different, simulating observer variability. We have also analyzed
whether the metrics reported throughout the paper vary depending on
the number of scanpaths generated, to assess the stability of our model.
Results can be seen in Table 3, which shows how the metrics remain
stable when the number of generated samples decreases, indicating
the robustness of our method. Additionally, we have run our training
procedure multiple times with different seeds to guarantee its correct
reproducibility, and computed the corresponding set of metrics for each
of them, obtaining stable results in our evaluations (Table 4).

Fig. 7. Qualitative ablation results. From top to bottom: basic GAN
strategy (baseline); adding MSE to the loss function of the former; our
approach; and an example ground truth scanpath. These results illustrate
the need for our DTWsph loss term.

Table 4. Quantitative results of our model obtained from averaging five
models trained with varying random seeds. The low standard deviations
are indicative of the model’s stability.

Metric LEV ↓ DTW ↓ REC ↑ DET ↑
Mean (STD) 46.43 (0.23) 1953.56 (46.23) 4.41 (0.31) 2.39 (0.07)

5 APPLICATIONS OF THE MODEL

Our model is able to generate plausible 30-second scanpaths, drawn
from a distribution that mimics the behavior of human observers. As we
briefly discuss through the paper, this enables a number of applications,
starting with avoiding the need to recruit and measure gaze from high
numbers of observers in certain scenarios. We show here two appli-
cations of our model, virtual scene design and scanpath-driven video
thumbnail creation for static 360◦ images, and discuss other potential
application scenarios.



Fig. 8. Our model can be used to aid the design of virtual scenes. We show two examples, each with two possible layouts (original, and removing
some significant elements). We generate a large number of scanpaths (virtual observers) starting from the same region, and compute their
corresponding probability density function as a function of time, using KDE (see Section 4.2). room scene: The presence of the dining table and
lamps (top) retains the viewers’ attention longer, while in their absence they move faster towards the living room area, performing a more linear
exploration. gallery scene: When the central picture is present (top), the viewers linger there before splitting to both sides of the scene. In its
absence, observers move towards the left, then explore the scene linearly in that direction.

Virtual scene design In an immersive environment, the user has
control over the camera when exploring it. This poses a challenge to
content creators and designers, who have to learn from experience how
to layout the scene to elicit a specific viewing or exploration behavior.
Previous works have proposed predicting gaze duration to optimize the
placement of visual elements in virtual environments [1]. This is not
only a problem in VR, but has also received attention in, e.g., manga
composition [10] or web design [45]. However, actually measuring gaze
from a high enough number of users to determine optimal layouts can
be challenging and time-consuming. While certain goals may require
real users, others can make use of our model to generate plausible and
realistic generated observers.

As a proof of concept, we have analyzed our model’s ability to adapt
its behavior to different layouts of a scene (Figure 8). Specifically, we
have removed certain elements from a scene, and run our model to
analyze whether these changes affect the behavior of our generated
scanpaths. We plot the resulting probability density (using KDE, see
Section 4.2) as a function of time. The presence of different elements
in the scene affects the general viewing behavior, including viewing
direction, or time spent on a certain region. These examples are particu-
larly promising if we consider that our model is trained with a relatively
small number of generic scenes.

Scanpath-driven video thumbnails of static 360◦ images 360◦
images capture the full sphere and are thus unintuitive when projected
into a conventional 2D image. To address this problem, a number
of approaches have proposed to retarget 360◦ images or videos to
2D [50, 52, 53]. In the case of images, extracting a representative 2D
visualization of the 360◦ image can be helpful to provide a thumbnail
of it, for example as a preview on a social media platform, but these
thumbnails are static. The Ken Burns effect can be used to animate
static images by panning and zooming a cropping window over a static
image, producing more informative and engaging thumbnails. In the
context of 360◦, however, it seems unclear what the trajectory of such

a moving window would be.
To address this question, we leverage our generated scanpaths to

drive a Ken Burns–like video thumbnail of a static panorama. For
this purpose, we use an average scanpath, computed as the probability
density of several generated scanpaths using KDE (see Section 4.2), as
the trajectory of the virtual camera. Specifically, KDE allows us to find
the point of highest probability, along with its variance, of all generated
scanpaths at any point in time. Note that this point is not necessarily
the average of the scanpaths. We use the time-varying center point as
the center of our 2D viewport, and its variance to drive the FOV or
zoom of the moving viewport.

Figure 9 shows several representative steps of this process for two
different scenes (chess and street), while full videos of several scenes
are included in the supplementary video. The generated Ken Burns–
style panorama previews resemble a human observer exploring these
panoramas, and provide a very intuitive preview of the complex scenes
they depict.

Other applications Our model has the potential to enable other
applications beyond what we have shown in this section. One such
example is gaze simulation for virtual avatars. When displaying or
interacting with virtual characters, eye gaze is one of the most criti-
cal, yet most difficult, aspects to simulate [47]. Accurately simulating
gaze behavior not only aids in conveying realism, but can also provide
additional information such as signalling interest, aiding the conver-
sation through non-verbal cues, facilitating turn-taking in multi-party
conversations, or indicating attentiveness, among others. Given an
avatar immersed within a virtual scene, generating plausible scanpaths
conditioned by a 360◦ image of their environment could be an effi-
cient, affordable way of driving the avatar’s gaze behavior in a realistic
manner.

Another potential application of our model is its use for gaze-
contingent rendering. These approaches have been proposed to save
rendering time and bandwidth in VR systems or drive the user’s ac-



Fig. 9. Scanpath-driven video thumbnails of 360◦ images. We propose a
technique to generate these videos that results in relevant and intuitive
explorations of the 360◦ scenes. Top row: Points of highest probability
at each time instant, displayed as scanpaths. These are used as a
guiding trajectory for the virtual camera. Middle rows: Two viewports
from the guiding trajectory, corresponding to the temporal window with
lowest variance. Bottom row: 2D images retargeted from those viewports.
Please refer to the text for details.

commodation. Eye trackers are required for these applications, but
they are often too slow, making computationally efficient approaches
for predicting gaze trajectories or landing positions important [3]. Our
method for generating scanpaths could not only help prototype and
evaluate such systems in simulation, without the need for a physical
eye tracker and actual users, but also in optimizing their latency and
performance during runtime.

6 CONCLUSION

In summary, we propose ScanGAN360, a conditional GAN approach
to generating gaze scanpaths for immersive virtual environments. Our
unique parameterization tailored to panoramic content, coupled with
our novel usage of a DTW loss function, allow our model to generate
scanpaths of significantly higher quality and duration than previous
approaches. We further explore applications of our model: Please refer
to the supplementary material for a description and examples of these.

Our GAN approach is well suited for the problem of scanpath gener-
ation: A single ground truth scanpath does not exist, yet real scanpaths
follow certain patterns that are difficult to model explicitly but that are
automatically learned by our approach. Note that our model is also very
fast and can produce about 1,000 scanpaths per second. This may be a
crucial capability for interactive applications: our model can generate
virtual observers in real time.

Limitations and future work Our model is trained with 30-second
long scanpaths, sampled at 1 Hz. Although this is significantly longer
than most previous approaches [16, 30, 34, 54], exploring different or
variable lengths or sampling rates remains an interesting avenue for fu-
ture work.When training our model, we focus on learning higher-level

aspects of visual behavior, and we do not explicitly enforce low-level
ocular movements (e.g., fixations or saccades). Currently, our relatively
low sampling rate prevents us from modeling very fast dynamic phe-
nomena, such as saccades. Yet, fixation patterns naturally emerge in
our results, and future work could explicitly take low-level oculomotor
aspects of visual search into account.

We have focused on static images, but our parameterization and loss
function are tailored to general 360◦ content, so future work could build
on our framework and adapt it to tackle dynamic content (360◦ videos).
In a similar spirit, a DTW-based loss function could also be applied to
scanpath generation in conventional 2D images (using an Euclidean
distance in 2D instead of our δsph), potentially leading to better results
than current 2D approaches based on mean-squared error.

We have evaluated our model in an entirely new dataset, yielding
a performance that shows how our model can generalize. There are
still only a few datasets of human gaze in 360◦ images, and training
our model with larger datasets could improve its performance and the
variety of scenes it can handle. Moreover, analyzing the impact of
additional modalities, such as audio, could be of interest, and could
expand the range of potential applications of the model to new scenarios
where multimodality plays an important role in the user’s behavior.
However, we believe that our work is a timely effort and a first step
towards understanding and modeling dynamic aspects of attention in
360◦ images. We hope that our work will serve as a basis to advance
this research, both in virtual reality and in conventional imagery, and
extend it to other scenarios, such as dynamic or interactive content,
analyzing the influence of the task, including the presence of motion
parallax, or exploring multimodal experiences.
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