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Non-line-of-sight imaging allows objects to be observed when 
partially or fully occluded from direct view, by analysing indirect 
diffuse reflections off a secondary relay surface. Despite many 
potential applications1–9, existing methods lack practical usability 
because of limitations including the assumption of single scattering 
only, ideal diffuse reflectance and lack of occlusions within the 
hidden scene. By contrast, line-of-sight imaging systems do not 
impose any assumptions about the imaged scene, despite relying 
on the mathematically simple processes of linear diffractive wave 
propagation. Here we show that the problem of non-line-of-
sight imaging can also be formulated as one of diffractive wave 
propagation, by introducing a virtual wave field that we term the 
phasor field. Non-line-of-sight scenes can be imaged from raw time-
of-flight data by applying the mathematical operators that model 
wave propagation in a conventional line-of-sight imaging system. 
Our method yields a new class of imaging algorithms that mimic the 
capabilities of line-of-sight cameras. To demonstrate our technique, 
we derive three imaging algorithms, modelled after three different 
line-of-sight systems. These algorithms rely on solving a wave 
diffraction integral, namely the Rayleigh–Sommerfeld diffraction 
integral. Fast solutions to Rayleigh–Sommerfeld diffraction and 
its approximations are readily available, benefiting our method. 
We demonstrate non-line-of-sight imaging of complex scenes with 
strong multiple scattering and ambient light, arbitrary materials, 
large depth range and occlusions. Our method handles these 
challenging cases without explicitly inverting a light-transport 
model. We believe that our approach will help to unlock the potential 
of non-line-of-sight imaging and promote the development of 
relevant applications not restricted to laboratory conditions.

We have recently witnessed considerable advances in transient imaging  
techniques10 that use streak cameras11, gated sensors6, amplitude- 
modulated continuous waves12, single-photon avalanche diodes 
(SPADs)13 or interferometry14. Access to time-resolved image infor-
mation has led to advances in imaging of objects partially or fully 
hidden from direct view1–3,5–7,15–18: that is, non-line-of-sight (NLOS) 
imaging. Other methods are able to use information encoded in the 
phase of continuous light and do not use the time of flight4. In the basic 
configuration of an NLOS system, light bounces off a relay wall, travels 
to the hidden scene, then propagates back to the relay wall and finally 
reaches the sensor.

Recent NLOS reconstruction methods are based on heuristic  
filtered backprojection2,3,6,7,19 or attempt to compute inverse operators  
of simplified forward light transport models5,9,20. These simplified 
models do not take into account multiple scattering, surfaces with  
anisotropic reflectance or, with a few exceptions20, occlusions or clutter  
in the hidden scene. The depth range that can be recovered is also 
limited, partially owing to the difference in intensity between first- and 
higher-order reflections. Existing methods are thus limited to carefully  
controlled cases, imaging isolated objects of simple geometry with 
moderate or no occlusion. Whereas the goal of previous works has 

been limited to the reconstruction of hidden geometry, we develop a 
theoretical framework for general NLOS imaging, reconstructing the 
irradiance at a virtual sensor; this enables applications beyond geomet-
ric reconstruction.

Time-of-flight LOS imaging has used a phasor formalism (a pha-
sor, or phase vector, is a complex number representing properties of 
a light wave) together with Fourier domain ranging12 to describe the 
emitted modulated light signal. Kadambi et al.21 extended this concept 
to reconstruct NLOS scenes by using a phasor model along with a non-
line-of-sight capture system that uses intensity-modulated light sources 
and gain-modulated detection. We show that a similar description can 
be used to model the physics of light transport through the scene. The 
key insight is that propagation through a scene of intensity-modulated 
light can be modelled using a Rayleigh–Sommerfeld diffraction (RSD) 
operator acting on a quantity that we term the phasor field. This allows 
us to formulate any NLOS imaging problem as a wave imaging prob-
lem (Fig. 1) and to transfer well-established insights and techniques 
from classic optics into the NLOS domain. Given a captured time- 
resolved dataset of light transport through an NLOS scene, and a choice 
of a template LOS imaging system, our method provides a recipe that 
results in an NLOS imaging algorithm mimicking the capabilities of 
the corresponding LOS system. This template system can be any real 
or hypothetical wave imaging system that includes a set of light sources 
and detectors. The resulting algorithms can then be efficiently solved 
using diffraction integrals such as the RSD, for which various fast exact 
and approximate solvers exist22. Supplementary Information section 
A illustrates this.

We start by mathematically defining our phasor field P x t( , ). Let 
E x t( , ) (with units −W m 2) be a quasi-monochromatic scalar field at 
position ∈Sx  and time t, incident on (or reflected from) a Lambertian 
surface S, with centre frequency Ω0 and bandwidth ΔΩ ≪ Ω0. We can 
then define
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as the mean subtracted irradiance (in watts per square metre) at point 
x and time t. The 〈·〉 operator denotes spatial speckle averaging (for the 
reflected case) accounting for laser illumination, and τ represents  
the averaging of the intensity at a fast detector, with τ ≪ 1/ΔΩ ≪ T. 
The second integral in equation (1) is a long-term average intensity 
over an interval T ≫ τ of the signal as seen by a conventional non- 
transient photodetector. Now, let us define the Fourier component of 
P x t( , ) for frequency ω as
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from which we can define a monochromatic component of the phasor 
field ωP x t( , ) as

≡ω ω
ωP Px xt( , ) ( ) e (3)i t

0,

Using the above, our phasor field P x t( , ) can be expressed as a superpo-
sition of monochromatic plane waves as ∫ ω= / πω−∞

+∞
P Px xt t( , ) ( , ) d 2 .  

Since P x t( , ) is a real quantity, the Fourier components ωP x( )0,  are com-
plex and symmetric about ω = 0. Note that, in many places in this 
Letter, we assign P x t( , ) an explicitly complex value; in these cases, it is 
implied that the correct real representation is + ∗P Px xt t( ( , ) ( , ))1

2
. In 

practice, the complex conjugate can be safely ignored in our calcula-
tions. As can be seen in Supplementary Information section B, given 
an isotropic source plane S and a destination plane D, and assuming 
that the electric field at S is incoherent, the propagation of its mono-
chromatic component ωP x t( , ) is defined by an RSD-like propagation 
integral:
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where γ is an attenuation factor, k = 2π/λ is the wavenumber for wave-
length λ =  2π/ω, xs ∈ S and xd ∈ D. Note that, as described 
in Supplementary Information section B, we approximate γ as a con-
stant over the plane S as γ ≈ /| − |x1 S d ; this approximation has a 
minor effect on the signal amplitude at the sensor but does not change 
the phase of our phasor field. Although equation (4) is defined for 
monochromatic signals, it can be used to propagate broadband signals 
by propagating each monochromatic component independently; this 
can be efficiently done by time-shifting the phasor field (more details 
are provided in Supplementary Information section B.1).

The key insight of equation (4) is that, given the assumption that γ is 
a constant, the propagation of our phasor field is defined by the same 
RSD operator as any other physical wave. Therefore, to image a scene 
from a virtual camera with aperture on plane C, we can apply the image 
formation model of any wave-based LOS imaging system directly over 
the phasor field P x t( , )c  at the aperture, with xc ∈ C. The challenge is 
how to compute P x t( , )c  from an illuminating input phasor field 
P x t( , )p , where xp is a point in the virtual projector aperture P, given a 
particular NLOS scene (see Fig. 1).

Because light transport is linear in space and time-invariant23,24, we 
can characterize light transport through the scene as an impulse 
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Fig. 1 | NLOS as a virtual LOS imaging system. a, b, Capturing scene 
data. a, A pulsed laser sequentially scans a relay wall (green); b, the light 
reflected back from the scene onto the wall is recorded at the sensor, 
yielding an impulse response H of the scene. c, Virtual light source. The 
phasor-field wave of a virtual light source P x t( , )p  is modelled after the 

wavefront of the light source of the template LOS system. d, The scene 
response to this virtual illumination P x t( , )c  is computed using H. e, The 
scene is reconstructed from the wavefront P x t( , )c  using wave diffraction 
theory. The function Φ(·) is also taken from the template LOS system. 
Amp., phasor-field amplitude.

a

2.0 m

0.5 m
Virtual aperture

R
el

ay
 w

al
l

b

c

d

2.0 m

Fig. 2 | Reconstructions of a complex NLOS scene. a, Photograph 
of the scene as seen from the relay wall. The scene contains occluding 
geometries, with objects towards the front (such as the chair) partially 
occluding the objects further back; multiple anisotropic surface 
reflectances; large depth; and strong ambient and multiply scattered light. 

b, 3D visualization of the reconstruction with phasor fields (λ = 6 cm). 
We include the relay wall location and the coverage of the virtual aperture 
for illustrative purposes. c, Frontal view of the scene, captured with an 
exposure time of 10 ms per laser position. d, Frontal view captured with an 
exposure time of just 1 ms (24 s for the complete scan).
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response function H(xp → xc, t), where xp and xc are the positions of 
the emitter and detector, respectively. The phasor field at the virtual 
aperture P x t( , )c  can thus be expressed as a function of the input phasor 
field P x t( , )p  and H(xp → xc, t):

∫= ∗ →P Px x x x xt t H t( , ) [ ( , ) ( , )]d (5)c

P

p p c p

where ∗ denotes the convolution operator. Any imaging system can be 
characterized by its image formation function Φ(·), which transduces 
the incoming field into an image

Φ= Px xI t( ) ( ( , )) (6)v c

where xv is the point being imaged (that is, the point at the virtual  
sensor). This, in turn, can be formulated as an RSD propagator, requiring  
a diffraction integral to be solved to generate the final image.

In an NLOS scenario, H(xp → xc, t) usually corresponds to five- 
dimensional transients acquired by an ultrafast sensor focused on xc 
and sequentially illuminating the relay wall with short pulses at differ-
ent points xp (see Fig. 1 and Methods). Points xp and xc correspond to 
a virtual LOS imaging system projected on the relay wall. Once 
H(xp → xc, t) has been captured, both the wavefront P x t( , )p  and the 
imaging operator Φ(·) can be implemented computationally, so they 
are not bounded by hardware limitations. We can leverage this to use 
different P x t( , )p  functions from any existing LOS imaging system25 to 
emulate its characteristics in an NLOS setting.

We illustrate the robustness and versatility of our method by imple-
menting three virtual NLOS imaging systems based on common LOS 
techniques: a conventional photography camera capable of imaging 
NLOS scenes without knowledge of the timing or location of the 
illumination source; a transient photography system capable of cap-
turing transient videos of the hidden scene revealing higher-order 
interreflections (multiple light bounces between surface elements) 
beyond third bounce; and a confocal time-gated imaging system 
robust to interreflections. An in-depth description of these example 
imaging systems is provided in Supplementary Information section 
C, including their corresponding P x t( , )p  functions and imaging 
operators, and section D describes some examples of practical  
integral solvers.

The spatial resolution of our virtual camera is Δx = 0.61λL/d, where 
d is the virtual aperture diameter and L is the imaging distance. The 
distance Δp between sample points xp in P (see Fig. 1) has to be small 
enough to sample H at the phasor-field wavelength. We fix Δp = 1 cm 
and, unless stated otherwise, λ = 4 cm. The minimum sampling rate is 
Δp < λ/2; in practice, we found Δp = λ/4 to provide the best trade-off 
between reconstruction noise and resolution.

The computational cost of our algorithm is bounded by the RSD 
solver computing the image formation model Φ(·). Fast diffraction 
integral solvers exist22, with complexity O(N3logN). For the particular 
case of our confocal system, we formulate the algorithm as a backpro-
jection (see Supplementary Information section D.2 for details), and so 
we are bounded by the computational cost of the backprojection  
algorithm used.
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Fig. 3 | Robustness of our technique. a, Reconstruction in the presence of strong ambient illumination (all the lights on during capture). b, Hidden scene 
with a large depth range, leading to very weak signals from objects farther away.
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Fig. 4 | Additional NLOS imaging applications of our method. a, NLOS 
refocusing. The hidden letters (left) are progressively brought in and out 
of focus as seen from a virtual photography camera at the relay wall, using 
the exact lens integral (blue border), and the faster Fresnel approximation 
(red border). b, NLOS transient video. Example frames of light travelling 

through a hidden office scene when illuminated by a pulsed laser. 
Timestamps indicate the propagation time from the relay wall. Frames with 
a green border show third-bounce objects, frames with an orange border 
show fourth- and fifth-bounce effects.
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One common application of NLOS imaging is the reconstruction 
of hidden geometry. Figure 2 shows the result for a complex scene 
imaged with our virtual confocal camera. This challenging scene con-
tains multiple objects with occlusions distributed over a large depth, 
a wide range of surface reflectances and albedos, and strong interre-
flections. Our method is able to image many details of the scene, at the 
correct depths, even with an ultra-short (1 ms) exposure. More analysis 
on the robustness of our method to capture noise can be found in the 
Methods. For simpler scenes (no occlusions, limited depth, controlled 
reflectance and no interreflections), our method yields results on par 
with current techniques, which already approach theoretical limits for 
reconstruction quality (see Methods).

In Fig. 3, we demonstrate the robustness of our method when dealing 
with other challenging scenarios, including strong multiple scatter-
ing and ambient illumination (Fig. 3a), or a high dynamic range from 
objects spanning a large range of depths (Fig. 3b). Finally, our method 
allows new NLOS imaging systems and applications to be implemented, 
making use of the wealth of tools and processing methods available 
in LOS imaging. Figure 4a demonstrates NLOS refocusing with our 
virtual photography camera, computed using both the exact RSD oper-
ator and a faster Fresnel approximation, while Fig. 4b shows frames of 
NLOS femto-photography reconstructed using our virtual transient 
photography system, revealing fourth- and fifth-bounce components 
in the scene. The first, second and fourth frames, in green, show how 
light first illuminates the chair, then propagates to the shelf and finally 
hits the back wall 3 m away. The frames in orange show higher-order 
bounces. The third frame shows that the chair is illuminated again 
by light bouncing back from the relay wall, and the last two frames 
show how the pulse of light travels from the wall back to the scene 
(see Supplementary Video 1). A description of the Fresnel approxima-
tion to the RSD operator, as well as the LOS projector-camera functions 
used in these examples, appear in Supplementary Information sections 
D.1 and C.2.

In the Methods, we include comparisons against ground truth for 
two synthetic scenes, inside a corridor of 2 m × 2 m × 3 m to create 
interreflections, simulated using an open-source transient renderer26; 
these scenes are included in a publicly available database27. We analyse 
the robustness of our method with and without such interreflections; 
the reconstruction mean square error (MSE) does not increase, remain-
ing below 5 mm. Finally, we progressively vary the specularity of the 
hidden geometry, from purely Lambertian to highly specular; again, 
the quality of the reconstructions does not vary significantly (MSE of 
about 2 mm).

The examples shown highlight the primary benefit of our approach. 
By turning NLOS into a virtual LOS system, the intrinsic limitations of 
previous approaches no longer apply, enabling a class of NLOS imaging 
methods that take advantage of existing wave-based imaging methods. 
Formulating NLOS light propagation as a wave does not impose limi-
tations on the types of problems that can be addressed, nor the datasets 
that can be used. Any signal can be represented as a superposition of 
phasor-field waves; our formulation can thus be viewed as a choice 
of basis to represent any kind of NLOS data. Expressing the NLOS 
problem this way allows a direct analogy to LOS imaging, which can 
be exploited to derive suitable imaging algorithms and to implement 
them efficiently.

We have shown three imaging algorithms derived from our method. 
Our results include more complex scenes than in NLOS reconstructions 
shown so far in the literature, as well as new applications. In addition, 
our approach is flexible, fast, memory-efficient and lacks computational 
complexity since it does not require inverting a light transport model. 
We anticipate that it can be applied to other LOS imaging systems, for 
instance to separate light transport into direct and global components, 
or to use the phase of ωP  for enhanced depth resolution. Our virtual 
imaging system could also be used to create a virtual imaging system to 
see around two corners, assuming the presence of a secondary relay 
Lambertian surface in the hidden scene, or to select and manipulate 
individual light paths to isolate specific aspects of the light transport in 

different NLOS scenes. In that context, combining our theory with light 
transport inversions, via, for example, an iterative approach, could poten-
tially lead to better results and is an interesting avenue for future work.
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Methods
Details on data acquisition. Hardware configuration. Our capture system, shown 
in Extended Data Fig. 1, consists of a Onefive Katana HP amplified diode laser 
(1 W at 532 nm, and a pulse width of about 35 ps used at a repetition rate of  
10 MHz) and a gated SPAD detector processed by a time-correlated single-photon 
counter (PicoQuandt HydraHarp), with a time resolution of about 30 ps and a 
dead time of 100 ns. Two additional charge-coupled device (CCD) cameras are 
used to calibrate the laser’s position. The measured time resolution of our system 
is approximately 65 ps, a combination of the pulse width of the laser and the time 
jitter of the system.
NLOS measurement geometry. We obtain an impulse response function H(xp → xc, t)  
of the scene by sequentially illuminating points xp on the relay wall with a short 
pulse and detecting the signal returning at points xc.

Our hardware device is located 2.5 m from the relay wall, with the NLOS 
scenes hidden from direct view. The field of view is 25°. The walls are made of 
standard white styrofoam. The scanning area in the relay wall (virtual camera) is 
1.8 m × 1.3 m, with laser points xp spaced by Δp = 1 cm in each direction. The 
SPAD is focused at a position near the centre of the grid. We avoid scanning a small 
square region around the SPAD focused position (the confocal position) because 
the signal becomes very noisy at this location. Figures 2, 3 provide additional details 
for the specific scenes shown.
Exposure time. Our capture set-up includes CCD cameras (Extended Data Fig. 1) to 
confirm the 3D position of every laser during the measurement; these are a limiting 
factor in the speed of our experiments. Because the capture process runs in parallel, 
we use a very long (1 s) exposure time per laser position for some datasets. They 
are used for all results unless otherwise specified. In addition, we capture scenes 
without the additional CCD photographs that can be collected much faster and 
with much shorter exposure times. In Fig. 2, we show datasets of an office scene 
captured with exposure times of 1 ms to 10 ms per laser position, which results 
in a total capture time as low as 24 s. Further reconstructions of a shelf dataset are 
shown later as additional results, showing that we can reduce exposure times at 
least down to 50 ms per data point without a significant loss in quality, even with 
ambient light. This results in less than 20 min of total capture time. In our current 
prototype, we capture data sequentially with a single SPAD. Prototype SPAD arrays 
are currently under development, and it seems likely that a 16 × 16 array will be 
available by the end of the year. We thus expect to be able to capture 256 data points 
in less than 0.1 s in the near future.
Collected data. In total (counting captures with different lighting and exposure 
times as different sets), we use 12 experimental and two simulated datasets. All 
experimental datasets use a single SPAD location and 180 by 130 laser positions. 
The datasets and exposure times are:
•  An office scene collected with 1 s exposure per laser position. This dataset is 

used to create the video shown in Supplementary Video 1, frames of which are 
shown in Fig. 4b. A photograph and reconstruction of this scene is also shown 
in the Supplementary Video. The data are analysed in Extended Data Fig. 3 and 
Extended Data Table 1.

•  An office scene collected with exposures of 10 ms, 5 ms and 1 ms, used in Fig. 2, 
Extended Data Figs. 6–8 and Extended Data Table 1.

• A scene of a bookshelf used in Fig. 3a and in Extended Data Table 1.
•  A scene of a bookshelf captured with various exposure times and ambient light 

conditions, shown in Extended Data Fig. 2 and Extended Data Fig. 5.
•  A scene with letters distributed over a large depth, used in Fig. 3b and Extended 

Data Table 1.
•  A scene of the letters NLOS in a plane, used in Fig. 4a and Extended Data  

Table 1.
To provide further insight into the noise and artefacts present in our data, we go 

through an analysis of the raw data from our 1-s-exposure office scene. We compare 
the maximum and average number of photons per second and laser position xp for 
our captured scenes in Extended Data Table 1. The dark count rate of our detector 
is 10 photons per second. We do not explicitly subtract dark counts nor ambient 
light or backgrounds. The high total photon numbers in the transient responses 
(Extended Data Table 1) are due to the long responses associated with the large 
depth and volume of the scenes, and not due to a particularly bright signal. Example 
data for a scene of a shelf are shown in Extended Data Fig. 2 (whose reconstruction 
can be found on Extended Data Fig. 5). In this scene, our longest (1 s) exposure time 
peaks at about 150 photons per second (such peaks are probably due to the presence 
of specular surfaces), and the captured signal is extremely noisy. In comparison, the 
recent method by O’Toole et al.9 acquires a brighter, cleaner signal in 0.1 s, peaking 
at about 600 photons per second, owing to the use of retroreflective paint applied on 
the hidden objects (data from their data_resolution_chart_40cm dataset).

Let us further analyse the captured data. In Extended Data Fig. 3a, we show 
a visualization of our data matrix for the 1-s-exposure office scene using the 
Matlab function imagesc, in which each row is the data collected for a different 
location of the laser illumination spot, and each column contains a different time 

bin. The first time bin corresponds to the time when the illumination laser pulse 
leaves the relay wall. In the images, we do not show time bins 10,001 to 15,000 as 
they are mostly empty, owing to the closing of the gate. As can be seen, there are 
some sparse, very large peaks in the dataset that saturate the counting registers of 
our time-correlated single-photon counter (216 − 1 counts). As we will see, these 
artefacts in the data are likely to be due to imperfections in the gating or optical 
set-up.

Let us focus on the first instants of the captured data shown in Extended Data 
Fig. 3a, which reveal features that look like straight diagonal lines in the first few 
time bins. The fact that there are straight lines in this plot indicates that they are 
likely related to a first-bounce signal, rather than the scene response. NLOS signals 
should show up as hyperbolas or sections of hyperbolas in this type of visualization, 
and the curvature of the hyperbolas should be highest at the earliest time bins. 
The image contains many more features that look like straight lines that do not 
appear to have the correct hyperbolic curvature to be NLOS signals. Many of them 
also appear identically in the other datasets, which is another hint that they are 
probably not real NLOS data but artefacts related to the measurement system. Our 
algorithm is completely agnostic to the presence of these artefacts. The brightest 
peaks also appear too early in the data to be associated with a NLOS object. To see 
this, consider that the closest object in any of our scenes is the chair in the office 
scene, and it is more than 50 cm away from the wall. Consequently, the first time 
response from an actual object cannot arrive at the SPAD earlier than 3.3 ns after 
the laser illuminates the relay wall. Time bins are 4 ps wide. Any data before time 
bin 833 therefore can only be an artefact. We will speculate more about the origin 
of these artefacts later.

If we ignore those first 833 time bins that contain no useful data, we obtain a 
dataset that can yield some meaningful statistics about the data. In this dataset, 
the largest photon count in all our over 200 million time bins is smaller than 1,400 
photons. As we show below, this 1,400 maximum is probably still due to a gate 
artefact that happened to occur slightly later than 3 ns into the dataset. Statistics 
for all datasets are shown in Extended Data Table 1.

Maximum photon counts usually come from the objects in the scene closest 
to the wall. Considering the large depth and specularities of our scenes, most of 
the reconstructed scene volume is using signals much weaker than the maximum 
signal, as voxels are further from the wall. Signals from a given surface are expected 
to drop in magnitude with distance L as 1/L4. An object generating 100 photon 
peaks at 50 cm distance in the front of our scene would therefore only create 100/8 
photons if placed at 1 m and 100/625 = 0.2 photons at 2.5 m towards the end of 
our office scene. This ability to handle scenes with large dynamic range in the data 
is another advantage of our algorithm.

In Extended Data Fig. 3b, we show a plot of the photon counts over time bins for 
the laser position that received the most total photons. We again see the extreme 
peak of 216 − 1 counts in the beginning of the dataset. Again, this peak cannot be 
a real third-bounce signal as it would require the pulse to travel between the laser 
position and SPAD position much faster than the speed of light. The actual NLOS 
data start around time bin 1,000 and peak at just above 50 photons.

Finally, we show a plot of the laser position that received the total photon count 
closest to the median of all laser positions (Extended Data Fig. 3c). We can see that 
the count generally stays below 150 photons, with what are probably specular peaks 
reaching 200 photons and a large (450 photon) peak at the beginning of the dataset 
that is either a specular peak or another gate artefact. Note that as we illuminate 
only a grid of points at the wall, we do not capture all the specular peaks in our data. 
To see a specular reflection peak from a scene surface, we have to be lucky enough 
to illuminate the exact spot on the wall that results in the specular reflection that 
overlaps with the SPAD position (see Supplementary Fig. 2 for an illustration). 
Therefore, specular peaks in our measurements can vary greatly, depending on 
how close to the peak the laser sampled the wall. Again, we point out that this type 
of uncontrolled artefact does not affect our algorithm.

As we stated above, the time bin with the highest photon count when ignoring 
obvious early artefacts contains about 1,400 photons. Next we plot the laser posi-
tion that contains this time bin (Extended Data Fig. 3d). Note that zero on the x axis 
here corresponds to time bin 834. As we see, the 1,400 photon peak appears very 
close to the beginning of the transient and may be a gating artefact that occurs in 
the data just after the opening of the gate. This type of data distortion is described 
further below. If not a gating artefact, the peak is probably a specular reflection, 
as it is very narrow and could only be caused by a small isolated diffuse patch or a 
specular surface in the scene. Peaks from extended diffuse surfaces are necessarily 
longer in duration.

We conclude that although our data contain artefacts, the photon counts  
useful for reconstructions are no higher or cleaner than in previous methods. 
Note that the removal of early artefacts is only done here to generate Extended 
Data Fig. 3b–d, to allow visualization. All reconstructions shown in the manu-
script contain the full recorded data without the removal of any potential artefacts 
or time bins.



Letter reSeArCH

Even though an understanding of the origin of the artefacts is not needed for 
our method, we can speculate on the sources of some of them.

(1) Many of the early peaks in our data are likely to be related to imperfections in 
our gating method. When the SPAD gate opens just after the laser pulse has passed, 
photoelectrons in the SPAD may cause a detection event that is not due to a photon 
but to electrons excited by the first-bounce light and trapped in long-lived states 
in the SPAD. Even though these electrons are not amplified, they need to be trans-
ported off the SPAD junction or they can cause counts as soon as the gate opens.

(2) The gate may not block the pulse for some laser positions. The gate has to 
be positioned such that it blocks the laser in all laser positions while not blocking 
any signal. This is not always possible, and we do not re-adjust the gate for each 
position while scanning.

(3) Effects inside the imaging system can keep light trapped long enough to 
cause a peak at the time when the NLOS data arrive. This can be due to multiple 
reflections between lenses, multiphoton fluorescence in the glass or coating of the 
lenses, or stray light reflecting off a random surface at the right distance. We have 
confirmed some of these effects but suspect there are many more.

(4) In particular, we can see light that travels from the laser spot to the SPAD, 
reflects off the surface of the SPAD pixel, is imaged back to the relay wall and comes 
back to the SPAD. In confocal or near-confocal configurations, this can create a 
peak that is many times brighter than the data.

Retroreflective targets can be used to reduce many of these artefacts, most of 
which are created either by the laser or a first-bounce reflection of the laser. If the 
hidden target is retroreflecting, the ratios between the brightness of the laser and 
its first bounce and the brightness of the third-bounce NLOS data are reduced by 
multiple orders of magnitude.
Helmholtz reciprocity. Ideally, we would capture H(xp → xc, t) sampling points on 
both the projector aperture xp ∈ P and the camera aperture xc ∈ C. In our current 
set-up with a single SPAD, we only sample a single point for xc. From Helmholtz 
reciprocity, we can interpret these datasets as having a single xp and and array of 
xc. The choice of capture arrangement is made for convenience, as it is easier to 
calibrate the position of the laser spot on the wall. Improved results are anticipated 
once array sensors become available (currently under development).
Additional validation and discussion. Resolution limits. The resolution limit 
for NLOS imaging systems with an aperture diameter d at imaging distance L 
is closely related to the Rayleigh diffraction limit7: Δx = 1.22cσL/d, with c the 
speed of light in vacuum, for a pulse of full width at half maximum σ. O’Toole 
et al.9 derive a criterion for a resolvable object based on the separability of the 
signal in the raw data, not in the reconstruction, resulting in a similar formula, 
Δx = 0.5cσL/d ≈ 0.5λL/d.

In our virtual LOS imaging system, we can formulate a resolution limit that 
ensures a minimum contrast in the reconstruction, based on the well-known 
resolution limits of wave-based imaging systems. The resolution limit therefore 
depends on the particular choice of virtual imaging system. For an imaging system 
that uses focusing only on the detection or illumination side, this limit is approxi-
mated by the Rayleigh criterion. For an imaging system that provides focusing on 
both the light source and the detector side, the resolution doubles (as it does, for 
example, in a confocal or structured illumination microscope) and the resolution 
limit becomes becomes Δx = 0.61λL/d.
Effect of strong interreflections. To confirm the presence and effect of strong inter-
reflections in our captured data, we compare the data qualitatively with primary 
data from a synthetic bookshelf scene, with and without interreflections. The 
bookshelf is placed in a corridor of 2 m × 2 m × 3 m, with only a single lateral 
aperture of 1 m × 2 m to allow the hidden scene to be imaged. The shelf has a size 
of 1.4 m × 0.5 m, placed at 1.7 m from the relay wall and 0.3 m from the lateral 
walls. The virtual aperture has a size of 1.792 m × 1.792 m and a granularity of 
256 × 256 laser points; we use λ = 4Δp and Δp = 0.7 cm.

As can be seen in Extended Data Fig. 4, the synthetic data clearly show how the 
presence of interreflections adds, as expected, low-frequency information resem-
bling echoes of light. The same behaviour can be seen in the real captured data, 
revealing the presence of strong interreflections.

Additionally, we evaluate the robustness of our method in the presence of such 
interreflections. Similar to recent work9, we compare between a voxelization of the 
ground-truth geometry and a reconstructed voxel-grid obtained from our irradi-
ance reconstructions, with and without including interreflections; the resulting 
MSE is as follows: without interreflections (Extended Data Fig. 4a), MSE 4.93 mm; 
with interreflections (Extended Data Fig. 4b), MSE = 4.66 mm.
Effect of exposure time. Ambient light. To analyse how well our technique works 
in ambient light and with much shorter exposure times, we perform several addi-
tional measurements using progressively shorter exposure times, showing that 
we can reduce exposure times at least down to 50 ms per data point without a 
significant loss in quality (see Extended Data Fig. 5). Extended Data Fig. 2 shows 
raw data for one of the laser positions. In particular, it shows the number of photons 
per second accumulated in each time bin (that is, the collected histogram divided 

by the integration time in seconds). As expected, all three curves appear to follow 
the same mean but have a larger variance for lower exposure times. The raw data 
thus become noisier as exposure time decreases. The effects on our reconstruction, 
however, are minor, as Extended Data Fig. 5 shows.
Short-exposure captured data. Extended Data Fig. 6 shows the reconstruction of 
the office scene (Fig. 2) for short exposure times of 10 ms, 5 ms and 1 ms for each 
of the roughly 24,000 laser positions. This leads to total capture times of about 
4 min, 2 min and 24 s respectively. Plots showing raw data from those datasets are 
given in Extended Data Fig. 7.

We compare the results of our reconstructions on the 1 ms data against  
filtered backprojection with a Laplacian filter3, as well as the Laplacian-of-Gaussian 
(LOG)-filtered backprojection19, which generally achieves better results. We are 
not aware of any reconstruction method that consistently outperforms a LOG-
filtered backprojection. Extended Data Fig. 8 shows the result of this comparison.
Non-Lambertian surfaces. To validate the robustness of our method in the pres-
ence of non-Lambertian materials in the hidden scene, we have created a synthetic 
scene made up of two letters, R and D, one partially occluding the other, placed in 
a corridor of 2 m × 2 m × 3 m, with only a single lateral aperture of 1 m × 2 m to 
allow imaging the hidden scene. The letters have a size of 0.75 m × 0.8 m, placed at 
1.25 m and 1.7 m from the relay wall, respectively, and 0.5 m from the lateral walls 
(see Extended Data Fig. 9a). The virtual aperture has a size of 1.792 m × 1.792 m 
and a granularity of 128 × 128 laser points; we use λ = 4Δp with Δp = 1.4 cm. 
We start with purely Lambertian targets and progressively increase their specu-
larity. We use the Ward BRDF model28, decreasing the surface roughness, using 
available transient rendering software26. The simulation includes up to the fifth 
indirect bounce.

Extended Data Fig. 9b shows the resulting irradiance reconstructions. Because 
our method does not make any assumption about the surface properties of the 
hidden scene, the changes in material appearance do not significantly affect our 
irradiance reconstructions. Similar to recent work9, we compare a voxelization of 
the ground-truth geometry and the reconstructed voxel-grid; the resulting MSE for 
each of the different reflectances is as follows: for a surface roughness of 1 (perfect 
Lambertian), MSE = 2.1 mm; for a surface roughness of 0.4, 2.2 mm; for a surface 
roughness of 0.2, MSE = 2.2 mm.
Reconstruction comparison with other methods. Our imaging system allows 
hidden geometry to be reconstructed. For this application, we show a comparison 
using the publicily available confocal dataset9. This set can be reconstructed using 
different NLOS methods; we show results for confocal NLOS deconvolution9, 
filtered backprojection7 and our proposed method. For these confocal measure-
ments, backprojection can be expressed as a convolution with a pre-calculated 
kernel, and thus all three methods are using the same backprojection operator. 
Neither our method nor filtered backprojection is limited to confocal data, and 
both can be acquired by making use of simpler devices and capture configura-
tions. They can thus be applied to a broader set of configurations and considerably 
more complex scenes. For the confocal NLOS deconvolution method9, we leave 
the optimal parameters unchanged. For our proposed virtual wave method, we use 
the aperture size and its spatial sampling grid (see Supplementary Information) to 
calculate the optimal phasor-field wavelength. For the filtered backprojection, it 
is important to choose a good discrete approximation of the Laplacian operator in 
the presence of noise. Previous works implicitly do the denoising step by adjusting 
the reconstruction grid size to approximately match the expected reconstruction 
quality2,3,7, or by downsampling across the measurements9. If used correctly, all 
of these methods result in a high-quality reconstruction from a Laplacian filter. 
To provide a fair comparison without changing the reconstruction grid size, we 
convolve a Gaussian denoising kernel with the Laplacian kernel, resulting in a LOG 
filter, which we apply over the backprojected volume.

Note that a large improvement in reconstruction quality for the simple scenes 
included in the dataset (isolated objects with no interreflections) is not to be 
expected, since existing methods already deliver reconstructions approaching 
their resolution limits. We nevertheless achieve improved contrast and cleaner 
contours in our wave camera method, due to our better handling of multiply scat-
tered light, which pollutes the reconstructions in the other methods (see Extended 
Data Fig. 10).

In the noisy datasets (Extended Data Fig. 11), filtered backprojection fails. 
confocal NLOS includes a Wiener filter that performs well at removing uniform  
background noise, although a noise level must be explicitly estimated. Our  
phasor-field virtual wave method, on the other hand, performs well automatically, 
without the need to explicitly estimate a noise level. This is important in complex 
scenes with interreflections, where the background is not uniform across the scene, 
and the noise level cannot be reliably estimated.

Nevertheless, our main contribution is not that of improving the reconstruction 
for simple, third-bounce scenes. Instead, our method allows a new class of NLOS 
algorithms to be derived, which can successfully handle scenes of much greater 
complexity.
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Data availability
The measured data and the phasor-field NLOS code supporting the findings 
of this study are available in the figshare repository https://doi.org/10.6084/
m9.figshare.8084987. Additional data and code are available from the correspond-
ing authors upon request.

Code availability
Our data and reconstruction code can be found in the figshare repository https://
doi.org/10.6084/m9.figshare.8084987.
 
 28. Ward, G. J. Measuring and modeling anisotropic reflection. Comput. Graph. 26, 

265–272 (1992).

Acknowledgements This work was funded by DARPA through the DARPA 
REVEAL project (HR0011-16-C-0025), the NASA Innovative Advanced Concepts 
(NIAC) Program (NNX15AQ29G), the Air Force Office of Scientific Research 
(AFOSR) Young Investigator Program (FA9550-15-1-0208), the Office of 
Naval Research (ONR, N00014-15-1-2652), the European Research Council 
(ERC) under the EU’s Horizon 2020 research and innovation programme 
(project CHAMELEON, grant no. 682080), the Spanish Ministerio de Economía 
y Competitividad (project TIN2016-78753-P) and the BBVA Foundation 

(Leonardo Grant for Researchers and Cultural Creators). We thank J. Teichman 
for insights and discussions in developing the phasor-field model. We also 
acknowledge M. Buttafava, A. Tosi and A. Ingle for help with the gated SPAD 
detector, and B. Masia, S. Malpica and M. Galindo for careful reading of the 
manuscript.

Author contributions X.L., S.A.R., M.L.M. and A.V. conceived the method. X.L., I.G., 
M.L.M. and J.H.N. implemented the reconstruction. M.L.M., X.L., J.H.N. and T.H.L. 
built and calibrated the system. I.G., D.G. and A.J. developed the simulation 
system. A.J., D.G. and A.V. coordinated the project. All authors contributed to 
writing the paper.

Competing interests The authors declare no competing interests.

Additional information
supplementary information is available for this paper at https://doi.org/ 
10.1038/s41586-019-1461-3.
Correspondence and requests for materials should be addressed to A.V.
Peer review information Nature thanks Jeffrey H. Shapiro, Ashok Veeraraghavan 
and the other, anonymous, reviewer(s) for their contribution to the peer review 
of this work.
Reprints and permissions information is available at http://www.nature.com/
reprints.

https://doi.org/10.6084/m9.figshare.8084987
https://doi.org/10.6084/m9.figshare.8084987
https://doi.org/10.6084/m9.figshare.8084987
https://doi.org/10.6084/m9.figshare.8084987
https://doi.org/10.1038/s41586-019-1461-3
https://doi.org/10.1038/s41586-019-1461-3
http://www.nature.com/reprints
http://www.nature.com/reprints


Letter reSeArCH

Extended Data Fig. 1 | Capture hardware used for the results shown in this Letter.
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Extended Data Fig. 2 | Data comparison. a, Raw data for one of the laser 
positions xp. Shown is the number of photons per second accumulated in 
each time bin (that is, the collected histogram divided by the integration 
time in seconds). Time bins are 4 ps wide. As expected, all three curves 
appear to follow the same mean, but there is a larger variance for lower 

exposure times. The raw data thus become noisier as exposure time 
decreases. The effects on the reconstruction are minor, as Extended Data 
Fig. 4 shows. Tacq, acquisition time. b, Example dataset from ref. 9 for 
comparison.
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Extended Data Fig. 3 | Visualization of the raw data for our long-
exposure office scene. a, Base-10 logarithm of the photon counts in all 
time bins. Pos index, laser position index; the 24,000 laser positions on the 
wall are labelled with these consecutive numbers. b–d, After removal of 
the first 833 time bins in each dataset, the plots show: the photon counts 

for the laser position that received the largest total number of photons in 
the dataset (b); the counts for the laser position that received the median 
number of photon counts (c); and the counts for the laser position that 
contains the time bin with the global maximum count in the entire set (d).
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Extended Data Fig. 4 | Robustness to multiple reflections. Result for  
the synthetic bookshelf scene. a, Without interreflections. b, Including 
high-order interreflections. The quality of the results is very similar.  
c, Primary data (streak images) from the same scene without (top), and 
with interreflections (middle). The synthetic data clearly show how the 
presence of interreflections adds, as expected, low-frequency information 

resembling echoes of light. The bottom image shows primary data 
captured from the real office scene in Fig. 2. It follows the same behaviour 
as the middle image, revealing the presence of strong interreflections. 
Colours refer to numerical values from Matlab’s ‘fire colormap’, in arbitrary 
units.
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Extended Data Fig. 5 | Robustness to ambient light and noise. a, Hidden 
bookshelf. b, Imaging results with increasingly higher exposure times; 
even at 50 ms, there is no significant loss in quality. Top row, image using 
only the pulsed laser as illumination source. Bottom row, on adding a large 

amount of ambient light (same conditions as the photograph in a),  
the quality remains constant. c, Difference between the 50-ms- and 
1,000-ms-exposure captures for the lights-off case.
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Extended Data Fig. 6 | Short-exposure reconstructions. Reconstruction 
of the office scene using very short capture times. a, Photograph of the 
captured scene. b, From left to right, reconstructions for data captured 

with 10 ms, 5 ms and 1 ms exposure time per laser. The total capture time 
was about 4 min, 2 min and 24 s, respectively.
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Extended Data Fig. 7 | Short-exposure data. Photon counts in the raw 
data for our office scene for 10 ms (top row), 5 ms (centre row) and 1 ms 
(bottom row) exposure times per laser position. After removing the first 
833 time bins in each dataset, the columns show: the photon counts for 

the laser position that received the largest total number of photons in the 
dataset (left); the counts for the laser position that received the median 
number of photon counts (centre); and the laser position that contains the 
time bin with the global maximum count in the entire set (right).
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Extended Data Fig. 8 | Comparison to prior methods. Reconstruction of the office scene using very short capture times of 1 ms per laser (24 s in total). 
a, Filtered backprojection using the Laplacian filter. b, LOG-filtered backprojection. c, Our method.
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Extended Data Fig. 9 | Robustness to scene reflectance. a, Geometry 
of our experimental set-up. b, From left to right, imaging results for the 
Lambertian targets (roughness 1) and increasingly specular surfaces 

(roughness 0.4 and roughness 0.2). The reconstructed irradiance is 
essentially the same for all cases.
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Extended Data Fig. 10 | Reconstruction comparison on a public 
dataset. From left to right: confocal NLOS deconvolution, filtered (LOG) 
backprojection (FBP) and our proposed method. A large improvement 
in reconstruction quality for the simple scenes included in the dataset 

(isolated objects with no interreflections) is not to be expected, as existing 
methods already deliver reconstructions approaching their resolution 
limits. Nevertheless, our method achieves improved contrast and cleaner 
contours, owing to better handling of multiply scattered light.
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Extended Data Fig. 11 | Reconstruction comparison (noisy data). 
From left to right: confocal NLOS deconvolution, FBP and our proposed 
method. Top row represents a non-retroreflective object; bottom row 
represents a retroreflective object captured in sunlight. In the presence of 
noisy data, FBP fails. Confocal NLOS includes a Wiener filter that needs to 

be explicitly estimated. Our phasor-field virtual wave method yields better 
results automatically. This is particularly important in complex scenes with 
interreflections, where the background is not uniform across the scene, 
and the noise level cannot be reliably estimated.
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extended data table 1 | Photon statistics for captured data used in the paper and in supplementary Information

The first four scenes were captured with 1 s exposure time. The first column shows the total photons counted, the second shows the average photon count per time bin, the third is the maximum count 
over all time bins, and the last contains the average number of photons collected in each laser position in the dataset.
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