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a b s t r a c t

Virtual reality (VR) has the potential to change the way people consume content, and has been
predicted to become the next big computing paradigm. However, much remains unknown about the
grammar and visual language of this new medium, and understanding and predicting how humans
behave in virtual environments remains an open problem. In this work, we propose a novel saliency
prediction model which exploits the joint potential of spherical convolutions and recurrent neural
networks to extract and model the inherent spatio-temporal features from 360◦ videos. We employ
Convolutional Long Short-Term Memory cells (ConvLSTMs) to account for temporal information at
the time of feature extraction rather than to post-process spatial features as in previous works. To
facilitate spatio-temporal learning, we provide the network with an estimation of the optical flow
between 360◦ frames, since motion is known to be a highly salient feature in dynamic content. Our
model is trained with a novel spherical Kullback–Leibler Divergence (KLDiv) loss function specifically
tailored for saliency prediction in 360◦ content. Our approach outperforms previous state-of-the-art
works, being able to mimic human visual attention when exploring dynamic 360◦ videos.

© 2022 Elsevier Ltd. All rights reserved.
[
p
o
t
i
b
c
c

m
r
(
t
o
p

1. Introduction

Virtual reality (VR), which has been usually associated with
he entertainment industry, has proven to be a powerful tool
n many other fields such as the manufacturing industry, online
arketing, architecture, design, or education. Although many
oftware and hardware advances have been made in VR, this new
echnology presents challenges and limitations that are still open
roblems. Unlike traditional media, where the whole content is
sually shown on a flat screen, VR content occupies the 360◦

pace around the user. As in real life, only the part of the scene
hich falls into the observer’s field of view (FoV) is seen, and

t is by eye and head movements that the remainder of the
nvironment can be explored. Therefore, the user takes control of
he camera, choosing what to observe. Due to this paradigm shift,
he patterns and visual behaviors known for 2D images or videos
o not necessarily hold for 360◦ immersive environments.
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As a fundamental step towards understanding how humans
behave in VR environments, many approaches have focused on
modeling which points in a scene are most likely to attract users’
attention. They resorted to saliency as a topological measure of
the conspicuity of the elements of that scene, or in other words,
the probability of each element to receive a fixation from the
observer. The study of fixation data from real observers gathered
with eye-tracking devices has shown that there is an inter- and
intra- observer variability when exploring 360◦ visual stimuli
1–3]. This variability makes the task of visual human attention
rediction challenging, but, even though the behavior of multiple
bservers in response to the same stimulus is rarely the same,
hey all share some common, inherent patterns [1]. Understand-
ng and modeling these patterns, which are usually influenced
y the saliency of the scene, can enhance many applications in
omputer graphics, including foveated rendering [4–6] or image
ompression [2,7], or content generation [1,8,9], among others.
In this work, we present SST-Sal, a novel saliency prediction

odel for 360◦ videos. Our model is based on Recurrent Neu-
al Networks (RNNs), specifically on Long Short-Term Memory
LSTMs) cells. LSTMs allow inferring temporal relationships be-
ween frames, a crucial aspect in dynamic content, where the
bserver’s attention is influenced by what has previously hap-
ened in the 360◦ video. However, the traditional operations

https://doi.org/10.1016/j.cag.2022.06.002
http://www.elsevier.com/locate/cag
http://www.elsevier.com/locate/cag
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cag.2022.06.002&domain=pdf
mailto:edurnebernal@unizar.es
mailto:danims@unizar.es
mailto:diegog@unizar.es
mailto:bmasia@unizar.es
https://edurnebernal.github.io/
http://webdiis.unizar.es/~danims/
http://giga.cps.unizar.es/~diegog/
http://webdiis.unizar.es/~bmasia/
https://doi.org/10.1016/j.cag.2022.06.002


E. Bernal-Berdun, D. Martin, D. Gutierrez et al. Computers & Graphics 106 (2022) 200–209
Fig. 1. In this work, we propose a saliency prediction network for 360◦ videos that follows an encoder–decoder architecture and is built over Spherical ConvLSTMs to
leverage temporal information and account for the particularities of 360◦ content. We additionally provide our network with an optical flow estimation to facilitate
spatio-temporal learning. Our model yields realistic results and outperforms previous state-of-the-art models by a large margin.
of LSTMs have been replaced in our model by spherical convo-
lutions, presenting Spherical Convolutional LSTMs (ConvLSTMs).
These spherical convolutions allow accounting for the distortion
introduced when projecting the 360◦ frames onto a 2D plane,
while extracting spatial features from the 360◦ videos. SST-Sal
follows an encoder–decoder approach, in which both encoder
and decoder are built over these Spherical ConvLSTMs cells, thus
accounting for both temporal and spatial information at fea-
ture encoding and decoding time. This approach deviates from
previous state-of-the-art works, where feature extraction is per-
formed only with spatial information, neglecting the temporal
relationships between frames.

Besides the 360◦ RGB frames represented with an equirectan-
gular projection, we provide our model with optical flow estima-
tions between consecutive frames, which has proved to enhance
our saliency predictions. Optical flow can be considered a mea-
sure of the movement of the elements on a scene when the 360◦

videos are filmed with a static camera, and both the velocity
and direction of the elements greatly affect saliency in dynamic
content. Furthermore, we present a novel spherical Kullback–
Leibler Divergence (KLDiv) loss function specifically tailored to
360◦ content.

Our contributions can be summarized as follows:

• We introduce an encoder–decoder architecture based on
ConvLSTMs that, for the first time, accounts for tempo-
ral information when encoding and decoding the feature
vectors.

• We show that using operations that are aware of the par-
ticularities of the equirectangular representation favors the
correct interpretation of 360◦ content. Therefore, we present
a saliency prediction network built over spherical convolu-
tions and propose a novel spherical KLDiv loss function.

• We provide our model with optical flow estimations that al-
low our network to learn the relationships between motion
and saliency, enhancing our saliency predictions.

All three contributions were validated through ablation stud-
ies and comparisons to state-of-the-art works. Our code and mod-
els are publicly available at: https://graphics.unizar.es/projects/
SST-Sal_2022.
201
2. Related work

2.1. Modeling visual attention in traditional 2D content

In the last decades, many works have been devoted to saliency
prediction in 2D content. The method proposed by Itti et al. [10]
in 1998 can be considered the seminal work in this regard. They
propose a heuristic approach in which they extract low-level fea-
tures from the images, such as color, orientation, or high contrast
areas, and linearly combine them to obtain a final saliency map.
Several follow-up works [11–14] continued with this bottom-up
strategy, exploring different hand-crafted features to improve the
predicted saliency. However, these strategies based on low-level
features often failed to capture the actual eye movements, thus
novel approaches [15–17] arose to palliate this limitation, propos-
ing to use machine learning techniques to combine different
low-level, middle-level, and high-level image features.

With the emergence of deep neural networks (DNNs), nu-
merous works [18–24] opted for data-driven approaches in the
field of saliency prediction, leading to unprecedentedly accurate
models that increasingly resembled human visual behavior. One
of the first works to exemplify the superiority of DNNs was
DeepFix [18], a fully convolutional neural network (CNN) that
proved to surpass state-of-the-art results relying on previous
approaches based on hand-crafted features. Later, work such as
Martin et al.’s [25], not only show the advantages of using CNNs,
but also exemplified the benefit of considering the temporal, and
especially non-deterministic, nature of human visual attention
employing architectures such as Bayesian ConvLSTMs.

Although saliency prediction in 2D images has been exten-
sively explored in recent years, the body of literature specifically
addressing this topic in dynamic content (i.e., video), is quite
narrow. Works such as the ones from Bak et al. [26,27], or the
one from Jiang et al. [28] also resorted to DNNs to extract spatial
features, but these works were also designed to handle temporal
information. Specifically, the two latter use recurrent neural net-
works (RNN), whereas the former obtains that information from
optical flow estimations. However, these models are not suitable
for saliency prediction in 360◦ videos as they do not account
for the particularities of 360◦ content, such as the distortion
introduced by the sphere-to-plane projection or the limited FoV.

https://graphics.unizar.es/projects/SST-Sal_2022
https://graphics.unizar.es/projects/SST-Sal_2022
https://graphics.unizar.es/projects/SST-Sal_2022
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.2. Modeling and predicting attention in 360◦ images

The evolution of saliency prediction models for 360◦ content
as been closely linked to that of traditional one, where heuristic
pproaches [29–34], established a baseline until the rise of DNNs.
ost of the works proposed for spherical images that follow a
ata-driven approach [21,22,35,36] have been adapted from, or
trongly based on 2D image saliency models. However, one of
he main challenges when using 2D saliency models for 360◦

ontent is dealing with the distortion introduced by the sphere-
o-plane projection. Most of the works tried to diminish the effect
f distortion in their final predictions by using representations
uch as cube-maps or viewport images, that yield lower distortion
han equirectangular projections, but still deform the images.
onetheless, these representations based on multiple images lead
o discontinuities, redundant image boundaries, and repeated
omputations, which can hamper the prediction process.
Some state-of-the-art works [37–39] propose a different strat-

gy to alleviate this issue. Instead of manipulating the projection
f the content, they modified the neural network structure to
ccount for 360◦ content particularities. Haoran et al. [37] rep-

resent the 360◦ images with a Geodesic ICOsahedral Pixelation
(GICOPix), presenting graphical convolutional networks (GCNs) as
an alternative to traditional CNNs. Martin et al. [40] employed
the spherical convolutions proposed in SphereNet [38], where
the convolutional kernel is applied on the spherical space and
then projected into the 2D plane. Consequently, the kernel used
for convolution and pooling presents the same distortion as the
equirectangular image. A similar approach is proposed by Yanyu
et al. [39], but employing a circular crown kernel on the sphere
instead of the traditional square kernel.

Although dynamic content consists of a succession of images
and could be considered an extension of saliency prediction in
360◦ images, the human visual behavior towards it differs greatly
from the static case. Aspects such as the movement of the ele-
ments or the plot of the sequence affect the viewer’s attention,
causing the saliency of each frame to be influenced by previous
frames.

2.3. Modeling and predicting attention in 360◦ videos

Previous works such as PanoSalNet [41] followed a naïve ap-
roach, presenting saliency prediction models for 360◦ videos
hose CNN-based estimation networks were similar to those
sed for images. However, predicting an independent saliency
ap for each frame does not take temporality into consideration.
ue to this limitation, many posterior works resorted to a differ-
nt approach, in which spatio-temporal features are extracted in
rder to make a more suitable prediction.
A frequent choice in state-of-the-art models is the use of

NNs, especially LSTMs architectures, given their ability to re-
ain temporal information. Cheng et al. [42] use a cube-map
epresentation with a novel cube padding technique applicable
o CNNs, which solves the image boundary problem. With it,
hey obtain the prior saliency maps of each frame with a CNN-
ased network, and then pass them through a convolutional LSTM
ConvLSTM) to capture relations between saliency in consecutive
rames, obtaining the definitive saliency prediction.

Dahou et al. proposed a more sophisticated architecture with
TSal [43], in which they combine the saliency maps obtained
rom two different streams (namely attention and expert). The
ttention stream is a convolutional encoder–decoder with an
ttention mechanism, which is intended to extract global static
aliency from the equirectangular frames. On the other hand, the
xpert stream composed of two SalEMA [44] networks, based on
NNs and LSTMs, tries to learn spatio-temporal saliency informa-

ion from a cube-map representation.

202
Xu et al. [39] proposed a network for 360◦ video saliency pre-
diction that includes spherical convolutions, pooling, and Mean
Squared Error (MSE) loss, but also implements a Spherical ConvL-
STM. The model’s architecture is based on a U-Net [45], but with
the inclusion of a Spherical ConvLSTM in its bottleneck to capture
the temporal information.

However, these previous works either ignore the temporal
information [41], or neglect the temporal relationships between
frames when extracting the spatial features. Therefore, our pro-
posal is to extract the frames’ spatial features with temporal
awareness. Instead of just presenting a LSTM-based module in the
bottleneck [39,43], or at the end of the model’s pipeline [42] as
in previous works, our encoder–decoder architecture is entirely
built over Spherical ConvLSTMs. This allow us to obtain the truly
relevant spatio-temporal features in the overall context of the
360◦ video. Moreover, as a novelty with respect to previous
works, we provide our network with optical flow estimations. The
movement of objects is a determining factor in human visual at-
tention when observing dynamic content, thus these optical flow
estimations allow our model to learn the possible relationships
between motion and saliency.

3. A model for saliency prediction in 360◦ videos

In this Section, we first include an in-depth view of our
model (Section 3.1) detailing its main features: Spherical Con-
vLSTMs and optical flow. Then, we present our novel spherical
Kullback–Leibler Divergence loss function used to train our net-
work (Section 3.2), and conclude with additional training details
(Section 3.3).

3.1. Our model

Our saliency prediction model is built following an encoder–
decoder architecture, which is tailored to the particularities of
dynamic 360◦ content by leveraging spherical convolutional re-
current networks (Spherical ConvLSTMs), whose spatio-temporal
nature endorses their use in our problem. Specifically, the en-
coder module, formed by a Spherical ConvLSTM and a spherical
Max Pooling layer, extracts the spatio-temporal features from an
input sequence of RGB-optical flow pairs. On the other hand, the
decoder, built with a Spherical ConvLSTM and an Up-Sampling
layer, leverages that extracted latent information to predict a
sequence of saliency maps (see Fig. 2).

Optical Flow. The movement of objects, people, or animals in
60◦ videos influences human visual attention [46,47], and both
heir speed and direction can be relevant features to consider
hen predicting saliency. We thus resort to optical flow as a
easure of the relative movement between the elements of a
cene and the camera throughout a sequence, and input it to the
etwork alongside the RGB frames.
In this work, we use the optical flow estimation provided by

AFT [48], a DNN trained on the Sintel Dataset [49], which has
hown outstanding results on both synthetic and real images.
lthough RAFT is designed to work on traditional 2D images,
he provided optical flow estimation was evaluated and found
o be sufficiently accurate (see Section 4.4.4), since most of the
otion is usually concentrated in the less distorted region of
quirectangular images — the equator.
We feed our model with the concatenation of a sequence S

of frames f with length n, and the corresponding sequence O of
optical flow estimations o. Therefore, the model’s input I can be
defined as:

I = [S,O] = {f0 o0, . . . , ft ot , . . . , fnon} t ∈ [0, n], (1)

where f and o are RGB equirectangular images of size WxHx3
(W and H are the width and height of the frames), both with
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Fig. 2. Network’s encoder–decoder architecture: The encoder is composed of a Spherical ConvLSTM and a spherical Max Pooling layer. It takes as input the
concatenation of the RGB image (frame) and the optical flow. The decoder, formed by a Spherical ConvLSTM and an Up-Sampling layer, decodes the feature vector
predicting the final saliency. Note that the recurrence of our model is not illustrated in the figure for the sake of clarity, thus only one timestep t is represented.
hree channels. The timestep of each element on the sequence
s represented by t . After performing the corresponding ablation
tudy (see Section 4.4.1), we selected W = 320 and H = 240 as
he input spatial resolution, and empirically set n = 20.

Spherical ConvLSTM. Dynamic videos contain elements that
re presumably to move, change, or disappear. These continuous
ariations in position, appearance, or illumination are likely to
ttract the observers’ attention, hence being perceived as salient.
onvLSTM cells can extract and process these temporal features
rom sequential data (e.g., videos) and infer temporal relations
etween them [50]. In ConvLSTMs, the fully-connected structures
rom traditional LSTMs are replaced by convolutional operations,
hich are able to handle spatial features over time. The equations
efining our ConvLSTMs are as follows:

it = σ (Wi ∗ [xt , ht−1] + bi)
ft = σ

(
Wf ∗ [xt , ht−1] + bf

)
ot = σ (Wo ∗ [xt , ht−1] + bo)
gt = tanh

(
Wg ∗ [xt , ht−1] + bg

)
ct = ft ⊙ ct−1 + it ⊙ gt
ht = ot ⊙ tanh (ct) ,

(2)

where c and h are the cell and hidden states as in traditional
LSTMs, t is the corresponding timestep, x is the input data, ∗

the convolutional operation, ⊙ the Hadamard product, and σ
the sigmoid activation function. Wi, Wf , Wo, Wg and bi, bf , bo,
bg are the learned weights and biases for the four convolutional
operations of the ConvLSTM cell. The cell output is obtained from
the last value of h.

Additionally, to account for the particularities of 360◦ con-
tent, and based on previous works [38], all the convolutional
operations are replaced by spherical convolutions (Spherical Con-
vLSTM), a type of distorted convolutions that compute real pixel
neighboring in spherical space. In the chosen implementation,
the kernel is defined as the projection on the sphere of a small
patch tangent to its surface. Thus, the kernel sampling pattern is
distorted along with the image in the equirectangular projection.
Following SphereNet’s implementation, we employed spherical
convolutions with a kernel size of 3 × 3. Therefore, the weights
Wi, Wf , Wo and Wg in Eq. (2) have a size of 42 × 36 × 3 × 3 for
the Spherical ConvLSTM of the encoder and 37 × 1 × 3 × 3 for
that of the decoder.

3.2. Loss function

This model has been trained with a novel spherical weighted
Kullback–Leibler Divergence (KLDiv) loss term, which refers to
the KLDiv adapted to 360◦ content. The traditional Kullback–
Leibler Divergence is a metric broadly used for saliency map
203
comparisons, which measures the overall dissimilarity between
two saliency maps that are considered as probability density
functions. It can be computed as follows:

KLDiv (G, P) =

∑
i,j

Gi,j log
(

ϵ +
Gi,j

ϵ + Pi,j

)
, (3)

where Pi,j, Gi,j, are the predicted and ground truth saliency
values at pixel (i, j), and ϵ is a regularization constant that de-
termines how much zero-valued predictions are penalized.

However, this metric does not account for the distortion in-
troduced by the equirectangular projection, obtaining inadequate
scores for this type of content. Two identical regions with equal
areas on the spherical domain should obtain different scores
depending on their location. Regions closer to the poles would
produce larger projected areas in the 2D plane than those closer
to the equator, resulting in higher KLDiv scores. To overcome
this limitation and compensate for the distortion, Xu et al. [39]
applied a spherical weighting by the solid angle to their Mean
Squared Error (MSE) which presented the same problem. For
an equirectangular image of shape n x m these weights can be
computed as:

wi,j = ∆ϕ
sin(∆θ j)+sin(∆θ(j+1))

2∆θ
,

where ∆θ =
π
m ; ∆ϕ =

2π
n ; i ∈ [0, n] ; j ∈ [0,m].

(4)

Our proposed spherical weighted KLDiv loss employed to train
the model applies this weighting to the traditional KLDiv, com-
pensating for the distortion introduced by the equirectangular
projection since the contribution of each pixel to the KLDiv is now
proportional to its solid angle. Therefore, the proposed spherical
weighted KLDiv loss is defined as follows:

LKLDiv (G, P) =

∑
i,j

wi,j Gi,j log
(

ϵ +
Gi,j

ϵ + Pi,j

)
. (5)

3.3. Datasets and training details

Our model was trained with the VR-EyeTracking dataset [3],
whose videos present varied content (e.g., indoor scenes, outdoor
activities, or sports games). They were down-sampled from 25
fps to 8 fps, and reshaped to a 320 × 240 resolution to reduce
memory, computation, and processing requirements. Each video
is then divided into sequences of 20 frames, corresponding to 2.5
s. From the entire dataset, we select the subset of 360◦ videos
filmed with a static camera, since we use the optical flow as
a measure of motion. Additionally, the subset of 144 videos is
filtered by removing the videos whose optical flow provided by
RAFT consisted only of noise (8% of the videos). The 360◦ videos
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rom the Sports-360 dataset [51] presenting a static camera were
lso used for an additional evaluation of the model and further
omparisons to state-of-the-art works.
The ground truth saliency maps employed for training and

valuation were obtained from the eye fixations provided with
he datasets using the method adopted by Sitzman et al. [2],
mploying a Gaussian filter with a standard deviation of 5◦ of

visual angle, as proposed by Chao et al. [52]. The model has
a size of 8,323 KB and was implemented within the Pytorch
framework [53]. The training process took 15.65 h on a Nvidia
RTX 2080 Ti with 11 GB of GDDR6 VRAM, using an Intel Xeon Gold
G140 CPU at 3.7 GHz. We used the following hyperparameters
for training: a stochastic gradient descent optimizer, a learning
rate of 0.8, a batch size of 20 frames, and a total of 240 epochs.
An average inference time of 49.923 ms (STD = 1.730 ms) was
obtained after performing 3,000 model inferences with sequences
of 20 frames on a GPU with the aforementioned specifications.
Performing inference with several input image resolutions shows
a linear increase of inference time with the number of pixels of
the input image.

4. Results and evaluation

We conducted an in-depth analysis of the performance of our
model for dynamic 360◦ saliency prediction. We present some
results achieved with our proposed model (Section 4.2), and
qualitative and quantitative comparisons with state-of-the-art
works (Section 4.3). Furthermore, in Section 4.4 we offer detailed
ablation studies that validate the effectiveness of the different
elements included in our network architecture.

4.1. Saliency metrics

To assess the performance of the developed model, and pro-
vide a meaningful comparison with state-of-the-art works, we
compute three different metrics commonly used in the literature
for saliency maps comparison: Linear Correlation Coefficient (CC),
Similarity Metric (SIM), and Kullback–Leibler Divergence (KLDiv).
They are computed following the implementation proposed by
Gutiérrez et al. [54] in which each pixel of a saliency map is
weighted by the sine of its latitude, thus accounting for the
distortion introduced by the equirectangular projection.

The SIM, CC, and KLDiv values presented as results in the com-
parisons represent the average mean and the average standard
deviation of the measures obtained for all the videos. For each
video, the mean and standard deviation are computed by evalu-
ating all video frames with respect to their ground truth coun-
terpart. However, how the ground truth is represented, whether
the prediction includes dataset bias, whether the inputs are prob-
abilistic, or whether spatial deviations exist between the pre-
diction and ground truth can alter the scores [55]. Therefore,
we provide three different metrics together with a qualitative
analysis to draw conclusions and assess the true performance of
the models.

4.2. Results

Figs. 1 and 3 show some sample results obtained with the
proposed model in the VR-EyeTracking and Sports-360 datasets.
For a set of videos, some consecutive RGB frames are shown
together with their ground truth saliency and the model’s pre-
diction, blended with the frame. It can be seen how our proposed
model is able to perform accurate saliency predictions, which are
close to the ground truth, both focusing on small, yet relevant
regions of the scene. In Fig. 3, it can also be appreciated the ability
of our model to handle dynamic features, where although there
204
are multiple salient elements (i.e., bicycles, people and cats), the
network is able to detect and focus on the truly salient, thanks
to the temporal information it has retained about what hap-
pened before in the 360◦ video. Please refer to the supplementary
material for more qualitative results.1

Additionally, Table 1 provides a quantitative evaluation of the
proposed model with the CC, SIM and KLDiv metrics obtained for
the VR-EyeTracking and Sports-360 datasets, showing promising
results with respect to state-of-the-art works.

4.3. Comparison with previous methods

We compared our model against three state-of-the-art works
whose implementation is publicly available: one spherical DNN
designed for saliency prediction in 360◦ images (i.e., Martin
et al.’s [40]) to serve as a baseline, and to show that static
approaches are not suitable for dynamic content, and two state-
of-the-art models specialized on 360◦ videos, ATSal [43] and
P-360 [42]. To assess the models’ performance, the metrics CC,
IM, and KLDiv (Section 4.1) were computed over the saliency
redictions of the models for the VR-EyeTracking test split and
he Sports-360 dataset.

Table 1 shows that the proposed model outperforms previous
pproaches in all computed metrics. Martin et al.’s model was
rained on a dataset of static 360◦ images, which hinders its abil-
ty to generalize to dynamic content, focusing on more low-level
eatures such as contrast or edges. Both ATSal and CP-360 models
ere trained on dynamic content, and have a small LSTM-based
odule on their bottleneck to account for temporal relations.
owever, they neglect the fact that temporal information may be
f importance even when extracting and encoding features, and
re therefore limited. The proposed model, nevertheless, is able
o handle temporal relations in all stages yielding more accurate
esults.

Additionally, Fig. 4 shows a qualitative comparison between
he models on a small subset of 360◦ sequences extracted from
he VR-EyeTracking and Sports-360 datasets. In these sampled
equences we can see how ATSal fails to identify the truly salient
egions, CP-360 tends to overestimate the saliency, and Mar-
in et al.’s produces saliency maps with a strong equator bias,
ypical of the static content but not present in the dynamic
ase. Our model offers the most plausible saliency predictions,
orrectly identifying the regions where humans tend to direct
heir attention.

.4. Ablation studies

To endorse the effectiveness of the decisions taken through the
esign stage of the model’s architecture, we performed five abla-
ion studies. These studies analyze the influence of the input data
esolution, the use of spherical convolutions, the loss function
mployed, the inclusion of optical flow, and the advantages re-
orted by the Spherical ConvLSTMs. The results obtained for each
xperiment of the ablation studies are shown in Table 2, where
he values represent the average mean and standard deviation
btained for the test split of the VR-EyeTracking dataset.

.4.1. Input resolution
Firstly, we analyzed the influence of the input resolution of

he 360◦ videos on the ability of the network to predict accurate
aliency maps. We trained our model with two different setups:
ith the 360◦ videos at a resolution of 208 × 106, and with a
igher resolution of 320x240. The quantitative results obtained
an be seen in the first two rows of Table 2, in which the

1 https://graphics.unizar.es/projects/SST-Sal_2022.

https://graphics.unizar.es/projects/SST-Sal_2022
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Fig. 3. Results obtained with the proposed model for two sequences of the VR-EyeTracking (top) and Sports-360 (bottom) datasets. The horizontal axis represents
time. The vertical axis shows the frames, the ground-truth saliency, and the predicted saliency of the sequences. Saliency is represented both in greyscale, and as a
heat map blended with the frame’s image, where yellowish colors correspond to more salient areas. Note that the proposed model performs accurate predictions
similar to the ground truth, both focusing in small, yet relevant regions of the scene.
mean score of the three metrics drops when using the lower
resolution layout. This could indicate that the reduction of the
frames’ resolution hindered the training process, probably due to
a significant loss of information.

4.4.2. Spherical convolutions
The present ablation study justifies in terms of the model’s

performance the inclusion of the spherical convolutions on the
ConvLSTM architecture. For its evaluation, the proposed model
was modified, replacing the spherical convolutions implemented
in the Spherical ConvLSTMs of both encoder and decoder by
traditional convolutions. Then, the non-spherical model is trained
under the same conditions as the original spherical one. The
205
results in Table 2 show an improvement in the model’s per-
formance when spherical convolutions are used. This evidences
that the use of architectures that account for the peculiarities of
the equirectangular representation is an advantageous approach
when dealing with 360◦ content.

4.4.3. Alternative loss functions
The current spherical weighted KLDiv loss function used to

train the model was compared against two alternative config-
urations. A traditional non-spherical KLDiv (Eq. ), in which all
pixels have equal weight in the metric no matter where they
are located, and a spherical sampled KLDiv, which presents a
different strategy to account for the distortion introduced by the
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a
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Fig. 4. Qualitative comparison of the proposed model against ATSal [43], CP-360 [42], and Martin et al.’s [40]. The horizontal axis represents time. The vertical
xis shows, from top to bottom: The RGB frame, the ground-truth saliency, the proposed model’s prediction, ATSal, CP-360, and Martin et al.’s saliency predictions.
aliency is shown both with a heat map blended with the frame’s image (yellowish colors correspond to high salient areas) and with the saliency maps (black
ndicates zero probability of being observed). Note that the proposed model outperforms the state-of-the-art works since its saliency prediction is closer to the
round truth. Martin et al.’s, as a saliency prediction method for 360◦ images, tends to predict exploration saliency maps typical of this type of content. Both ATSal

and CP-360 models were trained on dynamic 360◦ content, but either fail to identify the truly salient elements of the 360◦ video, or predict a high probability for
most of the frame’s regions, which does not resemble the ground-truth behavior. ∗ ATSal was trained with the VR-EyeTracking dataset; its results are included for
completeness.
Table 1
Quantitative comparisons of the proposed model against ATSal [43], CP-360 [42], and Martin et al.’s [40], with both VR-EyeTracking and Sports-360 datasets. Arrows
indicate whether higher or lower is better, and boldface highlights the best result for each metric. The values represent the mean score among the different videos in
the dataset for each metric, and in brackets is shown the averaged standard deviation. ∗ ATSal was trained with the VR-EyeTracking dataset; its results are included
for completeness.

VR-EyeTracking dataset Sports-360 dataset

CC ↑ SIM ↑ KLDiv ↓ CC ↑ SIM ↑ KLDiv ↓

ATSal* 0.298 0.216 9.858 0.246 0.184 10.552
(0.087) (0.041) (1.000) (0.090) (0.050) (1.221)

CP-360 0.229 0.148 10.665 0.228 0.135 11.753
(0.049) (0.025) (0.556) (0.055) (0.031) (0.731)

Martin en al.’s 0.138 0.152 8.610 0.240 0.183 11.191
(0.054) (0.033) (0.941) (0.078) (0.049) (1.176)

Our Model 0.500 0.338 7.371 0.439 0.284 8.610
(0.123) (0.058) (1.218) (0.143) (0.070) (1.591)
equirectangular projection. Instead of weighting each pixel by
its solid angle, the equirectangular image’s pixels are sampled
following a uniform cosine sampling distribution. Therefore, the
equator of the image will have more representation than the
206
poles on the final value of the loss function, since a greater
number of pixels belonging to this region will be used to compute
the metric.
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Table 2
Ablation Study: CC, SIM and KLDiv scores obtained with the different configurations of the ablation studies for the VR-EyeTracking dataset test split. The values
represent the mean score among the different videos in the dataset for each metric, and in brackets is shown the average standard deviation. Check marks indicate
which elements are used in the ablation study, and boldface highlights the best result for each metric. Please refer to Sections 4.4.1 to 4.4.5 for further details.
Resolution
208 × 106

Resolution
320 × 240

Spherical
convLSTM

Optical flow Weighted
KLDiv

Sampled
KLDiv

Traditional
KLDiv

CC ↑ SIM ↑ KLDiv ↓

✓ – ✓ ✓ ✓ – – 0.413
(0.113)

0.287
(0.047)

8.458
(1.066)

– ✓ ✓ ✓ ✓ – – 0.500
(0.123)

0.338
(0.058)

7.372
(1.218)

– ✓ – ✓ ✓ – – 0.438
(0.136)

0.315
(0.067)

7.602
(1.467)

– ✓ ✓ ✓ – – ✓ 0.467
(0.121)

0.324
(0.059)

7.645
(1.286)

– ✓ ✓ ✓ – ✓ – 0.474
(0.099)

0.310
(0.051)

8.066
(1.133)

– ✓ ✓ – ✓ – – 0.480
(0.112)

0.317
(0.053)

7.924
(1.166)

– ✓ – ✓ ✓ – – 0.344
(0.122)

0.213
(0.043)

10.097
(0.938)
The results showed in Table 2 suggest that the most suitable
oss is the weighted KLDiv, as it achieves better accuracy for all
he metrics. It was expected that the sampled KLDiv loss function,
hich accounts for the equirectangular projection, would report
etter performance than the traditional KLDiv loss. However,
he sampled KLDiv loss presents worse results for SIM and CC.
his could be either because of the poor performance of the
andomness of the samples, or the fact that most of the relevant
nformation of the videos is in the less distorted part, leading the
raditional KLDiv loss to reach a reasonably accurate performance.

.4.4. Inclusion of optical flow estimation
The motivation for providing an estimate of the optical flow

etween consecutive frames is to help the network to identify
alient features, since moving elements tend to capture human
isual attention. Therefore, the aim of this ablation study is to an-
lyze the effect that providing the network with this information
as on its performance. For this purpose, we trained our model
epriving it of the optical flow estimations. The results obtained
ith this configuration (see Table 2) show an improvement in
erformance when including the optical flow. Without it, the
odel may overestimate the saliency of some static features,
hich while salient in static content, are unattractive in dynamic
ontent due to the existence of motion and action.

.4.5. Influence of spherical convlstms
The estimation of the optical flow provides the network with

emporal information about the previous frame. The present
tudy aims to determine if the temporal information provided by
he optical flow estimation is sufficient, or if ConvLSTMs need to
e included to infer the temporal relationships between frames.
or this purpose, a structure without Spherical ConvLSTMs is
rained. The alternative model consists of an encoder and decoder
ormed only by spherical convolutional layers. The encoder takes
s input the concatenation of the RGB frame and RGB optical
low and applies a spherical convolution and a spherical Max Pool
SphereNet’s [38] implementation). Then, the decoder returns the
redicted saliency map by processing the encoded feature vector
ith another spherical convolution and an Up-Sampling layer.
Table 2 shows a lower performance when using only op-

ical flow estimations than when using only Spherical ConvL-
TMs, indicating that the temporal information provided by the
ptical flow is not enough, and ConvLSTMs are needed to in-

er temporal relationships between frames. However, the poor

207
accuracy reported may be due to the simplicity of the struc-
ture, which is built with only two spherical convolutional layers,
whereas deeper architectures are usually employed in DNNs for
image processing. Nevertheless, this simple architecture provides
a fair comparison with our model, since with the same num-
ber of convolutions and equal encoded feature vector’s size, it
achieves better saliency predictions. Although the temporal in-
formation provided by the optical flow is not sufficient, it does
have value. Therefore, our model takes advantage of using the
optical flow jointly with the Spherical ConvLSTMs, reaching the
best performance of all the presented alternatives.

5. Conclusions

We propose a novel saliency prediction model for dynamic
360◦ content that is able to resemble human visual behavior,
outperforming previous state-of-the-art works. Our network is
built over Spherical ConvLSTM cells, and it has been specifically
tailored to the peculiarities of 360◦ content with the inclusion of
spherical convolutions and a novel spherical KLDiv loss function.
Additionally, our model benefits from the information provided
by optical flow estimations between consecutive frames, which
enhances the final saliency prediction.

Our work suggests that dynamic content requires models that
account for temporal information. Architectures specifically de-
signed for videos surpass saliency prediction models designed for
static images, since the awareness of the temporal relationships
between frames seems to play a major role. Furthermore, the
availability of this temporal information at the encoding and
decoding stages has proved to be an advantageous approach,
showing outstanding results with respect to previous state-of-
the-art works. To the best of our knowledge, our model has
been the first to account for this temporal information in feature
extraction time.

6. Limitations and future work

Our model for saliency prediction in 360◦ videos was trained
with a selection of videos from the VR-EyeTracking dataset filmed
without camera movement. Static videos are a common sce-
nario in 360◦ video acquisition due to the difficulty of generating
compelling content. Wide-angle cameras that are capable of film-
ing high-quality 360◦ videos are often made up of strategically

placed, narrow-angle cameras. This implies a considerable size
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nd weight, limiting the camera’s manoeuvrability. Stitching al-
orithms are also needed to unify the independent images, which
re often problematic when working with moving cameras. Thus,
aliency prediction on 360◦ videos recorded with a dynamic
amera remains an interesting future avenue.
Like motion, the depth of the elements is a determining factor

n their saliency [56,57]. Therefore, feeding the network with
epth estimations could provide a better understanding of the
cene, enhancing the predicted saliency for the 360◦ videos.
Moreover, dynamic 360◦ environments are not only visual

xperiences, but they usually present multimodal stimuli that
ay affect how observers perceive and explore the scenes [58].
ike directional acoustic cues, which can greatly alter visual per-
eption [59] and are currently being overlooked. Therefore, the
tudy of the inclusion of mono or spatial audio together with the
60◦ video would be an interesting line for future work.
We believe that this work is a timely step towards under-

tanding and modeling human visual behavior in dynamic 360◦

nvironments.
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