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A B S T R A C T

Representing virtual humans is very important in computer graph-
ics imagery due to its ubitiquous use in the entertainment industry
and their increasing applications in other areas like surgery, psychol-
ogy, forensics, prosthetic design, fashion or computer vision. How-
ever, given the sensitivity of our brain to human depictions, represent-
ing virtual humans is still a very challenging problem, with multiple
ramifications including geometry modelling, animation, simulation,
appearance definition and perception. In this thesis we focus on the
later two: modeling and perception of the appearance of virtual hu-
mans.
The first part of this thesis aims to understand what makes a character
appealing and expressive, depending on the level of stylization of key
factors like its shapes and materials. To this end, a set of perceptual
experiments are performed over two characters where we combine
different levels of stylization -from very realistic to very stylized- for
shape and material.
Then, the work focuses in skin and cloth. These two materials are
crucial to depict photorealistic humans, and both exhibit a highly
complex structures and volumetric properties. We present the first
model capable to simulate the changes in the appearance of elderly
skin, accounting for the variations in biophysical parameters based
on real measurements from medical and tissue optics literature. This
predictive nature can broaden the models’ range of applications to
cosmetics or dermatology.
Regarding the computer generated cloth, a perceptual study is con-
ducted to disentangle the relative importance of dynamics and ap-
pearance in the perception of cloth. The goal is to efficiently dis-
tribute the resources in production, since both dynamics and appear-
ance simulation are orthogonal processes that require great computa-
tional costs and manual intervention by artists and technicians. Last,
we present an appearance model for cloth at the fiber level, devel-
oping high-quality scattering functions for cloth fibers that rely on
real-world physical parameters, such as the shape of the fiber’s cross-
section or the amount of dye and its absorption rates in the visible
spectra. The reflectance fields obtained are specified by actual man-
ufacturing parameters used in the textile industry, what makes the
model useful beyond computer graphics, in applications related to
cloth design and prototyping.
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R E S U M E N

La representación de humanos virtuales es muy importante en el área
de la informática gráfica, debido a su uso extensivo en la industria
del entretenimiento y sus crecientes aplicaciones en otras áreas como
la cirugía, la psicología, las ciencias forenses, el diseño de prótesis
y animatrones, el diseño de moda o la visión por computador. Sin
embargo, dada la gran sensibilidad de nuestro cerebro a la hora de
percibir representaciones de humanos, la generación de humanos dig-
itales es todavía un problema complejo, con múltiples ramificaciones
que incluyen el modelado geométrico, la animación, la simulación,
el modelado de la apariencia y la percepción. En esta tesis nos cen-
tramos en las dos últimas: el modelado y la percepción de la aparien-
cia de humanos virtuales.
La primera parte de esta tesis se centra en entender los factores que
intervienen en el atractivo y la expresividad de un personaje virtual.
Con este fin, se han llevado a cabo una serie de experimentos psi-
cofísicos sobre dos personajes que combinan distintos niveles de es-
tilización (desde muy estilizado a muy realista) tanto en forma como
en material, dos factores clave a la hora de definir la apariencia.
El resto de la tesis se centra en dos materiales: la piel y la tela. Estos
dos materiales son cruciales para representar humanos fotorrealistas,
y ambos presentan una estructura compleja y propiedades volumétri-
cas. Se ha desarrollado el primer modelo biofísico de piel que tiene
en cuenta los cambios en su apariencia debidos a la edad, mediante
el modelado de los cambios estructurales más importantes, como el
adelgazamiento progresivo de las capas de la piel, o el descenso en
la concentración de cromóforos como la melanina o la hemoglobina.
La naturaleza predictiva de este modelo puede hacerlo extensible a
otros campos como la cosmética o la dermatología.
Respecto a la apariencia de las prendas digitales, se ha realizado
un estudio perceptual para desentrañar la importancia relativa del
movimiento y la apariencia de la tela. El objetivo es poder distribuir
los recursos de manera eficiente en producción, ya que tanto la apari-
encia como el movimiento de las prendas se generan en procesos
completamente ortogonales, que requieren de grandes costes tanto
computacionales (simulaciones y renderings físicos) como humanos,
en forma de trabajo manual de artistas y técnicos para ajustar los
parámetros de dichos procesos.
Por último, la tesis desarrolla un modelo de apariencia de tela a nivel
de fibra, a través de funciones de dispersión de las principales fibras
comerciales (algodón, seda, poliéster y lana). Dichas funciones se es-
pecifican mediante parámetros reales en la industria textil, como la
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cantidad y tipo de tinte empleado, lo cual puede extender el uso del
modelo más allá de los gráficos en aplicaciones relacionadas con el
diseño y prototipado de tejidos.

viii



A C K N O W L E D G E M E N T S

This thesis is the result of the support and help of many people.

Diego, for teaching me how to improve my research skills and be-
come a better professional. I joined the lab as a complete newbie, not
only in computer graphics but as a researcher in general. I specially
value the wide view Diego has about the field and his extreme at-
tention to detail, what makes you improve everyday. And Adrián, for
his continuous support and endless discussions, this thesis would not
have been possible without his patience and exceptional talent.

José Antonio Iglesias Guitián, for his compromise during my Masters
Thesis. And his good mood, working with him was trully fun.

My hosts during my internships at Walt Disney Animation. Ras-
mus Tamstorf and Carol O’Sullivan, for giving me the first opportunity
and teaching me many things. Matt Chiang and Brent Burley, for the
fruitful discussions. Particularly Matt, I learned a lot from his skills at
solving problems in production. And not only for the work but also
for the great times in California and Spain.

My hosts at Technicolor Tania Pouli and Patrick Perez, for their help
and insightful conversations. They made me feel like home.

The members of the Graphics and Imaging Lab. The daily work,
the deadlines, the trips, the parties... were awesome with them, with
special mention to José Ignacio Echevarría and Elena Garces for being
the closest to me during last year, and for the fun also with Cristina
Tirado. Julio Marco, for the great times in Glendale and his unforget-
table black Disney polo, Adolfo Muñoz for the early bird caffeinated
discussions, and Susana Castillo for the extremely late meetings.

My coworkers and colleagues during internships, specially Yuan-
fang Chen, Simon Kallweitt, Rajaditya Mukherjeee, Ozan Cetinaslan, Syl-
vain Duchene, Carlos Castillo and Jorge López. And the crew of spaniards
at Disney Animation, with spetial mention to Luis Labrador and José
Gómez.

The students I supervised, Balma Félez and Carlos Guillén. I hope
they learned from me as I did from them.

ix



My friends, for the fun and disconnection from work, and my fam-
ily, for always caring, especially Dionisio and Manuela.

My sister, for always trusting me and never let my artistic side die.

Andrea, for the infinite good times and support, I owe her part of
this thesis.

My parents, for everything. I won’t be able to give them back all I
got from them.

This thesis has been funded by the Gobierno de Aragón, Walt
Disney Animation Studios, the European Research Council (Consol-
idator Grant, project Chameleon, ref. 682080) and the Spanish Min-
istry of Economy and Competitiveness (project LIGHT SLICE, ref.
TIN2016-78753-P).

x



C O N T E N T S

1 introduction 1

1.1 Goals and Overview 5

1.2 Effect of Stylization on the Perception of Virtual Char-
acters 6

1.3 Modeling Human Skin 7

1.4 Simulating The Appearance of Cloth 8

1.5 Contributions and Measurable Results 10

2 perception of computer generated faces 15

2.1 Introduction 16

2.2 Related work 18

2.3 Stimuli Creation 20

2.4 Experiment Design 22

2.5 Importance of Shape, Material, Shading and Texture 24

2.5.1 Experiment 1a: Shape and Material 24

2.5.2 Experiment 1b: Shading and Lighting 27

2.5.3 Experiment 1c: Texture 29

2.5.4 Conclusion 31

2.6 Experiment 2: Further Investigation of Shape and Ma-
terial 34

2.7 Experiment 3: Effect of Expressions 37

2.7.1 Intensity and Recognition of Expressions 37

2.7.2 Effect of Expression on Realism and Appeal 39

2.8 Discussion 40

2.8.1 Limitations and Future Work 42

2.9 Appendix A. Effect of Expressions in Experiments 1a
and 1b 44

2.10 Appendix B. Additional Diagrams 46

2.10.1 Experiment 1a: Shape and Material 46

2.10.2 Experiment 1b: Shading and Lighting 48

2.10.3 Experiment 2: Further Investigation of Shape and
Material 51

2.10.4 Experiment 3: Recognition and Intensity 52

3 a biophysically-based model for skin aging 53

3.1 Introduction 53

3.2 Previous Work 54

3.3 Anatomy and Optical Properties of Skin 55

3.3.1 Skin aging 57

3.4 Our Skin Aging Model 58

3.4.1 Layered structure 58

3.4.2 Surface reflection 59

3.4.3 Absorption 61

3.4.4 Scattering 63

xi



xii contents

3.5 Using Our Model 66

3.6 Results 67

3.6.1 A simplified model 68

3.7 Conclusions and Future Work 70

3.8 Appendix A. Modelling of sebum 73

4 perception of computer generated cloth 75

4.1 Introduction 76

4.2 Related Work 77

4.3 Stimuli Creation 78

4.4 Experiments 84

4.4.1 Experiment One: Ground Truth comparison 84

4.4.2 Experiment Two: Identifying Mismatches 91

4.4.3 Experiment Three: Perceived Cloth Features 93

4.5 Conclusions 96

5 an appearance model for textile fibers 99

5.1 Introduction 100

5.2 Related Work 101

5.3 Light Scattering from Textile Fibers 104

5.3.1 Fiber properties 107

5.3.2 Obtaining the BCSDFs 108

5.4 Analysis & Discussion 109

5.5 Rendering 112

5.6 Results 114

5.6.1 Validation 116

5.7 Conclusions 118

6 conclusions & future work 121

bibliography 127



L I S T O F F I G U R E S

Figure 1 The Uncanny Valley 2

Figure 2 Device for capturing a real human and its real-
time rendering 3

Figure 3 Realistic hair rendering and artist-friendly ed-
itable models 4

Figure 4 Light and skin interactions for realistic skin
rendering 5

Figure 5 The multi-scale nature of cloth 8

Figure 6 High resolution details needed for realisitc cloth
rendering 9

Figure 7 Examples of the stimuli of the experiments 15

Figure 8 Face scanning setup 20

Figure 9 Examples of stylizations created for the study 22

Figure 10 Stimuli used in Experiment 1a 23

Figure 11 Results of Experiment 1a for realism and ap-
peal 25

Figure 12 Results of Experiment 1a for eeriness and fa-
miliarity 26

Figure 13 Stimuli for Experiment 1c 28

Figure 14 Results of Experiment 1c: effect of texture blur-
ring 30

Figure 15 Stimuli for Experiment 2. Shape stylizations
and expressions for the male 32

Figure 16 Stimuli for Experiment 2. MAterial stylizations
and expressions for the female 33

Figure 17 Results of Experiment 2: realism and appeal
for shape and material stylizations 35

Figure 18 Results of Experiment 3: effect of shape on ex-
pressivity 38

Figure 19 Results of Experiment 2: expression over real-
ism and appeal 39

Figure 20 Realism vs appeal diagram of participant rat-
ings 41

Figure 21 Results of Expressions in Experiment 1a 44

Figure 22 Results for Experiment 1a 46

Figure 23 Results for Experiment 1a 47

Figure 24 Results for Experiment 1b 48

Figure 25 Results for Experiment 1b 49

Figure 26 Results for Experiment 1b 50

Figure 27 Results for Experiment 2 51

Figure 28 Results for Experiment 3 52

xiii



xiv List of Figures

Figure 29 Renders of young and old, female and male
faces 53

Figure 30 Skin anatomy 56

Figure 31 Pictures of skin structural changes with age 57

Figure 32 The influence of the hypodermis 59

Figure 33 Evolution of surface roughness and sebum 60

Figure 34 Effects of roughness variation on the specular
reflection 60

Figure 35 Spectral absortion for the main chromphores
and per skin layer 62

Figure 36 Influence of water on the spectral absorption
of skin 63

Figure 37 Influence of the decrease of melanin with age 64

Figure 38 Influence of the decrease of haemoglobin with
age 65

Figure 39 Distributions of collagen fibers diameter 66

Figure 40 Skin aging simulations for the six types of skin
according to the Fitzpatrick scale 68

Figure 41 Differences on skin translucency and overall
color between 30, 55 and 80 years old 69

Figure 42 Aging effect depending on body location 70

Figure 43 Differences when using a simplified, three-layered
version 70

Figure 44 Some of the fabrics created for the experiments 75

Figure 45 Comparison between the real fabrics and the
CG replicas 80

Figure 46 Lighting studio setup and comparison of real
and CG dynamics 81

Figure 47 All CG stimuli from Experiments 1 and 2 83

Figure 48 Experiment 1 screen layout 84

Figure 49 Experiment 1 results 85

Figure 50 Experiemnt 1 results sorted by Appearance and
Dynamics 87

Figure 51 Experiment 1 results, showing the number ’R-
fabric’ dependeing ondifferent appearances and
dynamics 88

Figure 52 Map of the perceptual distances of the fab-
rics 90

Figure 53 Two screen layout for Experiment Two 92

Figure 54 Experiment 2 results, exploring mismatch type 92

Figure 55 Frequency of chosen fabrics when isolating fac-
tors 94

Figure 56 One screen layout for Experiment 3 95

Figure 57 Results of Experiment 3, perceptual attributes 95

Figure 58 Volumetric rendering of three fabric samples
using our model 99



List of Figures xv

Figure 59 SEM images of textile fibers 104

Figure 60 Coordinates and frame used by the model 104

Figure 61 Light absorption in fibers and threads 108

Figure 62 Comparisons of our BCSDFS and related work 110

Figure 63 Volumetric renders of a knitted stockinette fab-
ric 111

Figure 64 Renders of yarns with differnet BCSDFS dis-
tributions 112

Figure 65 Comparison against related work 114

Figure 66 Volumetric renderings comparing our BCSDFs
to related work 115

Figure 67 Renders of the virtual replicas of the acquired
yarns 116

Figure 68 Further comparison or our BCSDFS to related
work 116

Figure 69 Measurement setup 118

Figure 70 Scattering of yarns; measured vs simulated 119



L I S T O F TA B L E S

Table 1 Typical thickness of the skin layers and their
range of variation per decade 59

Table 2 Chromophore concentrations of a typical adult 62

Table 3 Input parameters for the results of the chap-
ter. 71

Table 4 Intermediate and output model parameter for
all the images of the chapter 72

Table 5 Contribution of each chromophore to the fi-
nal spectral absorption coefficient of a given
layer 73

Table 6 Wavelength-dependent absorption equations for
each layer of our skin model 74

Table 7 Manufacturer parameters of the real fabrics 79

Table 8 Outgoing field of the BCSDF of a set of cloth
fibers 105

Table 9 Measurements of the physical and optical prop-
erties of four of the most common fabrics 107

Table 10 Computation and storage costs 109

Table 11 Sewing yarns specifications 117

xvi



1
I N T R O D U C T I O N

Virtual characters are ubiquitous in movies and video games indus-
tries, and they are increasingly present in other domains of applica-
tion such as biomedical simulation or virtual and augmented reality.
Digital humans have proven to be useful for phobia treatments and
therapies for a range of psychological disorders [235, 175], medicine
and surgery [206], cultural heritage [4], and can potentially give birth
to new learning and training paradigms [107]. Other applications like
design and prototyping of prosthetics and animatronics [27], foren-
sics [140, 29], virtual make-up systems [196], fashion [225], or facial
detection in computer vision [197] can benefit from advances in the
process of creating computer generated humans. This thesis presents
contributions in several aspects relevant to human appearance simu-
lation and perception. We perform psychophysical studies aimed to
disentangle the factors involved in the perception of a digital charac-
ter, and propose several solutions for accurately modeling and render-
ing humans. In particular, the presented models are focused in skin
and cloth, some of the most complex materials found in humans due
to their multi-scale structure and their complex interaction with light.

Achieving believable humans that convey the right emotions not
only lays on solving the intricated animation of a human face. Mod-
eling and rendering the subtle details and complex materials that are
specially present in skin, eyes, hair and cloth is also crucial. Despite
the complexity of this process, advances along decades have allowed
to create digital replicas indistinguishable from their real counter-
parts, as in the recent cases of Carrie Fisher and Peter Cushing in
Rogue One (2016), or Arnold Schwarzenegger in Terminator Genisys
(2015), to name a few. But it has been a long way since the very first
uses of computer generated imagery (CGI) in feature films like Fu-
tureworld (1976), for depicting an animated hand and a face, or Tron
(1982), with more than fifteen minutes of digital effects in total. In the
case of CG characters, the first virtual actors in movies like Rendez-
vous in Montreal (1987) and the baby of the Pixar’s short Tin Toy (1988)
were important milestones, both still very far from photorealism. In
1995, Toy Story became the first full-length CG film with compelling
characters, thanks to its talented cartoonish stylizations. In the con-
text of realistic depictions, Star Wars Episode I (1999) extensively used
CGI for crowds and non human creatures, but the resulting look was
still synthetic. In this regard, the challenge of creating photo-realistic
human actors was courageously accepted by Square Pictures Studios

1



2 introduction

Figure 1: The Uncanny Valley Theory [158] states that a certain point or real-
isn, an artificial human starts to fall in a deep valley of disgusting
reactions for the audience until it comes out from the valley when
perfectly matches reality. Image from Wikipedia Commons.

with the release of Final Fantasy (2001). This feature film pushed the
boundaries of CG film production by using a huge render farm to
create highly detailed characters with high quality geometry, textures
and materials (up to 60000 hairs on the head of the main character).
However, the achieved look of the characters provoked the rejection
of the audience, showcasing how the closer a virtual human gets to
a real one, the easier it can lead to disgusting reactions if any sub-
tle detail is wrong or missing. This well known phenomena was first
hypothesised by Mori as the Uncanny Valley [158], a theory initially
developed for humanoid robots but also applicable in other forms of
artificial humans. It states that reactions of rejection and discomfort
can easily rise in the audience when an artificial human, either man-
ually crafted, manufactured or virtually created, reach a considerable
realism but is not able to keep the illusion for the viewers of being
in front of a real human (Figure 1). In the particular case of digital
characters, advances in the fields of capturing, animation, simulation
and rendering have allowed to reach high levels of realism, but it is at
such levels when any subtle imperfection or missing detail can trigger
negative responses [205], and some variables involved in the percep-
tion of virtual faces remain unclear. The Polar Express (2004) represents
another example of this kind of aesthetic failure, despite the movie
introduced the use of motion capture in feature animation. Their com-
bination of stylized characters with captured movements and realistic
rendering was not visually pleasant for the audience. Other attempts
for more realistic humans suffered from similar problems, like the
case of Beowulf (2007). In the meanwhile, the use of digital doubles
of real actors was introduced by Matrix Reloaded (2003) and Matrix
Revolutions (2003), suitable for certain action scenes and with some
limitations. In most cases, either the lack of realism or the rejection
from the audience were mainly due to both the capturing techniques
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Figure 2: Light Stage used for capturing the appearance of a real human,
rendered on the right in real time. Images from USC Institute for
Creative Technologies and Activision RD [7].

employed and the simplifications of the materials used for rendering.
The latter is specially critical for complex materials like skin and cloth,
what will be further discussed in Sections 1.3 and 1.4. In this regard,
a successful example of the use of realistic skin is the character Gol-
lum in The Lord of the Rings: The Fellowship of the Ring (2001), which
became the first virtual actor to win an academy award. With respect
to the capturing techniques, later films like The Curious Case of Ben-
jamin Button (2008) or Avatar (2009) presented facial capture rigs that
really made affordable the extensive use of realistic virtual characters
in film production (Figure 2).

The aforementioned milestones in film production are based on re-
search work of companies and academic institutions that focus their
efforts in human appearance capture and modeling. More precisely,
in material modeling, seminal papers like Marschner’s light scatter-
ing for hair [149] or Jensen’s subsurface scattering (SSS) [121] (Figure
3) allowed to depict plausible fur in King Kong (2005) and realistic
translucent skin for the character Gollum, respectively (the latter was
awarded with a Technical Achievement Award). At the same time,
complex acquisition devices were developed aiming to capture ev-
ery detail and subtleties needed when depicting digital humans, in-
cluding facial hair or realistic eyes [22, 25, 23, 134], and several tools
emerged for stylizing such captured data for later fabrication pur-
poses [63]. In this regard, the canonical example of a capture sys-
tem is the technology developed around the Light Stage [49, 48]: a
spherical set-up of light sources and cameras capable of efficiently
capturing the face of an actor from any viewing position when lit
from every possible direction (Figure 2). This allowed the extensive
use of doubles in feature films, like the mentioned case of Benjamin
Button, the first extended performance of a digitally rendered actor.
Thus, within current techniques it is feasible to obtain accurate re-
productions of the geometry of the face even at the micro-scale level
[163], and skin’s features like its color, spatially varying features or
translucency [233, 61]. Then, this high resolution captured data can
be combined with both offline and real-time rendering techniques
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Figure 3: Examples of realistic hair models in the top row [148, 54], and artist
friendly and practical models for production pipelines [188, 38].
Models capable to simulate the complex interaction of the light
with hair fibers are needed to achieve realistic results. Similarly,
part of this thesis deals with modeling the scattering of textile
fibers.

[7, 125], allowing to depict photorealistic characters in video-games
and virtual reality applications (Figure 4). In addition to skin model-
ing, complimentary but crucial materials like hair and cloth have also
experimented an extraordinary evolution, within simulations even at
the yarn level [42]. However, there are many open problems in mate-
rial modeling despite all these achievements. When creating abstract
models that simulate the appearance of real materials, the border be-
tween geometry and material becomes very fuzzy, due to the multi-
scale structure of most materials present in nature. Current models
often rely on simplifications that create a disconnection from reality.
Such disconnection is usually solved through skilled manual interven-
tion of artists and technicians, who spend many time and resources
changing parameters in a trial and error procedure, so that the de-
sired look is achieved. In this context, this thesis attempts to better
understand the perceptual impact of some parameters involved in
such processes, and then focuses on building bridges between the
models suitable for computer graphics and the reality itself. This is
done by proposing solutions that are based on real measurements,
reaching a level of detail up to the smallest structural features and
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Figure 4: Realistic real-time skin renderings, where the close-up comparison
without (bottom right) and within the model (top right) shows
how the lack of light and skin interactions ruins the realism of
the image (image from Jimenez et al. [126]). Such interactions are
further explored along this thesis.

optical properties of each material. It particularly focuses on skin and
cloth, two materials that remain challenging to simulate in practice.
Sections 1.3 and 1.4 will discuss in more depth the existing work
related to modeling and rendering such complex materials and the
contributions this thesis presents in this regard.

1.1 goals and overview

The main goal of this thesis is to develop models for accurately simu-
lating realistic humans appearance while providing useful guidelines
for the many different options that rise in the process of creating
digital characters. Appearance is determined by the physical proper-
ties of the objects and materials, and their interaction with light. But
human appearance is particularly affected by our visual perception
mechanisms, since the brain is specially sensitivitive when observ-
ing other humans. This is a well known fact traditionally used by
artists to exploit perceptual tricks to depict pleasant characters, like
stylization, softening or exaggeration. However, this knowledge is not
easily transferable to computer generated humans, a fact that this the-
sis tries to address during its first part through experimental studies.
We subsequently focus on developing appearance models for detailed
depictions of skin and cloth, two key components of digital humans
whose intricate complexity make them difficult to model and render
accurately. The purpose is to obtain representations of such materials
with a direct link to real physical properties, like the variation of chro-
mophore concentrations due to skin aging or the cross-sections of the
fibers in the case of cloth, keeping the models tractable in any exist-
ing rendering system. In both cases, their predictive nature opens a
range of applications beyond computer graphics, such as cosmetics
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and dermatology, or fashion design and prototyping.

1.2 effect of stylization on the perception of virtual

characters

Chaper 2 of this thesis is devoted to the perception of human faces.
The appearance of real world objects is not only determined by fac-
tors like their structure at different scales or the properties of the
materials they are made of. It also depends on the way the human
brain interprets the visual information. The same happens in the case
of digitally created content: the eye does not work purely like a cam-
era, but behaves like an extension of the brain. In addition, the brain
is particularly sensitive when perceiving other human beings, due to
biological adaptation and evolutionary reasons. This fact has been ex-
tremely well exploited by artists for centuries; quoting Pablo Picasso:
"Art is the lie that reveals the truth". From the classics, artists are able to
represent mundane real things in a way that they become irresistible
and pleasant for the human brain, being able to retain the essence of
such things at the same time. Studies demonstrate how humans can
recognize abstractions of reality with great distortions and exagger-
ations better than the reality itself [1], specially when performed by
experts capable to keep the most important features to resemble the
original real counterpart. This is known as peak-shift effect. Caricatures
are a great example of how exaggerating salient features enhances the
facial recognition process that occurs in our brain.

Knowledge learned from traditional art is hardly applied to digital
humans directly. Both 2D and 3D cartoons have traditionally avoided
to depict realistic characters, opting for exaggeration and beautifica-
tion to enhance the expressiveness and appeal of the characters [152].
As in the case of traditional art, stylized versions are preferred over
realistic faces [85] when depicting virtual humans in order to avoid
the Uncanny Valley, as exposed in the introduction. But there are other
psychological factors that play a role, like the familiarity of the char-
acters to the viewers [56], or observers’ level of training in computer
graphics [68] and their sensitivity, increased over the years, to detect
the techniques employed for rendering virtual humans [214]. In this
context, the effect the rendering style [154], post-production 2D filters
[227], or the level of anthropomorphism [205] were already studied.
This thesis focuses instead on two key variables when stylizing a 3D
virtual character; namely, shape and material. Starting from scans of
two real people performing several basic facial expressions, we cre-
ate different stylization levels for both shape and material with the
help of artists, and analyze how different combinations affect the per-
ception of the characters. This work attempts to extract the relative
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importance of shape and material stylization, providing interesting
insights for future research in perception of human faces and also
useful guidelines for generating appealing 3D characters.

1.3 modeling human skin

Chaper 3 focuses on modeling the appearance of the skin, a central
component of the human appearance. Thanks to modern 3D scanning
devices, geometric and texture details such as wrinkles, scars, pores
or freckles can be accurately captured, even the micro-geometry of
the skin surface. But naively rendering these highly detailed models
results in a very hard looking and unrealistic skin. Examples previ-
ously cited like Final Fantasy or The Polar Express films showcase how
opaque materials used to mimic the skin appearance easily trigger
negative reactions in the audience. This is due to the absence of sub-
surface scattering (SSS): the skin is made of several translucent layers
so that when a beam of light reaches the surface, it scatters, gets par-
tially absorbed, and emerges from the skin back to the exterior at a
different point than where it entered. The effect of such process is sub-
tle but turns out to be crucial for rendering realistic humans. Several
techniques [50, 98] have been presented to model SSS, since the first
approaches [121, 120] that introduced the use of diffusion approxima-
tion in computer graphics. Some of them oriented to real-time ren-
dering [51, 124, 125], some other capapable to simulate the effect of
different emotional and physical states on the appearance of the skin
[123]. Another line of research was focused on the multilayered struc-
ture of the skin and its composition. The color of the skin is mostly
due to the chemical compounds, called chromophores, present in dif-
ferent proportions for each of the layers of the skin. Mainly melanin in
the outermost layers (epidermis) and blood in the inner ones (dermis).
There are approaches that deal with multilayered translucent materi-
als like skin [59, 52], and some models account for chrompophore con-
centrations in a biophysically-based way [60, 135, 18]. Starting from
an accurate static biophysical skin model, part of this thesis focuses
on simulating the changes in the optical properties of the skin due to
aging. In computer graphics, aging has only been addressed from the
geometric perspective, such as the synthesis and simulation of wrin-
kles [28, 92]. Our model relies on the existing measurements from
the vast medical and tissue optics literature to account for key factors
like the slimming of the skin layers and other structural changes, or
the variations in the chromophore concentrations. Together, all these
changes modify the absorption and light scattering patterns of the
skin, leading to different appearances that ultimately depend on age,
gender, or life habits.
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1.4 simulating the appearance of cloth

Chaper 4 and Chaper 5 are centered on the perception and model-
ing of computer generated garments. In computer graphics, cloth
remains as one of the most challenging materials due to the micro-
structures found at the fiber level and the complex light-material in-
teractions at such scales (Figure 5). To obtain realistic animations of
cloth requires a lot of computational resources in the form of costly
physical simulations and renderings, and also a great amount of work
of skilled artists and technical directors to manually tune the dynam-
ics simulation and rendering parameters.

Figure 5: The overall appearance of cloth results from the aggregate effect
of each fiber interaction wth light at micro-scale level. Image mod-
ified from Zhao et al. [250].

perception of cloth In this scenario, a deeper understanding
on how audience perceive digital cloth can help to balance the re-
sources and decide whether to direct more or less efforts. A goal
of this thesis is to gain knowledge about the relative importance of
dynamics and appearance on the perception of virtual cloth. Both
represent orthogonal processes in practice that require independent
treatment. On the one hand, to achieve the desired movements de-
pends on a trial and error procedure where skilled specialists are in
charge of testing combinations of many parameters over costly dy-
namics simulations. Some of these parameters are not even linked
to physical properties and are particular to each simulation engine,
a fact that was addressed by recent approaches [208] in an attempt
to build a generic control space for cloth simulation. On the other
hand, rendering cloth is a very challenging task, due to the complex-
ity of textile materials and the amount and heterogeneity of the avail-
able models and representations in computer graphics, what will be
discussed later. In fact, cloth appearance has traditionally relied on
the skills of artists to mimic the desired look, what makes the task
very time consuming. In this thesis we present a study of the rela-
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Figure 6: Recent cloth models reach a great level of detail for very small
scales, some of them relying in x-ray computed tomography scan-
ners to acquire high resolution volumetric samples. Such small de-
tails are crucial for achieving a realistic look of the cloth, and our
work goes further in this direction. Image from Zhao et al. [248].

tive importance of cloth appearance and dynamics through several
perceptual experiments to disentangle the effect of each factor under
different conditions, what can help to efficiently distribute human
and computational resources in production pipelines.

modeling cloth The complexity of cloth modeling and render-
ing has been traditionally addressed by taking big assumptions and
simplistic models while relying on the skills of shading artists. Tak-
ing again Final Fantasy as an example, some clothing in that movie
was rendered using plastic and metal shaders, and even current pro-
ductions mimic cloth appearance through a combination of textures
and materials stacked in several shading layers. This is due to the dif-
ficulties involved to accurately model and render cloth, a hard prob-
lem due to its multi-scale structure and the complex interaction of
the light with its smallest building block: the textile fibers. In fact,
cloth rendering is a very active research field that has received a lot
of attention during the past few years. Either by modeling the fiber
assemblies [199] or capturing pieces of cloth through photographs
[203] or Computed Tomography Scanners (CT) [247, 251], recent ap-
proaches represent a step further to accurately represent the cloth
appearance at very small scales (see Figure 6). This is needed for cap-
turing the subtleties and rich optical behavior of individual fibers,
and determines the overall appearance of the cloth at coarser scales.
Despite the extreme level of detail in terms of geometry, the mod-
els [255, 130] used simulate the light scattering from textile fibers
suffer from two key drawbacks. First, they over simplify the fibers’
structure and resultant scattering patterns (e.g. assume circular or
elliptical cross-sections). Second, current models lack of any connec-
tion with physical properties and manufacturing parameters used in
reality, like the role of dyes and their compounds in the absorption
of light and derived saturation of dyed cloth. The last part of this
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thesis is dedicated to develop high-quality scattering functions for
cloth fibers capable to take into account the optical and structural fea-
tures of real textile fibers. To this end, the proposed model relies on
real-world measured data available in the textile research literature
to build digital replicas of real fibers. Then, fiber scattering functions
for different fibers (polyester, cotton, silk, wool) are obtained through
simulations, so that such functions are specified by actual fabrica-
tion parameters used by manufacturers in real life. This makes the
model not only relevant for the obvious application of CG films and
videogames, but also for cloth design and prototyping.

1.5 contributions and measurable results

1.5.0.1 Publications

Some part of the work presented in this thesis has been already pub-
lished and some is under review. In particular:

• Effect of Stylization on the Perception of CG Faces. This work was ac-
cepted in SIGGRAPH ASIA 2015, and published in ACM Trans-
actions on Graphics [246]. This journal has an impact factor of
4.218, and its position in the JCR index is 1st of 106 (Q1) in
the category of Computer Science, Software Engineering (data
from 2015). In this work, I led the stimuli creation and co-led
the design of the experiments; the first author was in charge of
the analysis of the results.

• A Biophysically-Based Model of the Optical Properties of Skin Aging.
The work on skin modeling was accepted in EUROGRAPHICS
2015, and published in Compute Graphics Forum [111]. This
journal has an impact factor of 1.542, and its position in the JCR
index is 17 out of 106 (Q1) in the category of Computer Science,
Software Engineering (data from 2015). The project was led by
José Antonio Iglesias Guitián. My role was to lead the research
over the medical and tissue optics literature needed to build the
model, being also in charge of the rendering part in PBRT [179]
to create the results of the paper using the diffusion profiles
obtained from the model presented.

• Cloth Perception. The perceptual study of the digital moving gar-
ments led to a publication in the Symposium on Applied Per-
ception 2015 [8] and is accepted with major revisions in ACM
Transactions on Applied Perception (TAP) [11]. This journal has
an impact factor of 0.561, and its position in the JCR index is
86 out of 106 (Q4) in the category of Computer Science, Soft-
ware Engineering (data from 2015). I was the leading author,
and the work was partially done during my first internship of
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six months at Walt Disney Animation Studios, and the remain-
ing work was done at Universidad de Zaragoza with the advise
of Diego Gutiérrez.

• Cloth Appearance Modeling. The work devoted to modeling the
appearance of cloth, where I had the role of leading author,
resulted in several publications. First, a poster of the ongoing
project presented at SIGGRAPH 2016 obtained the 3rd place
at the Student Research Competition. Then, a full paper was
accepted in EUROGRAPHICS Symposium on Rendering [10],
whose proceedings are published in Computer Graphics Forum.
This journal has an impact factor of 1.542, and its position in the
JCR index is 17 out of 106 (Q1) in the category of Computer Sci-
ence, Software Engineering (data from 2015).

In addition to these previous publications, during my PhD I have
collaborated in other research projects directly or indirectly related to
the topic of this thesis:

• Display Adaptive Disparity Remapping. I participated in a project
related to glasses free 3D content retargeting. It was focused in
remapping the depth of stereoscopic 3D scenes to fit different
displays while maintaining the perceived original depth. This
work was accepted to Computers & Graphics [150]. This journal
has an impact factor of 1.12, and its position in the JCR index is
41st of 106 (Q2) in the category of Computer Science, Software
Engineering (data from 2015).

• Art Directable Micro-Appearance Modeling of Cloth My second
internship at Walt Disney Animation Studios was devoted to
build solutions for cloth appearance with enough geometric de-
tail at fiber level but scalable at the same time. Two talks were
given in the company, interested in taking the ideas developed
during the internship for integration in the production pipeline.

• Mixed Illumination Analysis in Single Image for Color Grading Dur-
ing my internship at Technicolor, I joined an ongoing project of
mixed illumination estimation from single images, led by Syl-
vain Duchene. I focused on re-designing the clustering of pairs
of radiance in the image in terms of the different hues of light
present in the scene, and designing the strategy for efficiently
sampling such pairs near the occlusion boundaries. The former
technique is going to be patented by Technicolor, and the com-
plete work was published at Expressive 2017 conference [62].

1.5.0.2 Grants & Awards

We include here a list of awards and fellowships received through-
out this thesis, that have allowed the realization of the work here
presented:
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• FPI Grant from the Regional Government, Diputación General
de Aragón (4-year PhD grant).

• CAI Europa Research Stay grant for the 2 months at Porto Inter-
active Center.

• Funding from Disney Research to extend the collaborative work
after the first internship in 2014.

• Bronze at the ACM Student Research Competition, for the poster
published at SIGGRAPH 2016 [9].

1.5.0.3 Research Stays and Internships

Two research stays, totaling 14 months, were carried out during this
PhD in three different locations:

• July 2012 - August 2014 (two months): Early Stage Researcher
within the GOLEM Marie Curie project at Porto Interactive Cen-
ter (Portugal). Supervisor: Veronica Orvalho. Worked on realis-
tic skin real-time rendering.

• June 2014 - December 2014 (six months): Research Intern at Walt
Disney Animation Studios. Supervisors: Rasmus Tamstorf and
Carol O’Sullivan. Worked on the perception of virtual cloth. A
publication in a peer-reviewer international conference [8] and
its extension to Transactions on Applied Perception (Chapter 4),
accepted with revisions, result from this internship and further
collaboration.

• June 2016 - September 2016 (three months): Research Intern
at Walt Disney Animation Studios. Supervisors: Matt Chiang
and Brent Burley. Worked on developing a scalable appearance
model for cloth at fiber level.

• September 2016 - December 2016 (three months): Research In-
tern at Technicolor. Supervisors: Tania Pouli and Patrick Perez.
Worked on estimating the illuminance of a scene under mixed
illumination from a single image. The results were published in
a conference paper [62].

1.5.0.4 Supervised Students

During the development of this thesis I have supervised the Graduate
Thesis of two students:

• Carlos Guillén (Computer Engineering, 2015). Realistic Hair Ren-
dering.

• Balma Felez (Industrial Design, 2013). A Virtual Recreation of
Asch Psychological Experiment.
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1.5.0.5 Research Projects

During my PhD studies I have participated in the following research
projects:

• GOLEM: Realistic Virtual Humans. European Commission Marie
Curie Industry–Academia Program, Seventh Framework. Grant
no.: 251415. PI: Diego Gutierrez.

• VERVE: Vanquishing fear and apathy through e-inclusion: per-
sonalised and populated realistic virtual environments for clin-
ical, home and mobile platforms. European Commission (FP7-
ICT-2011-7). Grant no.: 288914. PI (in Spain): Diego Gutierrez.

• LIGHTSLICE: Capture, analysis and applications of the multidimen-
sional light transport (application to medical imaging). Ministe-
rio Español de Economía y Competitividad. PI: Diego Gutier-
rez.

1.5.0.6 Professional service

During this thesis I had the chance to be reviewer for several inter-
national journals and conferences such as Computer Graphics Fo-
rum, Pacific Graphics, Computers & Graphics, or Transactions on
Applied Perception, and I was on the local organizing committee
for the Eurographics Symposium on Rendering (EGSR) 2013 and the
Spanish Conference in Computer Graphics (CEIG) 2014, both held in
Zaragoza and hosted by our group.





2
P E R C E P T I O N O F C O M P U T E R G E N E R AT E D FA C E S

Virtual characters contribute strongly to the entire visuals of 3D ani-
mated films. However, designing believable characters remains a chal-
lenging task. Artists rely on stylization to increase appeal or expres-
sivity, exaggerating or softening specific features. In this chapter we
analyze two of the most influential factors that define how a character
looks: shape and material. With the help of artists, we design a set of
carefully crafted stimuli consisting of different stylization levels for
both parameters, and analyze how different combinations affect the
perceived realism, appeal, eeriness, and familiarity of the characters.
Moreover, we additionally investigate how this affects the perceived
intensity of different facial expressions (sadness, anger, happiness,
and surprise). Our experiments reveal that shape is the dominant
factor when rating realism and expression intensity, while material
is the key component for appeal. Furthermore our results show that
realism alone is a bad predictor for appeal, eeriness, or attractiveness.

Figure 7: Some of the stimuli used in our experiments. From most abstract
on the top left to the most realistic versions on the top right, differ-
ent expressions of four of the five levels of stylization used in the
study are shown in the image.

15
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2.1 introduction

Over the last years, advances in the field of computer graphics have
allowed the entertainment industry to create very realistic virtual hu-
mans [6, 126]. However, depicting convincing and believable char-
acters continues to be a difficult task. The reasons why people like
the appearance of a particular character may be influenced by many
psychological factors, such as the familiarity of the characters to the
observers [56], the possible adaptation of the society to cartoon faces
[37], the viewers’ level of expertise in computer graphics [68], or their
increasing ability to notice the tricks and techniques employed [214].
In this context, it is generally accepted that stylized versions are often
preferred over realism [85], but the reasons for this are still unclear.
Moreover, stylization allows the artist to explore possibilities beyond
what is found in the real world (such as oversized eyes for cartoons,
for instance) to enhance the appeal or expressiveness of the charac-
ters, particularly in the case of cartoons [152] or illustrations [93].

The challenge is to understand and translate the knowledge of
artists into feasible guidelines for generating appealing 3D virtual
characters. Some works have investigated the role of few of the many
variables involved in the creation of 3D faces, such as the influence of
rendering style [154], anthropomorphism [205], or applying different
2D filters on the images [227].

In our work, we focus instead on two of the main aspects that pri-
marily define the stylization of a 3D character: shape and material
(including texture and optical properties). Due to the high dimen-
sional nature of the problem, experiments were performed in two
rounds. We first analyze which of the many sub-dimensions of both
shape and material affect the appearance of the character the most.
To this end, we define three different levels of stylization along shape
and material for a single male character: a realistic head obtained by
state-of-the-art 3D-scanning and two stylized versions designed by
artists. Moreover, each level includes five different facial expressions:
anger, happiness, sadness, surprise, and neutral. We then create all
combinations along these dimensions (shape, material, expression)
and analyze the perceived realism, appeal, eeriness, and familiarity
of each character by means of perceptual studies. We also analyze
the effect of decoupling the material dimension into its main com-
ponents, testing two different shaders, three illumination methods,
and three progressively blurred albedo textures. Results and acquired
knowledge from these tests are then used to guide a second round of
experiments, where we deeply explore the space with more samples
along the factors found as most important in the previous studies.
For this, we substantially increase the stimuli to two characters (male
and female), five stylization levels (of both shape and material), and
five expressions. We then analyze the most significant scales of the
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previous experiments (realism, appeal), and also evaluate how the
combination of each of these dimensions affects the expressivity of
the characters.

Our experiment design is inspired and justified by the current
trends in feature animation, which have recently used different com-
binations of stylized shapes and materials to depict 3D characters.
Examples include highly stylized shapes and textures in Pixar’s Toy
Story movies, or the somewhat less stylized shapes but photo-realistic
materials in The Adventures of Tintin. Furthermore, in a review of re-
cent advances in facial appearance capture, Klehm and colleagues
[133] mention the need for deeper insights into human perception of
facial appearance. They note the complexity and the importance of
focusing on important features, which we address by carefully isolat-
ing the effects of the parameters being studied in each test. We use
static pictures as stimuli, as it has been found that much of the infor-
mation that people use to evaluate virtual characters is available in a
still image [154].

Our main findings are:

• Shape is the key attribute for perceived realism. Stylized mate-
rials decrease the perceived level of realism for realistic shapes;
however, realistic materials do not increase realism of stylized
shapes.

• On the other hand, appeal, eeriness, and attractiveness are mainly
affected by the stylization level of material, and not shape; re-
alistic materials reduce appeal in general. Within the materials,
the albedo texture is the dominant factor.

• The degree of realism is a bad predictor for appeal or eeriness.

• The perceived intensity of expressions decreases with realism
of shape, but is nearly independent of material stylization.

• Our results are consistent across all tested expressions. Only the
anger expression has been constantly perceived as less appeal-
ing and more eerie.

To our knowledge, this is the first work attempting to evaluate how
the combination of different levels of stylization in shape and ma-
terial affect the perception of a virtual character across different ex-
pressions. Conclusions from this study are restricted to the stimuli
specifically created for these experiments, but can help to provide
useful insights on how to create believable characters. To foster fur-
ther research, we will make our stimuli and data publicly available at:
http://graphics.uni-bielefeld.de/publications/sigasia2015/

http://graphics.uni-bielefeld.de/publications/sigasia2015/
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2.2 related work

Creating computer-generated (CG) characters is a challenging task,
since even small imperfections can trigger negative responses [205].
Many studies have investigated this effect in the context of the theory
of the uncanny valley [158], but the variables involved in the per-
ception of virtual faces are still mostly unknown. For instance, Dill
et al. [56] evaluated CG characters on still images and videos, con-
cluding that people often prefer familiar faces, while other studies
analyzed how knowledge of computer graphics affects 3D character
perception [217, 68]. For brevity, we refer the reader to the excellent
discussion on this topic by Tinwell [215], and focus on works closer
to our particular goal.

stylization Some of the first attempts to measure the likability
of stylized and realistic characters was performed by morphing pic-
tures [101, 144, 198, 56]. Schneider et al. [198] studied the effect of styl-
ization on characters in Japanese video games, and found that it in-
creased perceived attractiveness. All these studies used different char-
acters, including confounding factors such as changing lighting and
background. In contrast, we investigate the effects of stylization on
the same character under identical conditions. Other works have fo-
cused on changing certain features and modifying proportions in the
shape of digital faces. It has been shown that uncanniness emerges
when abnormal features of the face become apparent for highly real-
istic characters [205, 35]. Green et al. [96] concluded that there is less
tolerance to deviations from original proportions in the cases where
faces are more attractive and human-like. Another existing work uses
an Electroencephalograph to evaluate the perception of different cat-
egories of human faces with varying degrees of realism [161], and a
recent study [80] investigates the perceptual effects of stylization over
3D body scans of female avatars. Also, a personality trait exaggera-
tion system was developed for emphasizing the impression of human
face in images, based on multi-level features learning and exaggera-
tion [213]. Different from these works, we investigate the effects of
global stylizations as commonly adopted by the animation industry.

Wallraven et al. [227] studied the perceived realism, recognition,
sincerity, and aesthetics of real and computer-generated facial expres-
sions using 2D filters to provide brush, cartoon, and illustration styles.
They concluded that realistic depictions improve subjective certainty
about the conveyed expression. Later, they evaluated the perceptual
realism of computer-generated faces under progressively blurred nor-
mal vectors and textures, finding no effect with their setup [228]. A re-
cent work also explores the personality perception of abstract virtual
faces [73]. In contrast to the first examples, we do not employ Gaus-
sian blurring for producing abstract stimuli, but instead use stylized
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models produced by artists, in order to better match the character
styles used in industry.

MacDorman et al. [145] showed participants several images of vir-
tual faces, combining different textures (from realistic to simple lines)
with geometric levels of detail (i.e. decreasing polygon counts). Results
suggested that decreasing photo-realism can make the face look less
eerie and more attractive. In our work, shape refers to the global, high-
level features of the face, not to technical aspects such as polygon
count. Closer to our goal, the recent study by McDonnell and col-
leagues [154] found that rendering style affects the appeal and trust-
worthiness of the characters. Additionally, a character rendered in an
appealing style can be perceived to have more positive personality
traits [254]. Recent studies focusing on neurocognitive mechanisms
attribute negative appeal ratings to the difficulty of categorizing im-
ages in a particular category, resulting in competing visual-category
representations during recognition [72]. Negative effects for such im-
ages occurs to the extent that selecting one interpretation over the
other requires inhibition of the visual-category information associ-
ated with the non-selected interpretation. Following the conclusions
from these studies, stylization affects pleasantness ratings and fur-
thermore, some combinations of visual elements might result in neg-
ative effect. Therefore, we study the effects of combining different
levels of stylization for shape and material, which are the two key
parameters governing visual appearance.

skin appearance Taking into account previous work related to
the perception of human skin appearance helps understanding effects
of material stylizations. Many studies about attractiveness of human
faces merged different photographs to achieve average appearance.
There was speculation that this technique impacts ratings of attrac-
tiveness not just because it averages the shape, but also because it
removes blemishes and other skin irregularities [12]. Several studies
confirmed that texture changes do result in a significantly more attrac-
tive face [24, 138]. Publications in the cosmetics domain also help ex-
plain the observed effects on appeal: Fink and colleagues [78] created
textures from photographs of women of different age and evaluated
these textures on a single female virtual character. Renderings with
pure skin have been rated as younger and more attractive than ren-
derings with strong variations in skin pigmentation. This observation
was confirmed in a follow-up study [77], which showed that blurring
the skin texture can increase attractiveness. Similar suggestions can
be found in many photograph retouching books (e.g. [167]).

expression We are also taking into account the influence of the
particular expression. Brain studies show that some areas in the brain
respond differently to certain expressions of emotion, specifically the
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amygdala, which tends to activate while viewing fearful and angry
faces, as opposed to happy, surprised, and sad faces [36]. Since the
amygdala region is activated in response to danger, it is believed that
negative emotional expressions, such as anger and fear, trigger a de-
fense response in the perceiver. Another example comes from study-
ing the “uncanny valley” effect on CG characters, where modified
expressions of emotion with negative valence (e.g. anger, sadness) in-
creased the perceived uncanniness of the character [216]. A recent
study explores the effect of stylization on the emotion recognition
in autism spectrum disorder [209]. Additionally, given different hy-
potheses that iconic representation of faces increase the expressibil-
ity and the recognizability of expressions [152], we further analyze
our stylization domain by evaluating whether different levels of styl-
ization in shape and material, including mismatches between them,
affect these scales.

2.3 stimuli creation

Our initial experiments required the design of three levels of styliza-
tion of the same character. Additionally, for each stylization level we
modeled four of the universal facial emotions: anger, happiness, sad-
ness, and surprise [67], plus a neutral expression. We discarded dis-
gust and fear because their status as basic expression was questioned
recently [114] and they are harder to identify by observers.

Figure 8: Our face scanning setup (right) and comparison between pho-
tographs and virtual reconstructions of our actor (left).

Our realistic characters are based on real people of about average at-
tractiveness without ethnic bias to the group of participants. To gener-
ate the realistic models we replicated the multiview-stereo face scan-
ner of Beeler et al. [21], which reconstructs high-resolution textured
point clouds from the photographs of six cameras arranged as pairs
around a person (Figure 8). Since all photographs are taken simul-
taneously, the scanning process is instantaneous and therefore well
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suited for capturing different facial expressions. Each pose represent-
ing one emotion was captured several times, and the most convincing
one was selected by a group of about twenty people of different cul-
tural backgrounds, while referring back to Ekman’s guidelines. For
the stylized shapes, we did not intend for the artist to precisely match
the emotional intensity across the shapes, but rather to create expres-
sions that resembled the expressions of our scanned actors to the best
of their ability (e.g., teeth showing slightly in a happy smile) given
the available facial features.

Since the scanner only captures the frontal part of the face and
fails to faithfully reconstruct eyes and hair, we fit a template head
model to the measured point cloud using a non-rigid registration
approach similar to Weise et al. [231]. Regions of missing data are
therefore filled in by the template model, which additionally provides
a 2D parameterization of the model. This parameterization is used for
texture mapping, with texture images being generated automatically
from the photographs. The hair style, the eyes, and the teeth were
manually sculpted and adjusted to fit the scanned model. Figure 8

shows one example of our reconstructed models.
While a realistic character can be obtained from 3D scans of a real

person, no automatic solution exists to generate increasingly stylized
versions. Therefore professional 3D artists produced the required styl-
ized shapes and materials from our realistic characters, taking inspira-
tion from commercial animation films (see examples in Figure 9). For
our first set of experiments (Section 2.5) we used three stylization lev-
els for shape and material (see Figure 48). The extended stimuli for
the later experiments (Section 2.6) used two more stylization levels
(see Figure 15 and Figure 16).

We are interested in analyzing the effect and interaction of shape,
material, and textures. Therefore, we transferred all material prop-
erties of the baseline characters to the other character shapes (Fig-
ure 48). The inter-surface mapping for the texture transfer was com-
puted based on a dense correspondence map established using the
non-rigid registration technique of Zell and Botsch [245].

Rendering of all stimuli was performed using Mental Ray, with
each character being placed in front of a light gray background. The
lighting setup consists of a key light and a rim light, and photon map-
ping is used for global illumination. For the skin all three characters
use the same multi-layer skin shader with subsurface scattering, with
diffuse albedo specified by a high-resolution texture map. The shader
parameters vary between the models in order to closely resemble the
targeted render styles (Figure 9).
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Figure 9: Two of the stylizations created for the study, showing the sketches
provided to the artists on the left and their resulting stylized 3D
models on the right. The designs are inspired by the films Cloudy
with a Chance of Meatballs (top) and Toy Story (bottom).

2.4 experiment design

The appearance of virtual humans is a function defined over a huge
multi-dimensional space. While it is generally recognized that shape
and material are the main contributors to the overall appearance of vir-
tual characters, these two might be affected by several sub-dimensions.
For example, material is the combination of shader, shader parame-
ters, and textures, each of which having a potentially different influ-
ence on appearance. This makes the experiment design an extremely
difficult task, given the large number of variables to explore.

Similar to previous work on rendering style [154], we want to an-
alyze how different levels of stylization (e.g., shape and material)
change the perception of a virtual character. Following previous work
(e.g., [154, 106]) we employ (subsets of) the following scales for our
experiments. The descriptions below are the ones given to the partic-
ipants of the perception studies:

• Extremely unappealing—Extremely appealing: High appeal means
that the character is one that is pleasant and you would like to
watch more of. Unappealing means that you dislike to watch
the character.

• Extremely eerie—Extremely re-assuring: Indicate if you find the
character eerie, which means that they are gloomy and leave
you with a sense of fear. Re-assuring means that the character
restores a sense of security, confidence, calm in you.



2.4 experiment design 23

• Extremely abstract—Extremely realistic: Indicate if you find the
character’s appearance to be highly stylized like in cartoons, or
close to photo-realistic as in real pictures.

• Extremely unfamiliar—Extremely familiar: Indicate if you find the
character’s appearance familiar to you, in that you have seen
something similar to it before, or if you find the character unfa-
miliar with an appearance that you haven’t seen anything like
before.

• Extremely unattractive—Extremely attractive: Indicate whether you
find the character unattractive and ugly or beautiful and attrac-
tive.

We model these properties as Likert scales, which are popular in
psychology as they allow subjective conditions such as the attitudes of
participants to be measured. We chose a seven-point scale in order to
give participants more response options and to allow for comparison
to previous studies. The Likert scales were numbered 1–7, with a
description provided on both ends of the scale.
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Figure 10: Stimuli used in Experiment 1a: three levels of shape and mate-
rial stylization, shown here for the happy expression. The baseline
stimuli are shown on the diagonal. Their textures have been trans-
ferred to the other shapes for producing the off-diagonal stimuli
of mismatching stylization levels for shape and material. Please
refer to the supplemental material for the full set of stimuli used
in the experiment.

Since both the design and the analysis of our experiments share
many similarities, we describe the general setup now and later only
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mention deviations. The user’s task and the rating scales were ex-
plained on a written document to the participants before the experi-
ment. Afterwards all stimuli were presented in a random order and
shown for 3 seconds each. The display was calibrated, 20 " wide and
at about 50 cm distance from the participants. The renderings have a
resolution of 1024× 768, corresponding to approximately 26.5 cm ×
20.0 cm on screen. After each stimulus presentation, participants were
asked to rate it according to the above scales. In all experiments, the
participants had normal or corrected-to-normal vision and were un-
aware of the final goal of the experiment. They were asked to report
their 3D experience (how often they played video games, watched
movies with visual effects, and how they would consider their knowl-
edge of 3D graphics). We did not find any correlation between the
reported 3D experience and the results of our tests, and thus omit
this information for the rest of the Chapter.

For statistical analysis of each rating scale we conducted an n-
way repeated measures Analysis Of Variance (rm-ANOVA). We run
Maulchly’s test for validating sphericity of the data, and whenever
it is significant we report results with Greenhouse-Geisser correction
applied and marked with an asterisk “*”. Whenever main interaction
effects were found, we conducted a Tukey Honestly Significant Dif-
ference (HSD) test for the comparison of means to further explore the
results [45].

2.5 importance of shape , material , shading and texture

The goal to investigate the influence of shape and material indepen-
dently of the overall appearance of a CG character is motivated by
differing design choices of recent animation films, ranging from car-
toon shapes with cartoon materials (e.g., Despicable Me), to stylized
shapes with realistic material (e.g., The Adventures of Tintin), to very
realistic shapes and material (e.g., Beowulf ). From a detailed analysis
of character designs in commercial animation we identified three dif-
ferent recurrent stylization levels, which we denote by cartoon, middle,
and realistic, where Cloudy with a Chance of Meatballs and Toy Story act
as references for the two stylized versions, respectively.

2.5.1 Experiment 1a: Shape and Material

We first investigate the influence of shape and material, where we
denote by material the combination of shader, shader parameters,
and textures. The combination of each material with each shape style
leads to a total of nine different versions of the character, times five
different expressions, resulting in a set of 45 stimuli. Figure 48 shows
the 3× 3 stimuli for the happy expression. We analyze the interaction
between shape and material for the scales most frequently used in
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previous work: realism, appeal, reassurance, and familiarity. Twenty-
two volunteers participated in this first experiment: 14 female, 8 male,
with age from 19 to 30 years (avg. 24.5).

In this section, we analyze the effects of shape and material only.
Figure 11 and Figure 12 compare the ratings of the neutral expres-
sion with averaged ratings over all expressions. Despite a smaller off-
set and some noise, ratings for different expressions have been very
consistent, which justifies averaging over all expressions. For statis-
tical analysis, a rm-ANOVA with three factors (shape, material, and
expression) was used.
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Figure 11: Results of Experiment 1a: Ratings for perceived realism and ap-
peal for different shape and material stylizations. Top row show
results for the neutral expression only, bottom row are averages
over all expressions. Error-bars denote 95% confidence levels. In-
dividual per-expression results are discussed in Section 2.9.

realism A main effect was found for shape (F(2, 42) = 113.18,
p < 0.0001) and material (F∗(1.47, 30.82) = 23.15, p < 0.0001, ε =

0.734), as well as for the interaction between shape and material
(F(4, 84) = 11.14, p < 0.0001). Post-hoc tests show that the cartoon
shape was perceived as least realistic, no matter which material was
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Figure 12: Results of Experiment 1a: Ratings for perceived eeriness and fa-
miliarity for different shape and material stylizations. Top row
show results for the neutral expression only, bottom row are aver-
ages over all expressions. Error-bars denote 95% confidence levels.
Individual per-expression results are shown in the supplemen-
tary material and discussed in Section 2.9.

used. Similarly, cartoon and middle materials did not make a differ-
ence for the middle shape (Figure 11 left), while the realistic material
caused a more realistic perception for this shape (p < 0.002 for both
comparisons). In contrast, all material levels differ significantly for
the realistic shape (p < 0.0002). Interestingly, the most stylized shape
does not reach the bottom of the realism scale, revealing that there is
more potential for abstraction.

appeal We found a main effect of material on the ratings of ap-
peal (F∗(1.41, 29.67) = 42.69, p < 0.0001, ε = 0.706), but no main
effect of shape was found. An interaction between shape and mate-
rial (F(4, 84) = 13.97, p < 0.0001) shows that a realistic material on
a cartoon shape yields the least appealing combination, since a post-
hoc analysis showed significantly lower ratings for this combination
compared to all others (p < 0.02 in all cases). The realistic material
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is less favored on the middle shape as well, and the cartoon mate-
rial on the realistic shape is similarly unappealing (p < 0.02 in all
cases except the combinations mentioned above). These results (see
Figure 11 right) suggest that material contributes most to the per-
ceived appeal of a CG character, and that strong mismatches in the
level of stylization of shape and material can result in very unappeal-
ing characters. Furthermore, the middle shape was rated as equally
appealing regardless of material, which could be due to the fact that
it was never strongly mismatched with material. Our appeal ratings
ranged from 2.5 to 4.2, which is similar to the appeal ratings reported
by McDonnell et al. [154] for their static images.

reassurance Similar to the appeal ratings, we found a main ef-
fect of material on the ratings of reassurance (F∗(1.51, 31.70) = 49.07,
p < 0.0001, ε = 0.755), but no main effect was found for shape. An
interaction between shape and material is present (F(4, 84) = 12.02,
p < 0.0001) and post-hoc analysis showed significantly lower ratings
of reassurance especially in shape-material combinations that reduce
appeal as well—realistic materials on all shape levels and cartoon ma-
terials on the realistic shape (p < 0.02). The realistic material on the
cartoon and middle shape was perceived most eerie. A Cronbach’s
alpha value of α = 0.88 confirms high similarity between the appeal
and the reassurance scale (see Figure 11 right and Figure 12 left).

familiarity Again, a main effect has been found for material
(F(2, 42) = 12.58, p < 0.0001), but not for shape. Furthermore, there is
also a significant interaction between shape and material (F(4, 84) =

17.99, p < 0.0001). The results of the post-hoc test for familiarity
are less similar than between the appeal and eeriness ratings. Even
though the combination of realistic material and realistic shape is un-
appealing and eerie, it was not rated significantly less familiar than
other combinations. Realistic materials on cartoon and middle shapes
result in the least familiar combinations (p < 0.02 in all cases). See
Figure 12 right.

2.5.2 Experiment 1b: Shading and Lighting

The above experiment reveals a strong influence of material, in partic-
ular on the appeal and reassurance ratings. The realistic material was
rated as the least appealing for all character shapes, while the mid-
dle material was the most appealing for the realistic shape. Materials
are controlled by a large number of shader parameters, and testing
each of them is infeasible. In addition, only certain parameter combi-
nations are meaningful and would be used in a real-world scenario.
We note that all shader parameters are mainly responsible for light-
material interaction, while albedo textures control primarily the color.
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Instead of varying certain shader parameters within certain ranges,
we modify the light transport more drastically by altering shading
and lighting technique.

In an experiment similar to the previous one, we tested the initial
baseline characters (three matching shape/material stylization, five
expressions) with two different shaders and three illumination meth-
ods. For shading we tested a simple Phong shader in addition to the
sophisticated skin shader. The lighting categories were (i) global illu-
mination and soft shadows, (ii) ambient light and soft shadows, (iii)
ambient light and hard shadows. All questions and scales were the
same as for the previous experiment.

Twenty new volunteers participated in this second experiment (15

female, 5 male, ages from 19 to 30 years). A rm-ANOVA with three
factors (shading, lighting, expression) was used for statistical analysis.
While there was a main effect of lighting on realism (F(2, 38) = 6.66,
p = 0.003), with global illumination being rated more realistic than
soft shadows (p = 0.020) and hard shadows (p = 0.004), the difference
was very small (means are 3.95± 0.1). Besides the effect of lighting on
realism, we did not find any other significant effects, neither for the
other scales nor for the different shaders. These results suggest that
textures have more influence than shader parameters on appearance,
and therefore we explore them more in depth in the following.
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Figure 13: Stimuli for Experiment 1c: Realistic material with realistic texture
and two variants with blurred textures (Gaussian kernels of 25

and 50 pixels), for the three shape stylizations.
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2.5.3 Experiment 1c: Texture

One possible explanation of why the middle material was rated the
most appealing for the realistic shape could be the reduced pigmen-
tation variation as reported by Fink and Matts [77], as discussed in
Section 2.2. In order to analyze whether their findings on attractive-
ness can also explain our effects on appeal and reassurance, we de-
signed a variation of the first experiment of Section 2.5.1. Our third
experiment should then:

• test whether it is possible to influence appeal or realism by
changing only the albedo texture,

• show a possible correlation between attractiveness and appeal/re-
assurance, and

• reveal whether appeal can be increased without sacrificing real-
ism too much, simply by filtering a photo-realistic texture.

To this end, we created two additional textures with reduced skin
details by applying uniform Gaussian blur of kernel sizes 25 and 50

pixels (for 4k textures), respectively. The 50px kernel covers barely
1 cm of the face, which translates into around four pixels in image-
space. Lips and skin were filtered independently in order not to blur
the boundary inbetween; eyebrows were not filtered. These three tex-
tures (realistic, blurred 25px, blurred 50px) were used in combination
with the realistic material. To enable a comparison with Experiment 1,
we also included the cartoon and middle materials (with their origi-
nal textures only). This results in a set of 5 materials, which were also
transferred to the middle and cartoon shapes, as shown in Figure 13.

For this experiment we tested these 5 materials on the 3 shape styl-
izations, but used the neutral expression only, leading to 15 stimuli
in total. Note that the three realistic materials differ in their (blurred)
texture only. The presentation of the stimuli was repeated three times
with different random orderings. After each stimulus, participants
were asked to rate it according to the previously described scales
for appeal, reassurance, and realism, plus a new scale attractiveness.
Twenty-one new volunteers (13 female, 8 male), average age 24.6
years, participated in the experiment. For statistical analysis, a rm-
ANOVA with three factors (shape, material, and expression) was used.
All results from Section 2.5.1 were confirmed, and thus we only de-
scribe the main effects related to the added material levels.

realism Although a main effect was found for shape (F∗(1.29, 25.78) =
124.98, p < 0.0001, ε = 0.645), material (F(4, 80) = 17.52, p < 0.0001)
and an interaction between shape and material (F(12, 240) = 6.42,
p < 0.0001), the post-hoc shows that this is not related to the added
textures. The ratings for the two blurred textures are between the real-
istic and the middle texture, but are not significantly different for any
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Figure 14: Results of Experiment 1c: While there is nearly no difference be-
tween the realistic and blurred textures for the realism scale, the
blurred textures increase appeal and attractiveness and reduce
eeriness.

shape. This confirms our initial assumption that blurring a realistic
texture only slightly reduces the perceived realism of a character.

appeal and attractiveness Due to the high similarity between
appeal and attractiveness (Cronbach’s α = 0.87) we report these re-
sults together. A main effect was found for shape for attractiveness
(F∗(1.33, 25.54) = 5.36, p = 0.021, ε = 0.665) but not for appeal. Ma-
terial was significant in both cases (Appeal: F∗(1.68, 33.60) = 27.17,
p < 0.0001, ε = 0.421; Attractiveness: F∗(1.56, 31.26) = 16.72, p <
0.0001, ε = 0.391). The interaction between shape and material is
significant (Appeal: F∗(7.05, 94.03) = 4.99, p < 0.0001, ε = 0.588; At-
tractiveness: F(12, 240) = 2.88, p = 0.005). As we hypothesized, the
blurred textures were rated higher than the realistic texture. This ef-
fect is stronger for the cartoon and middle shapes and a significant
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difference between the realistic and 50px blurred version was found
(p < 0.003 in all cases). For other comparisons between the blurred
and realistic textures no significant difference was found. However,
the graphs in Figure 14 show that the two blurred textures were rated
equally appealing for the realistic shape. In contrast, a stronger blur is
preferred for cartoon and middle shapes. We therefore conclude that
blurring realistic skin textures is a reasonable approach for increasing
appeal or attractiveness, without losing too much realism. Although
the results of our tests are not significant in some cases, these findings
are in line with research of Fink and Matts [77]: We generalize their
findings to character shapes of different stylization levels.

reassurance Although the graphs of reassurance and appeal are
similar (Figure 14; α = 0.89), a main effect was found for material
only (F∗(1.44, 28.72) = 24.55, p < 0.0001, ε = 0.359), but not for
shape. In addition, there is an interaction between shape and ma-
terial (F∗(7.128, 142.46) = 2.66, p = 0.029, ε = 0.594). The two blurred
textures have been rated less eerie than the realistic version. Signif-
icant differences have been found between the realistic texture and
the 50px blurred version for cartoon and middle shapes (p < 0.0001).
Thus, blurring a texture does not only increase appeal, but also re-
duce eeriness.

2.5.4 Conclusion

The three tests described above allow us to draw the following main
conclusions on the tested dimensions:

• Shape is the main descriptor for realism, while material is more
important for perceived appeal, reassurance, and attractiveness.
Strong mismatches in stylization between material and shape
affect negatively the appeal and attractiveness of the characters
and make them more eerie.

• Texture has stronger influence on appeal and attractiveness than
shading or illumination models. Blurring a realistic texture does
not significantly reduce realism but increase appeal and attrac-
tiveness.

• Ratings for appeal, reassurance, and attractiveness measure sim-
ilar concepts (α > 0.87 in all experiments), but do not correlate
with the realism scale (α < 0.5 in all experiments).
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Figure 15: Stimuli for Experiment 2: renderings of the male character for
different stylizations (rows) and basic emotions (columns).
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Figure 16: Stimuli for Experiment 2: combinations of shape and material
stylization for the female character (surprise expression), with
baseline stimuli on the diagonal.
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2.6 experiment 2 : further investigation of shape and

material

The experiments in Section 2.5 indicate that different stylization levels
of material and shape have a big impact on perceived appeal or real-
ism. However, our set of stimuli contained only a single character, and
the realism scale was not densely sampled. A more stylized character
might reveal that big mismatches between material and shape cause
unappealing results, or a stylization level between middle and realis-
tic might cause uncanny reactions. To allow for a more generalized
conclusion about different stylization levels, further investigation is
required.

In the following experiment we analyze the effect of varying styl-
izations on shape and material, including matching and mismatching
levels of stylization, on a significantly extended set of stimuli. In par-
ticular, we seek answers to the following questions:

• Can our findings be observed on other characters as well?

• Does a strong mismatch between material and shape create un-
appealing results only for realistic shapes or for all shapes?

stimuli We extended our initial stimuli with another character
of different gender, because this adds by design a clearly distinctive
person. For each character, two additional stylizations were created,
yielding five stylization levels from level 0 (most stylized) to level 4
(highly realistic). We distinguish between stylizations in material and
shape by using the prefix m and s respectively. The new stylizations
(level 0 and level 3) have been particularly designed by the artists to
fill the gaps for perceived realism in the stylization scale. For these
levels our character designs are inspired by Pocoyo and Tangled. We
also changed the hairstyle of the virtual male character in order to
allow a better comparison with a photograph of the actor. This pro-
vides us with baseline ratings on appeal and realism for the real
person. The new set of stimuli is composed of 2 characters times 5

shape stylizations times 5 material levels times 5 expressions, lead-
ing to a total of 250 images. A representative subset of the stimuli is
shown in Figure 15 and Figure 16, for the five expressions and match-
ing shape/material levels of the male character (Figure 15), and the
25 combinations of material and shape for the female character (Fig-
ure 16).

procedure The largely extended stimuli require a reduction of
the scales in order to keep the experiment tractable. Given that the ap-
peal, reassurance, and attractiveness scales measure similar concepts,
and that the familiarity scale did not provide much information, we
decided to keep only the realism and appeal scales for this experi-
ment. Furthermore, we increased the display time of the stimuli to
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Figure 17: Results of Experiment 2: Ratings for perceived realism and ap-
peal for different shape and material stylizations. Upper row: neu-
tral expression averaged over male and female characters. Bottom
row: averaged over all expressions and characters.

4 s, and showed the neutral male and female baseline characters be-
fore the experiment, such that participants could better estimate the
range of characters from the beginning on. At the end of the actual
experiment, participants rated a photograph of the real characters in
neutral expression. The rest of the experiment remains similar to the
previous one. With all these changes, participants finished the experi-
ment within 50 minutes or less. Twenty-one new different volunteers
(17 female, 4 male) took part, average age 23.4 years.

Our results are summarized in Figure 53 and are mostly consis-
tent across male and female. Repeated measures ANOVA with four
factors (character, shape, material, and expression) was used for sta-
tistical analysis. Differences between the two characters were signifi-
cant, but since they were rather small and/or inconsistent, we exclude
them from further analysis. In the following we present an in-depth
discussion of the realism and appeal ratings, and report the impact
of expression in Section 2.9.
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realism A main effect of shape (F∗(1.98, 39.6) = 178.67, p < 0.0001,
ε = 0.495) and material (F∗(1.33, 26.4) = 73.92, p < 0.0001, ε =

0.333) was found as well as an interaction between shape and mate-
rial (F∗(6.71, 134.1) = 11.59, p < 0.0001, ε = 0.419). Post-hoc analysis
shows that all shapes (p < 0.004) and most of the materials (p < 0.003
except for level m0 and m1) differ significantly from each other. The
25 groups resulting from the combinations of shape and material
differ also significantly in more than 80% of the cases. Most non-
significant comparisons can be found for the shape level s0 (see Fig-
ure 53). For example, increasing the material from level m1 to m2 or
from level m2 to m3 does not cause a significant difference. This con-
trasts with the case of the realistic shape levels s3 and s4 (p < 0.002).
This is in line with the results from Section 2.5.1, and confirms that
as the shape becomes more realistic, the material stylization becomes
more dominant for perceived realism.

appeal The main effects of shape (F∗(2.58, 51.6) = 20.97, p <

0.0001, ε = 0.645) and material (F∗(1.88, 37.6) = 20.39, p < 0.0001,
ε = 0.470) are comparable. There is a slightly weaker interaction be-
tween shape and material (F∗(6.06, 121.3) = 14.29, p < 0.0001, ε =

0.379). Post-hoc analysis reveals that shape levels s2 and s3 were per-
ceived more appealing than the other shape levels (p < 0.0002 in all
cases between the two groups).

For the materials, only the most realistic version (level m4) was sig-
nificantly less appealing than all other materials (p < 0.0002). This
supports our assumptions from Section 2.5.3 that smooth(ed) skin
pigmentations are perceived more appealing. For the abstract shape
s0, material levels m0, m1, and m2 form a cluster without any signifi-
cant difference; this cluster is found significantly more appealing than
material levels m3 and m4 (p < 0.03). On the other hand, shape level
s3 is rated significantly higher with matching material levels (m2 and
m3), with both more stylized (m0 and m1) and more realistic (m4)
materials being rated significantly lower. These results support that
in all cases a strong mismatch between shape and material is per-
ceived as unappealing.

photograph At the end of the experiment, participants rated a
photograph of the real actor in neutral pose. As expected, the aver-
age realism rating is very high (6.98, SD = 0.15). The average appeal
rating was 4.5 (SD = 1.40), which is higher than the average ratings
for the realistic s4/m4 characters (3.26, SD = 1.33). This dip in appeal
rating for the s4/m4 character is in agreement with the uncanny valley
theory [158]. However, appeal for stylizations s2/m2 and s3/m3 (4.71,
SD = 1.25 and 4.95, SD = 1.25) were rated highest. In addition, Fig-
ure 20 depicts that realism alone is a bad predictor for appeal; instead,
our results show that the compatibility of shape and material styl-
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izations, i.e., their matching degrees of realism, has a stronger (and
predictable) influence on appeal.

2.7 experiment 3 : effect of expressions

In previous experiments, we have analyzed the overall effect that
shape and material have on the perception of faces. Here, we first
analyze whether different levels of stylization in shape and material,
including mismatches between them, affect the recognition and inten-
sity of expressions (anger, happy, neutral, sad and surprise). We then
discuss how ratings are affected by particular expressions (Figure 15

and Figure 16). This is interesting since previous findings suggest that
valence of emotion affects character perception [36, 216], making neg-
ative expressions to be rated less appealing than positive expressions.
In particular, we seek answers to the following questions:

• Does the level of stylization affect the intensity of expressions?
Are they easier or more difficult to recognize?

• Do negative expressions affect the perceived appeal of charac-
ters? Is this influenced by stylization of shape or material?

2.7.1 Intensity and Recognition of Expressions

As discussed previously, stylization is a well-known tool for artists
to enhance the expressivity of 3D characters, removing unnecessary
details and enhancing specific features. In this experiment we explore
how the different stylizations of shape and material affect recognition
and the perceived intensity of the expressions, and which of the two
dimensions is dominant for expression recognition. The extended 250-
stimuli set from Experiment 2 is used again.

Each stimulus was presented for 4 seconds in random order; par-
ticipants were first asked to classify the expression according to the
following options: anger, happy, neutral, sad, surprised. After each
answer (except for neutral), a follow-up question asked to rate the ex-
pression intensity with respect to a seven-point Likert scale bounded
by extremely low and extremely high intensity. When participants rated
an expression as neutral, its intensity was set to the lowest value.
Twenty-four new volunteers (16 female, 8 male, 23.6 years old on av-
erage) took part in this experiment. Results are shown in Figure 18

and again a rm-ANOVA with four scales (character, shape, material,
and expression) was used for statistical analysis.

recognition We found a main effect of expression (F∗(1.22, 28.04) =
74.00, p < 0.0001, ε = 0.305), as well as several interaction effects be-
tween expression and shape (F∗(4.56, 104.9) = 41.3, p < 0.0001, ε =

0.285), texture (F(16, 368) = 4.97, p < 0.0001) and model (F∗(2.3, 51.26) =
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Figure 18: Results of Experiment 3: Effect of shape on the recognition and
intensity of the expression. All expressions, except neutral, have
been recognized well or outstandingly well independent of the
shape. However the intensity reduced continuously with higher
shape stylization levels.

4.23, p = 0.016, ε = 0.557). The neutral expression is mainly responsi-
ble for all these effects; its recognition rate was lower (p < 0.002) than
the other expressions, varying strongly across different shape levels.
This neutral expression was in general poorly recognized for the more
stylized shapes (s0 and s1): For instance, some participants reported
that the big round eyes made them look surprised. This might be
explained by the fact that cartoons are usually designed to enhance
expressivity, not to be posed displaying a neutral emotion.

We also found a main effect for shape (F(4, 92) = 44.23, p < 0.0001),
which is mainly determined by the neutral expression, as discussed
above, and a main effect for material (F(4, 92) = 10.09, p < 0.0001).
The material level m4 reduced the recognition rate significantly (p <
0.015) but only by 2%.

intensity Main effects of shape (F∗(2.11, 48.61) = 91.40, p < 0.0001,
ε = 0.528) and material (F∗(2.47, 56.90) = 30.46, p < 0.0001, ε = 0.618)
were found. Apart from the angry expression, the perceived inten-
sity of expressions is continuously reduced with increasing realism
of shape (p < 0.0002). Only in the case of shape levels s2 and s3 does
the intensity remain constant. In the case of material, the absolute dif-
ference was very small (0.5 between the lowest and highest mean) and
only the material level m4 had a higher intensity (p < 0.0002). This
matches previous research [227, 228], which found that details such
as wrinkles increase the expressivity of realistic characters, although
in our case the effect is weaker.

In addition, a main effect of expression (F∗(2.57, 59.10) = 204.6,
p < 0.0001, ε = 0.642) and interactions between shape and expres-
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sion (F∗(5.78, 132.94) = 19.00, p < 0.0001, ε = 0.361), material and
expression (F(16, 368) = 5.04, p < 0.0001), and expression and model
(F(4, 92) = 19.55, p < 0.0001) were found. In particular, the happy, sad,
and surprise expressions are perceived with lower intensity as the re-
alism of shape increases. This difference is significant in the majority
of cases for shape levels s3 and s4 (p < 0.01), but is less frequent for
lower shape levels. The perception of the angry expression, on the
other hand, remains constant along shape abstractions.

Overall we found that expressions of cartoon shapes are perceived
as more intense, which confirms that properly stylizing features helps
increase expressivity. The neutral expression is hard to read for very
stylized character shapes, which suggests that low-intensity subtle ex-
pressions are harder to convey in abstract characters designed to en-
hance expressivity. Additionally, we found no or small impact of ma-
terial on the intensity or expression recognition, which indicates that
shape is the dominant dimension when designing expressive charac-
ters.

2.7.2 Effect of Expression on Realism and Appeal

In our previous experiments on material and shape with the five basic
expressions (Section 2.5), we found that appeal and eeriness measure
similar concepts, while effects for familiarity were generally small.
We focus here on the effect of expressions on realism and appeal
with the extended stimuli set. The rest of the analysis can be found
in the supplemental material. Figure 21 shows the results, which we
analyze below.
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Figure 19: Results of Experiment 2: While emotions do not differ in realism,
the anger expression was perceived as more eerie and unappeal-
ing for all stylization levels.
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realism A main effect of expression (F(4, 80) = 10.38, p < 0.0001)
was found, which could be mainly attributed to the neutral and sad
expressions, which have been perceived as more realistic (p < 0.006).
Because the means are located within a small range (±0.16), we clas-
sify this effect as noise and omit similar examples for the rest of this
section. Nevertheless, equal realism ratings confirm that expressions
were well designed by the artists.

appeal A main effect was found for appeal (F∗(1.56, 31.36) = 19.34,
p < 0.0001, ε = 0.392), which is primarily caused by the anger expres-
sion (p < 0.001). These results reveal that anger is rated much lower
with respect to appeal. Previous studies reported that negative emo-
tions trigger unpleasant responses from the observers [36]; our results
confirm these studies. Moreover, this effect is maintained even in the
presence of highly stylized and appealing characters, suggesting that
negative expressions are perceived as unappealing independent of
stylization level.

Additionally, we observe that ratings are unsteady across different
stylization levels for the rest of the expressions. In many cases, interac-
tion effects between expression and shape or material are found with
p < 0.0001. Zhu et al. [253] showed with photographs that different
instances of the same expression do indeed vary in perceived appeal.
We believe that this might also be the primary reason for the varia-
tions in our ratings. We rule out recognition as an error source, since
all the expressions were recognized outstandingly well (see previous
subsection).

2.8 discussion

Shape and material are two of the main aspects that define the ap-
pearance of virtual characters, which in turn are crucial when defin-
ing the visual look of animated feature films. We have analyzed the
perceptual effects of different stylizations along these dimensions on
computer-generated faces. In particular, we have studied five differ-
ent stylizations of two virtual characters—male and female—ranging
from very realistic to highly stylized, varying both the shape and the
material.

Our results show that the main contributor for the perceived real-
ism is shape, and the effect of material stylizations grows when shape
realism is increased. This implies that mismatches in material and
shape are less prominent on abstract characters. The resulting asym-
metry is shown in Figure 53 (a,c), where the curves spread out as the
level of realism increases.

On the other hand, we have found that material is the main factor
for perceived appeal, specifically the albedo texture. In general, appeal,
attractiveness, and eeriness are highly dependent on the material styl-
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Figure 20: Participant ratings for our male stimuli plotted on a realism-vs-
appeal diagram, similar to [217, 145]. Each graph corresponds to
one shape stylization, while graph nodes correspond to material
levels. The icons are placed above the nodes of matching shape/-
material levels. The diagram reveals that perceived realism is a
bad predictor for appeal. Instead, it is the compatible degree of
realism of both shape and material that matters.

ization. Matching levels of stylization of geometry and material cause
the highest ratings of appeal, while strong mismatches (e.g., very re-
alistic material on a stylized shape) result in unappealing and eerie
characters.

Interestingly, as shown in Experiment 1c and later backed-up in Ex-
periment 2, subtle stylization of a realistic material (edge-preserving
blur on the albedo texture) increases appeal without sacrificing real-
ism. These stylizations de-emphasize unwanted skin impurities, pores,
and wrinkles, and our results are in accordance to empirical knowl-
edge regarding the effect of makeup. Moreover, our results relate
with previous findings on face perception showing that smooth ho-
mogeneous skin is generally rated more attractive, since it is a good
estimate of a young and healthy subject [76]. However, this trend is
only observed for mild stylizations, and stronger ones quickly reduce
realism.

Our results are consistent across all tested expressions, except for
anger, which was consistently rated less appealing and more eerie.
This can be explained by negative or aggressive expressions trigger-
ing a defense response and a negative reaction of the viewer [36].
Our results are also consistent between different characters. Although
small differences between the characters exist, all reported trends are
consistent and well visible.

Realism alone was shown to be a bad predictor for appeal (Fig-
ure 20), which is not well aligned with the theory of the uncanny val-
ley, although a similar finding was reported for rendering style [154].
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One possible explanation is that some of our characters were difficult
to categorize by the participants, due to their mismatched appearance
parameters [195, 154].

Finally, our experiments show how stylization affects the intensity of
expressions, and that shape is the main factor in this case, whereas mate-
rial has no significant influence for stylized shapes. This confirms pre-
vious knowledge on modeling or drawing expressive stylized charac-
ters, where expressivity is mainly determined by the global shape of
the character. However, for realistic shapes, we have observed that
material stylization slightly, but significantly, reduces the perceived
intensity of expressions. Another possible explanation, which also
merits further investigation, is that realistic characters make suspen-
sion of disbelief 1 harder to maintain, and therefore observers find it
more difficult to emotionally connect with the virtual character. These
results are consistent with previous work [227, 228] and may explain
the conscious disturbing effect of stylizing hyper-realistic characters
in some movies (e.g., A Scanner Darkly or Renaissance).

2.8.1 Limitations and Future Work

As in all user studies, our results are only strictly valid for our partic-
ular set of stimuli. We have focused on a specific set of stylizations for
two realistic characters, varying shape and material following typical
designs used in feature animation. This of course limits the univer-
sality of the conclusions, which may not generalize if the character
styles differ greatly from ours. However, since our design space was
densely sampled and the observed trends are consistent between the
different characters, we believe that our observations can be used as
valid guidelines for creating digital characters within a reasonable
range of styles.

In our statistical analysis, we employed a common significance
threshold of p < 0.05. With the amount of results we report, it might
be that some significant results are false positives. Because we only
focus on clear, reoccurring trends, and since many significances have
p < 0.001, it is unlikely that one of our main conclusions is a false
positive.

Investigating the effect of realistic and stylized animation was out-
side the scope of this work, due to the number of stimuli combina-
tions that would have to be tested, and the technical complexity of
creating a scale of stylized animations. Previous work has shown no
difference in ratings for realism, and only small differences in appeal
ratings for static or motion-captured characters [154]. However, we
would expect a more complex interaction between motion and ap-
peal when combining characters and animations of different levels of

1 In fiction, the suspension of disbelief is a semi-conscious decision by the viewer to
accept as real what clearly is not. This allows her to connect with the story.
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stylization. Therefore, a full investigation of motion stylization is an
important future direction.

Finally, note that we analyzed clear peak expressions, avoiding the
less attractive transitions between expressions common in the real
world [253]. Evaluating the impact of these transitions for different
stylizations could be also an interesting avenue of future work.

In summary, we believe that our work provides many interesting
insights for the creation of virtual characters, and offers a set of guide-
lines that we hope will help practitioners and inspire future research
on the perception of virtual characters.
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2.9 appendix a . effect of expressions in experiments 1a

and 1b

In this section, we discuss the results of Experiment 1a (shape and
material) and Experiment 1b (shading and lighting), analyzing the
particular expressions of the stimuli. For the analysis we conducted a
three-way repeated measure ANOVA. A Tukey HSD test was used
for pairwise comparisons within each experiment. Figure 21 shows
the results, which we proceed now to analyze.
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Figure 21: Results of Expressions in Experiment 1a: While emotions do not
differ in realism, the anger expression was perceived as more
eerie and unappealing for all stylization levels.

realism A main effect of expression for realism was found in the
shading and lighting experiment (Exp. 1b: F(4, 76) = 3.78, p = 0.007),
but not in the shape and material experiment. The effect could mainly
be attributed to the sad expression, which has been rated slightly
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more realistic (p = 0.005) than others. Because the means (3.90± 0.15)
of all groups are within a small range, we classify this effect as noise
and omit similar examples for the rest of this section.

appeal and reassurance A main effect was found for appeal
in both experiments (Exp. 1a: F∗(2.57, 54.01) = 33.14, pp < 0.0001,ε =

0.643; Exp. 1b: F∗(1.53, 29.10) = 22.22, p < 0.0001, ε = 0.383), which
is primarily caused by the anger expression (p < 0.0001). Similarly,
there is a main effect of expression for reassurance in both experi-
ments (Exp. 1a: F∗(2.61, 54.77) = 24.61, p < 0.0001,ε = 0.652; Exp. 1b:
F∗(1.68, 31.92) = 18.61, p < 0.0001, ε = 0.420), again mainly caused
by the anger expression (p < 0.0001).

familiarity A similar main effect is obtained for familiarity (Exp. 1a:
F(4, 84) = 8.80, p < 0.0001; Exp. 1b: F∗(2.04, 38.84) = 5.15, p =

0.001,ε = 0.511). In this case anger is the only reason for the sig-
nificant differences of the means. But the anger expression is only
significantly different from the happy (p = 0.003) and neutral expres-
sions (p = 0.001).
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2.10 appendix b . additional diagrams

2.10.1 Experiment 1a: Shape and Material
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Figure 22: Results for Experiment 1a: Ratings for perceived realism, appeal,
reassurance and familiarity, separated by expression.



2.10 appendix b . additional diagrams 47

●

●

●

2

4

6

cartoon middle realistic
Shape

R
ea

lis
m

●

●

●

2

4

6

cartoon middle realistic
Shape

A
pp

ea
l

●

●
●

2

4

6

cartoon middle realistic
Shape

R
ea

ss
ur

an
ce

●

●
●

2

4

6

cartoon middle realistic
Shape

Fa
m

ili
ar

ity

Figure 23: Results for Experiment 1a: Ratings for perceived realism, appeal,
reassuranceng and familiarity averaged over all materials and
grouped by shape and expression.
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2.10.2 Experiment 1b: Shading and Lighting
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Figure 24: Results for Experiment 1b: Ratings for perceived realism, appeal,
reassurance and familiarity grouped by stylization level and shad-
ing.
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Figure 25: Results for Experiment 1b: Ratings for perceived realism, appeal,
reassurance and familiarity grouped by stylization level and light-
ing.
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Figure 26: Results for Experiment 1b: Ratings for perceived realism, appeal,
reassurance and familiarity grouped by stylization level and ex-
pression.
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2.10.3 Experiment 2: Further Investigation of Shape and Material
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Figure 27: Results for Experiment 2: Ratings for perceived realism and ap-
peal, separated by expression, male and female.
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2.10.4 Experiment 3: Recognition and Intensity
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Figure 28: Results for Experiment 3: Ratings for correct recognition and in-
tensity, separated by expression male and female.



3
A B I O P H Y S I C A L LY- B A S E D M O D E L F O R S K I N
A G I N G

This chapter presents a time-varying, multi-layered biophysically-based
model of the optical properties of human skin, suitable for simulating
appearance changes due to aging. We have identified the key aspects
that cause such changes, both in terms of the structure of skin and
its chromophore concentrations, and rely on the extensive medical
and optical tissue literature for accurate data. Our model can be ex-
pressed in terms of biophysical parameters, optical parameters com-
monly used in graphics and rendering (such as spectral absorption
and scattering coefficients), or more intuitively with higher-level pa-
rameters such as age, gender, skin care or skin type. It can be used
with any rendering algorithm that uses diffusion profiles, and it al-
lows to automatically simulate different types of skin at different
stages of aging, avoiding the need for artistic input or costly capture
processes. Moreover, we provide a simplified version of our model as
well as tabulated sum-of-Gaussians profiles for gaming applications.

Figure 29: Examples for 30- and 80-year-olds, with mediterranean skin (type
III) for the male, and caucasian (type I) for the female. The small
inset shows the very different scattering profiles for each one: A
and B correspond to the old and young males respectively, while
C and D correspond to the old and young females. All the ren-
dered images in this work are best viewed in the digital version..

3.1 introduction

Human skin changes significantly with age. It becomes thinner and
more dry, while the concentration of chromophores (the main skin

53



54 a biophysically-based model for skin aging

pigments) diminishes and becomes more irregular [13, 69, 168]. All
these changes affect its optical properties, which in turn yield visi-
ble changes in its color, translucency, apparent roughness, and conse-
quently its final appearance. Current techniques to simulate aged skin
either rely on artistic skills, or require capture sessions with subjects
of the appropriate age. However, simulating the changes in appear-
ance for one single subject remains an open problem.

We present a comprehensive biophysically-based model of human
skin suitable for simulating skin aging. We rely on existing in-vivo
and ex-vivo measurements from the extensive medical and tissue op-
tics literature. Our multi-layered model identifies and takes into ac-
count the key structural changes (such as the slimming of the dermis
and epidermis, the flattening of the dermoepidermal junction or the
deterioration of the dermal collagen fibers), as well as changes in the
concentration of its main chromophores (such as melanin, hemoglobin
or water). This naturally leads to changes in the scattering and absorp-
tion properties of skin, which translate into considerable appearance
variations.

In particular, we reproduce the changes in the base color, translu-
cency and skin surface reflectance. Current models (e.g. [135, 18, 59,
60]) are either not suitable to simulate aging, or assume many sim-
plifications that ignore some key aspects of aging. In our work, we
focus on optical properties, and do not simulate coarser structural
changes like the production of wrinkles. Our model can be formu-
lated in terms commonly used in graphics, such as absorption or
scattering spectral coefficients, or even intuitive descriptors like age,
gender, skin care or skin type, and can be easily integrated into ex-
isting rendering systems capable of handling diffusion profiles. Ad-
ditionally, we provide sum-of-Gaussians tabulated results for gaming
applications, as well as a simplified version of our model that still
captures the main optical effects of skin aging, offering an attractive
trade-off between accuracy and simplicity.

3.2 previous work

There is a vast number of studies about human skin in the medical
and tissue optics literature [222, 168, 70, 110]. We refer the reader to
these excellent sources, and focus here on works more closely related
to computer graphics.

simulating skin. Some of the first rendered skin images used
measured isotropic BRDFs [147]; multiple subsurface scattering (SSS)
was later added by Stam [210]. One of biggest breakthroughs came
with the introduction in computer graphics of the dipole diffusion
approximation [121], a model that was quickly made more efficient
in subsequent work [120]. Donner and Jensen [59] presented a BSS-
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RDF model capable of dealing with layered materials, while D’Eon et
al. [52] approximated the diffusion profiles of translucent layers by a
sum of Gaussians. The approach was later transferred to screen-space
by Jimenez et al. [122, 125], including transmittance [124]. Recently,
the quantized diffusion model [50] and the subsequent photon beam
diffusion [98] provide more accurate and still efficient solutions to the
general problem of subsurface scattering, including skin. All these
works focus on the simulation of light transport, while we focus on
the optical properties of a biophysically accurate model.

Other works focus on acquiring the reflectance properties of hu-
man skin [147, 14]. In the case of human faces, Debevec and his team
have developed increasingly sophisticated methods from the original
light stage [49], where multiple images of a given subject are acquired
under varying illumination conditions. These are then used to recon-
struct the reflectance functions of the acquired model, allowing them
to produce impressive results (e.g. [143, 86, 87]). Weyrich et al. [233]
developed a model based on measurements of 149 subjects, whose
parameters can then be edited. Recently, Graham et al [94] synthe-
size high-resolution facial surface microstructures based on captured
patches of microgeometry.

Tsumura et al. [220, 221] developed an image-based technique for
separating spatial distributions of melanin and hemoglobin in human
skin by independent-component analysis of a skin color image. Don-
ner and Jensen [60] introduced a two-layer skin model whose parame-
ters controlled the amount of oil, melanin and hemoglobin in the skin.
Later, a multi-layered model was presented, with spatially-varying ab-
sorption and scattering parameters [61]. Jimenez et al. [123] modeled
changes in appearance due to varying concentrations of melanin and
hemoglobin, caused by different emotional or physical states. Possi-
bly the most detailed skin model in computer graphics nowadays is
the work by Krishnaswamy and Baranoski [135, 18]. However, many
key aspects that change with age and affect its optical properties are
not taken into account.

aging in humans . Not many works in graphics deal with aging
in humans. Two notable exceptions are the works of Golovinskiy et
al. [92], who presented a statistical model that allows to synthesize
wrinkles and other fine geometric features due to aging, and Boissieux
et al. [28], who proposed image and model based methods to simulate
wrinkles. Their works are therefore complementary to ours.

3.3 anatomy and optical properties of skin

We provide a brief overview of the anatomy and the optical prop-
erties influencing light transport in human skin, as well as the main
effects of aging; in Section 3.4 we will present our biophysically-based
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model for aging of human skin. Skin is composed of three main lay-
ers: epidermis, dermis and hypodermis, with additional sub-layers
(see Figure 30). The optical properties of these layers are described
by the reflection off its surface, as well as the absorption and scatter-
ing events produced in the randomly inhomogeneous distribution of
blood, chromophores and other components. Practical measurements
of these events are expressed in the form of an absorption coefficient
µa and a reduced scattering coefficient µ ′s. Absorption and scatter-
ing coefficients represent how much light is absorbed or scattered by
the medium per incremental path length traveled. In the case of re-
duced scattering coefficients, we assume a diffuse light measurement,
having then an isotropic phase function (g = 0). Spectral reflectance
curves are commonly used to describe skin appearance.

Epidermis

Dermis

Hypodermis

Stratum Corneum

Living Epidermis

Papillary Dermis

Reticular Dermis

Figure 30: Skin anatomy showing the main layers present in skin (credits:
Don Bliss, National Institutes of Health, US).

The epidermis is the outermost layer of the skin, and is divided
in two sub-layers: The stratum corneum, composed of many flattened
and packed dead cells, is relatively high on lipids and low on water
content. Light reflection off this layer is determined by surface topog-
raphy and sebum production [244, 180]. The second layer is the living
epidermis, which primarily contains living cells like the melanosomes,
responsible for the storage, transport and synthesis of melanin. This
is the main light absorber of the epidermis (together with, to a much
lesser extent, dietary carotenoids), and therefore its main colouring
pigment. Melanosomes and melanin exhibit forward and isotropic
scattering respectively [19].

The dermis is generally described as a dense irregular connective
tissue. It has an inhomogeneous distribution of blood vessels in its
two-main sub-layers: The papillary dermis, which is a thin layer of con-
nective tissue that interdigitates with ridges of the epidermis and con-
tains many capillary loops and elastin fibers; and the reticular dermis,
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containing thick bundles of collagen, more elastin fibers, arteries and
veins. The main absorbers in the dermis are blood hemoglobin, in
both oxygen saturated (oxy) and desaturated forms (deoxy), carotene,
bilirubin and water. The scattering properties of the dermal layers
are defined by collagen fibril distributions, packed in bundles. Quan-
titative studies of dermal collagen provide morphometrical measure-
ments showing histograms of fiber distributions per dermal area [32].
Given its larger thickness, scattering in skin is dominated by the retic-
ular dermis. The interface between the epidermis and the dermis is
called the dermoepidermal junction.

Last, the hypodermis is adipose tissue which may be up to a few
centimeters thick or completely absent, depending on its location.
Absorption in the hypodermis is mainly determined by hemoglobin,
lipids and water. The main scatterers in this layer are spherical droplets
of lipids.

3.3.1 Skin aging

The aging process in human skin causes variations in both its struc-
ture and its main constituents. In particular:

All this leads to visible changes in the optical properties of skin,
thus changing its appearance (see Figure 31). Previous skin mod-
els [60, 135] simplify the structure of the skin, allowing to simulate
only a subset of the changes enumerated above. Accurately simulat-
ing all these changes requires a finer structural and biophysical gran-
ularity. We thus first develop a complete model including accurate
descriptions of the hypodermis, water concentration, the dermoepi-
dermal junction, the production of sebum in the epidermis or the
distribution of collagen fibers.

Dermal
Papillae
Height

Living Epidermis

Blood (Hb)

Dermoepidermal
Junction

Dermis

81 years old20 years old

Figure 31: Skin close-ups (images augmented ×10) for healthy subjects, ages
20 (left) and 81 (right). Epidermal thinning, flattening of the epi-
dermal junction and the decrease of hemoglobin are clearly visi-
ble (credits: image adapted from [40]).
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3.4 our skin aging model

Our model can take as input specific values from accurate measured
data (i.e. tissue optics studies), or roughly approximated based on the
subject’s age, gender, skin type, body location and even life habits
(for instance modeling the effect of excessive exposure to UV rays).
While obvious differences exist in skin according to gender or skin
types, the aging process is rather similar in most cases [71]. Therefore,
unless explicitly mentioned, our aging model can be applied to both
genders and all skin types.

3.4.1 Layered structure

Aging selectively affects the structural organization of skin. Captur-
ing variations in its optical properties and therefore its color and
translucency, requires a model that includes a fine detailed descrip-
tion of its layered structure. Our model is made up of the five main
representative layers introduced in Section 3.3: stratum corneum (SC),
living epidermis (LE), papillary dermis (PD), reticular dermis (RD)
and hypodermis (HD). While the living epidermis, the papillary and
reticular dermis are usually included in existing skin models, the stra-
tum corneum and the hypodermis are commonly ignored or highly
simplified. However, the former is the outmost layer, and therefore
has a large impact in the final appearance, which also depends on
its location and exposure to external agents (see Figure 42). The lat-
ter has been at best considered as a purely reflectance layer [135] or
merged with other internal tissues [59]; we instead include it as a
fully participating medium, which leads to significant changes in the
appearance of the skin, as shown in Figure 32. Our model consid-
ers each layer as an optically thick and semi-infinite (lateral extent)
medium, described by its thickness d, index of refraction η, as well as
absorption and reduced scattering coefficients µa and µ ′s (see Subsec-
tions 3.4.3 and 3.4.4 respectively).

As skin ages, its rate of renewal slows down and the thickness of its
layers is non-uniformly reduced, ranging from a 6.4% reduction in the
living epidermis to up to 50% in the hypodermis. This large reduction
in the hypodermis emphasizes the importance of this layer in a skin
aging model. We model thickness atrophy by linearly reducing each
layer using the values summarized in Table 1.

Additionally, the dermoepidermal junction becomes progressively flat-
ter with age (see Figure 31). We model its interdigitated nature, as
proposed by Meglinsky [155], using a periodic surface vertically cen-
tered at the mean depth of the layer as:

z(x,y) = z̄+Axsin(ωxx+φx) ·Aysin(ωyy+φy) (1)
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Figure 32: The influence of the hypodermis. Left: Absorption probability
density for λ=550nm a skin sample. In A the hypodermis is con-
sidered to be a perfect reflector [135]; in B we model it as a par-
ticipating layer (d = 5.9mm, η = 1.44), with absorption (Sub-
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epidermis as a consequence of light being reflected off the hy-
podermis. Right: Spectral reflectance for both hypodermis mod-
els:accurately modeling the hypodermis reduces the amount of
total outgoing energy, specially at longer wavelenghts

.
Skin Structure

layer η d (mm) Decrease (p.d.) Reference

SC 1.53 0.02 (n.a.) [141]

LE 1.34 0.08 6.4% [226]

PD 1.395 0.18 6% - 16% [226]

RD 1.39 1.82 6% - 16% [226]

HD 1.44 5.9 30% - 50% [30]

Table 1: Typical thickness of the skin layers considered in our model (base
values for t = 30) and their range of variation per decade (p.d.).
These values give a mean plausible range corresponding to average
skin [155].

where x,y are coordinates lying on the plane and z is depth, φx,y

and ωx,y are the phase offsets and frequency modeling the surface
roughness, and Ax,y is the peak amplitude of the rete ridge surface,
which decreases linearly with age. The reported measurements by
Giangreco et al. [88] range from 100µm to almost 0µm, for ages 20

through 80.

3.4.2 Surface reflection

On average, about 5% of the incident light is reflected off the sur-
face of the stratum corneum, although the actual percentage varies
with hydration and sebum production. Its effect on the appearance
of skin depends mainly on its roughness and oiliness [180]. Tissue
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optics studies commonly relate roughness variations related with ag-
ing with parameterizations of a Beckmann distribution function [244].
We model the skin’s outmost surface using the Torrance-Sparrow mi-
crofacet BRDF model [218], using the average angle αsr of the mi-
crofacets as the Beckmann’s distribution roughness. We model αsr =
arctan (Rz/le), with Rz the average peak-to-valley height from a set
of measurments, and le = 960µm the skin profile length of each mea-
surment [64]. Values of Rz increase with age, and the values used in
our model are shown in Figure 33 (left).

a

b
a

b

Figure 33: Left: Evolution of surface roughness Rz. Measured mean values
vary from 83µm in young individuals up to 151µm in the el-
derly [64]; Right: Evolution of sebum production, measured in
mg of lipids produced in 10 cm2 after 3 h. Surface roughness in-
creases, while sebum production decreases in the elderly, being
always greater in men than women [180].

a b

Figure 34: Effect of roughness variation with age on the specular reflection.
Left: The roughness of the Beckmann distribution increases with
age as a combination of both the sebum production and the skin
surface roughness variations. Center: Reflectance in young skin
(30 years old). Right: Reflectance in aged skin (80 years). In both
cases, both the change of roughness and sebum is modeled (Fig-
ure 33 shows the values of a and b used)

.
Moreover, the production of sebum creates a thin film that smoothens

the skin roughness. As humans age, sebaceous glands become less ac-



3.4 our skin aging model 61

tive: the thickness s of the sebum film can vary from 3µm in young
skin to 1.69µm in the elderly [180]. To simulate this, we assume that
the average slope of the microfacets is reduced due to the sebum
layer, so that α ′sr = ψsαsr, where ψs ∈ [0..1] is a modulation factor
dependent on the average sebum volume filling the microfacets (see
Appendix 3.8 for details). We make an assumption about the pyra-
midal shape of the microfacets, but we only use that to derive the
statistical roughness reduction, not the real per-facet slope variation.
Figure 34 compares the specularity of skin with age, both with and
without including sebum in the skin.

3.4.3 Absorption

We define the absorption coefficient µa of a skin layer as the sum of
contributions for all absorbing chromophores present in that layer,
which is the common way to define it in multi-layered tissue op-
tics [115]:

µa = ln(10)
∑
i

ciεi (2)

where εi is the chromophore extinction coefficient1 and ci its con-
centration. Our model includes a wide range of chromophores iden-
tified in tissue optics literature as dominant light absorbers in hu-
man skin [115]. Similarly to previous biophysical models for com-
puter graphics [135], we include melanin (eumelanin and pheomelanin),
haemoglobin (Hb) found in blood (oxygen-saturated HbO2 and desat-
urated Hb), as well as bilirubin and carotene. In addition, and different
from previous models, we include water as the seventh chromophore,
using spectral absorption measurements given by Pope and Fry [181].
Although water is not a highly-absorbent component itself, it has a
great influence in appearance, since it defines dryness and dilutes
the concentration of other chromophores (see Figure 36). Water con-
centrations decrease with age, causing a progressive thinning of the
layers (Subsection 3.4.1).

The concentration of chromophores is specified for each layer in
anatomical volume fractions of tissue occupied by their principal con-
tainer (melanosomes in the case of melanin ϑm or whole blood in
the case of hemoglobin ϑHb). Water is expressed directly as the vol-
ume fraction of water content fH2O while carotene ccar and biliru-
bin cbil are concentrations expressed in g/L. Table 2 shows per-layer
chromophore concentrations for an adult skin sample. Last, we also
estimate a baseline skin absorption, modeling depigmentation due to
small-scale tissues. Our baseline is approximated from data measured
by Saidi [192].

1 The term ln(10) stands in Equation 2 because first spectrometers recorded ε in base
10 [115].
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Skin Chromophore concentrations

layer ϑm ϑHb cbil ccar fH2O

SC - - - 2.1e-4 0.05

LE [0-35]% - - 2.1e-4 0.2

PD - [0.1-20]% [0.05-3] 7.0e-5 0.5

RD - [0.1-20]% [0.05-3] 7.0e-5 0.7

HD - 5% - - 0.7

Table 2: Chromophore concentrations for a typical adult. Values inside
brackets indicate plausible range values [155].
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Figure 35: Left: Spectral absorption curves for the seven chromophores, plus
the baseline absorption used in our model. We refer to the sup-
plementary material for equations used to model absorption co-
efficients for each chromophore. Right: A representative example
of the spectral absorption coefficients for the five layers consid-
ered in our model, for a 30 years old woman with skin type II
ϑm = 3% and ϑHb = 1%.

The final absorption values are determined by applying Equation 2

to each of the five layers considered in our model. Figure 35 (left)
shows the absorption spectral curves for all the chromophores in
our model, including our skin baseline absorption. Figure 35 (right)
shows an example of the spectral absorption curves resulting from
our model. Notice how the spectral signature of each chromophore
(Figure 35, left) drives the absorption of the layers in which their con-
centration is higher (e.g. melanins in epidermal layers or hemoglobin
in the dermal layers). Figure 36 shows the influence of water in skin,
visibly reducing its spectral absorption in every layer, while increas-
ing its reflectance.

decrease of melanin and hemoglobin. As mentioned be-
fore, the two main reasons for the decrease of chromophore concen-
tration with age are the thinning of skin layers, and the loss of wa-
ter in the hypodermis. Melanin and hemoglobin, however, suffer an
additional decrease that strongly influences the appearance of aged
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Figure 36: Influence of water on the spectral absorption of skin. Despite its
low absorbance, water plays an important role in the state of skin.
Notice how, by considering water concentrations, almost all lay-
ers suffer a considerable reduction in their spectral absorption,
while the reflectance increases significantly.

skin [69, 40]. In the case of melanin, its rate of decline rϑm has been
measured at about 8% per decade, with no significant differences
with respect to sun exposition or gender [89]. Given a concentration
of whole blood ϑm at age t in decades (Table 2) and a time interval
∆t, we obtain the new concentration v ′m at t+∆t as:

ϑ ′m = ϑm − (∆ t · rϑm)ϑm. (3)

For hemoglobin, we need to consider both intrinsic and extrinsic
factors. We thus model the new concentration ϑ ′Hb at time t+∆t as:

ϑ ′Hb = ϑHb −∆t(rϑHbi + ξrϑHbe)ϑHb, (4)

where rϑHbi = 6% and rϑHbe = 10% are the intrinsic and extrinsic
decrease rates respectively for Hb concentrations [40], and ϑHb is
the hemoglobin concentration at time t (Table 2). Extrinsic factors
like exposition to UV rays lead to a further decreased concentration
of hemoglobin; they are modeled by an empirical value ξ ∈ (0, 1)
representing the exposure of skin to aging by external agents. Fig-
ures 37 and 38 show the effect in appearance caused by melanin and
hemoglobin reduction, respectively. Parameters like surface rough-
ness and other chromophore concentrations are kept fixed to values
shown in Tables 3 and 4.

3.4.4 Scattering

Contrary to absorption, there is a lack of accurate spectral scattering
data for human skin across a wide range of ages. To overcome this,
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Figure 37: Influence of the decrease of melanin with age. Each column
shows a patch of skin for a 30- (top) and a 80-year old (bottom),
along with their corresponding scattering profiles and spectral
reflectance curves. From left to right, we show light caucasian
skin with 2% of melanin concentration in the epidermis, mediter-
ranean skin (7%), and a moderately dark skin (15%). Melanin
concentration in the 80-year-old samples is computed using Equa-
tion 3, while other model parameters are kept fixed (see Tables 3

and 4).

the spectral scattering behavior of skin can be instead characterized
by wavelength-dependent mathematical power law functions fitted
from existing sparse measured data [115, 19]. This wavelength de-
pendence can be expressed in terms of the separate contributions of
Rayleigh (µ ′Rs ) and Mie (µ ′Ms ) scattering as:

µ ′s(λ) = ρ · µ ′Rs (λ) + (1− ρ) · µ ′Ms (λ) (5)

where ρ ∈ [0..1] indicates the proportion among Rayleigh and Mie
scattering, and:

µ ′Rs (λ) = µ ′s(λr) · (λ/λr)−4 (6)

µ ′Ms (λ) = µ ′s(λr) · (λ/λr)−γ (7)

The scaling factor µ ′s(λr) depends on the reference wavelength
λr = 500nm, and the scattering factor γ characterizes the wavelength
dependence of the Mie scattering component. In the following, we
describe the scattering for each layer independently.

stratum corneum and living epidermis . The scattering of
the epidermal layers is characterized by considering both the stratum
corneum and the living epidermis as a whole, given the strong for-
ward scattering characteristics of both layers and the thinness of the
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Figure 38: Influence of the decrease of hemoglobin with age. Hemoglobin
concentration in the 80-year-old sample is computed using Equa-
tion 4, taking into account both intrinsic and extrinsic effects. The
remaining model parameters are fixed (see Tables 3 and 4). Left:
Patch of caucasian skin for a 30- (top) and a 80-year old (bottom),
showing a decrease in hemoglobin concentration from 8.4% to
5.9% in the PD and from 7.4% to 5.2% in the RD. Middle: Scatter-
ing profiles. Right: Spectral reflectance curves.

stratum corneum [178]. Variations in melanin with age are not signif-
icant. We thus model the scattering of both layers using Equation 5

using ρ = 0.29, µ ′s(λr) = 6.67mm−1 and γ = 0.689 [115].

papillary and reticular dermis . For scattering in the der-
mal layers, previous models [60] assume that the reduced scattering
coefficient is halved with respect to the epidermal regions. While this
assumption may be valid for stationary models, it falls short for skin
aging. Light scattering in the dermis changes according to specific
redistributions of collagen fibers, which are mainly responsible of
Mie scattering. Their amount and mean diameter size differ between
the papillary and reticular dermis, as shown by Branchet [32]. We
thus keep Rayleigh scattering constant in our model, with µ ′s(λr) =

4.36mm−1 for λr = 500nm [115], the measured fraction ρ = 0.41 [193],
and vary only the γ parameter.

To compute γ, we assume that the distribution of diameters d of
collagen fibers follows a skewed normal distribution with mean d̄

and standard deviation σ, with an skew factor ζ. This allows us to
model the asymmetric distributions of diameters that appear with
age [257, 159]. Therefore, we obtain a probability density function
h(d) for a fiber diameter d as:

h(d) = 2 ·φ(d, d̄,σ) ·Φ(ζd, d̄,σ), (8)

where φ is a Gaussian distribution and Φ is the cumulative distri-
bution function of φ. Note that this is a continuous function, while
in morphometric analysis in tissue optics h(d) is generally reported
using a discretized histogram. We then model γ for a given d as an
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inverse linear approximation [151] in the range (γmin,γmax), with
γmin = 0.2 and γmax = 4 [257], with d ∈ [1.15, 35]µm.

Given a distribution h(d) of fiber diameters and their correspond-
ing γ(d) values, we obtain µ ′Ms (λ) from Equation 7. We finally com-
pute µ ′Ms (λ) for both the papillary and reticular dermis as:

µ ′Ms (λ) =

∑
d µ
′M(γ(d))
s (λ) · h(d)∑

d h(d)
. (9)

Aging and redistribution of the collagen fibers is modeled by ad-
justing the parameters of the diameter distribution function h(d). As
the mean thickness of the fibers increase with age, the model adjusts
h(d) around greater thickness values by proportionally adjusting d̄.
The redistribution of the fibers with increasing heterogeneity is simu-
lated by progressively increasing σ in the Gaussian distribution. The
physical meaning of varying ζ corresponds to simulating more asym-
metric distributions of fibers with time (see Figure 39). For the age
range of 30-80 years, mean, variance and skew vary linearly [32].

hypodermis . The main aging characteristic of the hypodermis is
the loss of fat tissue. The spectral dependence of the reduced scatter-
ing coefficient for the hypodermis µ ′hds (λ) can be approximated from
existing sparse measurements by fitting to the power law [20]:

µ ′hds (λ) = 105.06λ−0.68 [mm−1] (10)

3.5 using our model

Our time-varying skin model can be plugged in any multilayered ren-
dering framework for translucent materials (e.g. [229, 59, 50]), by com-
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puting for each layer its width d, index of refraction η, and absorp-
tion µa and reduced scattering µ ′s coefficients for a given age. This
requires to set the appropriate parameters to define the type of skin
(mainly melanin concentration ϑm) and blood profusion (hemoglobin
concentration ϑHb), in addition to the gender of the subject, skin care
ξ and the body location of the skin patch, using the formulas pro-
vided in this model. Note that, although in our work we fix other pa-
rameters, such as bilirubin, carotene and water concentration, these
can also be tuned to simulate effects due to sickness or dehydration.

Our proposed model offers a high degree of control over its bio-
physical constituents, which is desirable for many fields such as med-
ical applications. However, we also provide a database with the diffu-
sion profiles for the six Fitzpatrick’s skin types under a combination
of different ages t and levels of skin care ξ, to simplify its use (see
the supplemental material). These profiles have been computed us-
ing the MCML package [5, 229], modified to include non-planar layer
interfaces (Equation 1). We calculate such diffusion profiles for an
incoming pencil beam perpendicular to the surface, for wavelengths
in the 400 to 700 nm range, sampled every 10 nm. Each diffusion
profile is then transformed from spectral XYZ tri-stimulus values to
sRGB color space for rendering. These profiles are given in tabulated
form, and in the form of a sum of six Gaussians (following D’Eon
et al. [51]), making them ready to use even in real-time rendering
applications [52, 122].

3.6 results

We now show results using plausible data ranges reported on previ-
ous studies in the tissue optics literature (see Table 2). All the data
used for each image is reported in Tables 3 and 4. We demonstrate
the versatility of our skin aging model generating results for a wide
range of skin samples and types. All the rendering results in this
work have been obtained using Jensen and Buhler’s hierarchical sub-
surface scattering [120] implemented in PBRT [179]. We use tabulated
RGB diffusion profiles obtained from multilayered simulations from
the MCML package as explained in Section 3.5.

Figure 40 shows how our skin model is able to reproduce appear-
ance changes due to aging for different types of skin. We show the
subtle but noticeable changes in color due to intrinsic and extrinsic
age-related changes in the tissue structure and composition. Addi-
tionally, the change of shape of the specular lobes gives a more glossy
appearance to young skin. Figure 29 shows two additional examples
of the change in appearance of skin due to aging, for a male and fe-
male of skin types III and I respectively. Heterogeneities are modeled
using melanin and hemoglobin concentration maps [61, 123]. Close-
ups for a skin type II can be seen in Figure 41. Notice the increased
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Figure 40: Results of aging a skin patch for the six types of skin according to
the Fitzpatrick scale [79]. The skin type is mostly defined by the
concentration of melanin ϑm, as: type I, ϑm < 3%; type II, ϑm ∈
[3 − 5)%; type III, ϑm ∈ [5 − 15)%; type IV, ϑm ∈ [15 − 25)%;
type V, ϑm ∈ [25− 35)%; and type VI, ϑm > 35%.

translucency in the ears, as well as the overall loss of pigment due to
the lower chromophore concentration.

Last, Figure 42 shows the appearance difference for skin of the
same subject belonging to different body locations: the palm and the
back of the hand. It can be seen how changes are much obvious in the
back: this is due both to its different skin structure and chromophore
concentrations, and to its higher sensibility to extrinsic factors: the
palm suffers less impact since its outermost layers are 4 − 5 times
thicker.

3.6.1 A simplified model

The completeness and associated complexity of our model is impor-
tant for certain application domains where the accuracy of the simula-
tion plays an important role, such as medical and dermatology stud-
ies, or the cosmetic industry. Aging is the result of a complex com-
bination of parallel processes causing changes on both the structure
and composition of the skin’s constitutive tissues (see Section 3.3);
thus, a finer granularity than previous approaches is needed. How-
ever, less demanding applications, such as games, may capture the
main optical effects of aging using a simplified version of our model.
While the results will not be as accurate, this flexible tradeoff between
simplicity and accuracy increases the applicability of our model.
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Figure 41: Differences on skin translucency and overall color between 30, 55

and 80 years old, for a subject with skin type II (note that we do
not change the geometry for a more direct comparison).

We propose one such simplified version, which only uses three
layers. For the epidermis, we consider a single layer containing the
same chromophores and concentrations of the living-epidermis, but
occupying the aggregated thickness of the living-epidermis and the
stratum-corneum together. A similar approach is followed for the
dermis, adding the thickness of both the papillary and the reticular
dermis, assuming the characteristics of the latter. To further simplify
our model, the dermoepidermal junction is considered to be flat with
a constant collagen fiber density. Figure 43 (left) shows a patch of
mediterranean skin (type III) for ages 30 and 80, using this simplified
three-layered version, and our complete model. Since tone mapping
tends to equalize the images, the false color version to the right, as
well as the scattering profiles in Figure 43 (right), highlight the differ-
ences between the two; we can see the differences between the two
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Figure 42: Aging effects for the same skin type, 30 and 80 years, but from
two different body locations: back of the hand (left), and palm
(right). As in other aging examples, the skin becomes less glossy
and more pale. However, the palm is less sensible to extrinsic
factors, due to its thick outer layers [65, 234].

models, and how the errors in the predicted scattering are larger for
the simplified aged version of skin.

Figure 43: Left: Differences when using a simplified, three-layered version
(3L) of our original model (5L). Right: Comparison of the scatter-
ing profiles pairs showing 30 and 80-year-old skin patches, using
the simplified version and our complete model. Again, the differ-
ences are noticeable.

3.7 conclusions and future work

We have presented a comprehensive, biophysically-based skin model
capable to simulate the effects of aging, without the need for skilled
artistic input or subject-specific capture sessions. It is based on a de-
tailed multilayered structure (including the hypodermis and the der-
moepidermal junction), the most dominant chromophores, and scat-
tering profiles fitted from sparse measured data (including novel as-
pects such as the distribution of collagen fibers). Our model can simu-
late the appearance changes due to intrinsic and extrinsic skin aging,
and can be expressed in terms of low-level biophysical parameters or,
more intuitively, with high-level parameters such as age, gender or
skin type. Our tabulated diffusion profiles allow it to be easily inte-
grated in real-time applications such as games or medical simulations.
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Figure Input Model Parameters

Age Gender Body Location Skin Type ξ (External Agents)

29 - a 80 Male Face III 0.5

29 - b 30 Male Face III 1

29 - c 80 Female Face I 0.5

29 - d 30 Female Face I 1

37 30 (80) Female Forearm I, III, IV 1

38 30 (80) Female Forearm I 0

40 30 (55, 80) Female Forearm I,II,III,IV,V,VI 1

41 30 (55, 80) Male Face III 1

42-Left 30 (80) Male Hand - back III 1

42 Right 30 (80) Male Hand - palm III 1

43 (5L) 30 (80) Female Forearm III 1

43 (3L) 30 (80) Female Forearm III 1

Table 3: Input parameters for the images shown along the chapter. Skin type
is specified by the Fitzpatrick scale. Skin care ξ ranges from 0 to 1.
Aged samples are represented within parentesis.

Although our skin model requires more structural complexity than
previous approaches, it can be used to obtain a diffusion profile simi-
lar to previous works, so this required complexity does not affect the
rendering stage: As described, our model can be directly plugged into
any existing rendering system capable of handling diffusion-based
subsurface scattering without further modifications.

Our model offers a potential range of applications beyond graph-
ics. For instance, its predictive nature can be useful in fields such as
cosmetics, dermatology, or tissue optics. We are currently bounded by
existing measurements and collected data. For instance, there is no ex-
isting bio-physical data about heterogeneities, which could neverthe-
less be added to our model using textures modulating the spatially-
varying distribution of chromophores or the albedo of skin, similar to
previous works (e.g. [123, 61]). An interesting avenue of future work
would be modelling the time-varying nature of these heterogeneities
based on a data-driven approach. We hope that our work helps stim-
ulate the creation of more complete datasets, although this will be a
long-term effort.
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3.8 appendix a . modelling of sebum

We include the effect of skin surface sebum in the specular reflec-
tion, by assuming that the skin is composed of consecutive pyrami-
dal holes whose edges’ length and slope are defined by the microfacet
properties derived for the surface roughness. Then we fill the holes
with a certain volume of sebum. As humans age, sebaceous glands
become less active. The thickness of the sebum film can vary between
up to 3 µm in young skin to 1.69 µm in the elderly [180]. Thus, the
new value for α is computed as

α ′ = ψsαsr (11)

with ψs = 1− as/at, at is the projected area of a facet of the pyrami-
dal hole, and as is the portion of that area covered by sebum. Using
trigonometry, we get:

as

at
=
l2s
l2

(12)

with l the length of the skin profile scan, and

ls =
3

√
3Vs

2 tanαsr
(13)

where Vs is the volume of sebum computed for an specific age, based
on the data of Pochi and colleages [180].

Table 5: The partial contribution of each chromophore to the final spectral
absorption coefficient µla(λ) of a given layer, is obtained by multi-
plying the spectral extinction coefficient ε(λ) of the chromophore,
generally measured in (cm−1M−1), by its concentration ci in that
layer. Chromophore absorptions are obtained from both measured
data and previous empirical fits. For µema and µpma , we use empiri-
cal fits from [60]. For µHbO2a , µHba , µcara and µbila we use equations
from the BioSpec model [135]. Last, we employ measured values for
µ
H2O
a taken from [181] and baseline absorption for depigmented

skin from Saidi [192].
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4
P E R C E P T I O N O F C O M P U T E R G E N E R AT E D C L O T H

In this chapter we conduct a set of perceptual experiments to explore
some of the main factors that contribute to the perception of realistic
cloth. Plausible cloth simulation is of great importance for animat-
ing compelling and realistic computer generated scenes. To this end,
both complex dynamics simulations and rendering algorithms are
required. However, many real cloth fabrics exhibit very complex in-
teraction with light and their mechanical properties can be difficult
to specify.

Figure 44: Different fabrics have both different visual appearance and me-
chanical properties. We create replicas of several common woven
fabrics, like the cotton or silk shown in the image, covering a wide
range of movements in a set of video stimuli.

This often leads to cumbersome processes in which manual param-
eter tweaking by skilled technical artists is needed, together with
time-consuming computations. Our goal is to provide insights into
how efficiency can be maximized without sacrificing plausibility. Us-
ing real video footage of several fabrics that span a wide range of
visual appearances and dynamic behaviors, and their simulated coun-
terparts, we explore their visual attributes and the interplay of visual

75
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appearance and dynamics in the perception of computer generated
cloth.

4.1 introduction

Recent advances in physical simulation and rendering allow for the
creation of increasingly realistic and convincing shots. Most produc-
tions now include scene elements that require costly simulations and
rendering processes. Furthermore, parameters are often hard to spec-
ify and tune, which requires time consuming manual input. However,
many elements of these scenes may go unnoticed by the viewer, so a
better understanding of the perceptual factors would facilitate more
efficient use of available resources.

In this work, we investigate the level of fidelity needed in order
to achieve plausible animations of cloth. Do both appearance and
dynamics need to be simulated with a high degree of accuracy? By
studying how the interplay of visual appearance and dynamics can
affect the perception the viewer, we determine whether a fully accu-
rate shader combined with a simplified dynamics simulation might
be sufficiently realistic for most practical purposes, and vice versa. De-
pending on the particular mechanical properties and visual attributes
of the types of fabric being depicted, efficiencies may thus be gained.

As described in [8] and discussed in more depth in this article,
videos of seven different real cloth samples made of different fabrics
that span a wide range of visual appearances and dynamic behav-
iors have been recorded. Photo-realistic synthetic versions have also
been created that emulate the real cloth sequences as closely as pos-
sible (see Figure 44) From these seven ground-truth animations, all
possible combinations of mismatching appearance and dynamics are
rendered, yielding a 7x7 stimulus matrix with the correct solutions
along the diagonal. For this, we rely on methods and techniques
used in a real production environment. Many different options ex-
ist to generate the replicas. Cloth is a very active research area with
many open problems in rendering, simulation, or the combination of
both. There is a great heterogeneity in the algorithms, with some sim-
ulation frameworks designed at yarn level [42], and many different
representations used for rendering (e.g. thin layers [112, 191]; vol-
umes and / or explicit fibers [200, 248, 202, 132, 252]), in addition to
many scattering models [149, 256, 54, 132]. A thorough comparison of
all existing methods and their combination would be of great interest
for the community but is beyond the scope of this work.

Three sets of perceptual experiments are presented that explore the
perception of the cloth videos and animations. The first two experi-
ments were initially presented in [8] and we provide more details and
in-depth analysis of the results in this article. The aim is to study how
well participants can identify different types of fabric, and how sen-
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sitive they are to mismatches in the visual attributes and mechanical
properties. We find that appearance is the dominant factor for most
fabrics in both cases. Finally, in a new experiment, we study the ef-
fects of dynamics and appearance in isolation in order to determine
how certain key attributes related to each factor (e.g. perceptual stiff-
ness for the dynamics or glossiness for the appearance) are contribut-
ing to the dominance of appearance. We find that participants are
better able to discriminate between different appearance attributes
and are again less sensitive to the dynamics.

Our studies are the first to explore the relative importance of ap-
pearance and dynamics on the perception of photo-realistic animated
cloth. Our results may be useful to guide a better distribution of re-
sources when planning shots involving cloth simulations, or could
affect how shot approvals are done. For example, our results indicate
that the perception of a given fabric is influenced by its visual ap-
pearance to a much stronger extent than by its dynamics. Therefore,
viewing the simulation without a reasonable depiction of the final
shader to be employed would not be sufficient to predict the plausi-
bility of the final result. Conversely, if the rendering of the cloth is
sufficiently realistic, there can be a higher level of confidence that the
final animation will also be so.

4.2 related work

In this work, we continue the studies of Aliaga et al. [8] to evaluate
the contribution of appearance vs. dynamics for a range of different
fabrics and viewing distances. Closely related to this goal, McDonnell
et al. [153] evaluated the perceptual impact of different geometric and
image-based LOD representations of animated cloth, and guidelines
for developing crowd systems with realistic clothed humans were
presented. Sigal and colleagues [208] developed a control space for
garment simulation by mapping the complex parameters of any phys-
ical simulator to several intuitive predictable perceptual parameters,
learned from a set of experiments. Also focused in dynamics, a recent
paper [26] explores whether humans have an invariant representation
of the mechanical properties (mass, stiffness) of fabrics under varying
external forces in dynamic scenes (videos of oscillating wind with dif-
ferent strength).

Appearance: Many approaches focus on generating visually plausi-
ble materials. Pellacini et al. [176], Westlund and Meyer [232] and Fer-
werda et al. [74] developed psychophysically-based models for gloss
perception. Wills et al. [236] performed similar experiments to derive
a perceptual space of measured BRDFs. Vangorp et al. [223] evalu-
ated the influence of shape and illumination on surface gloss percep-
tion, showing how objects with smooth bumps provide more cues
than simpler ones like spheres. Other studies include translucency
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and subsurface scattering [81, 91], or surface texture and reflectance
[47, 75, 119]. From a generic perspective, Serrano et al. [204] recently
proposed an intuitive control space for material appearance, mapping
perceptual attributes to an underlying PCA-based representation of
BRDFs.

Fleming and colleagues [82, 83] conducted reflectance matching ex-
periments to demonstrate that people can recognize material proper-
ties more accurately under natural illumination than under artificial
lights. Other examples focus on perceptually guided global illumina-
tion [162, 211]. Ramanarayanan and colleagues [182, 183] evaluated
the effects of changes in environment lighting over different shapes
and materials. Through several transformations in the illumination
maps, such as warping or blurring, they found that many objects had
the same appearance (they are visually equivalent) when illuminated
by both transformed and original maps. Similar studies evaluated the
effect of approximations in illumination on the perception of complex
animated scenes [118] or materials [136]. Other studies evaluate not
only approximations but the effect of intended artistic stylizations in
shape, material or rendering style over human faces [154, 246].

Dynamics: Some studies have evaluated the effects of degrading
or distorting physically-based simulations on the perceived plausibil-
ity of animations, e.g., [173, 243, 100]. Similar studies have also been
conducted in the context of cartoons [84]. Other works focus on colli-
sions; O’Sullivan et al. [172] developed a model of collision percep-
tion for real-time animation, while Dingliana and O’Sullivan [57, 171]
examined the perception of detail simplifications for LOD rigid-body
physically-based animation. Also, several recent articles in perception
of liquid viscosity explore the roles of optical properties and motion
cues [3, 2, 129].

Some other works evaluate the perception of dynamics on ani-
mated characters. Reitsma et al. [185] studied the visual tolerance
of ballistic motion for character animation, finding that horizontal ve-
locity errors are more detectable than vertical. Vicovaro et al. [224]
evaluated the plausibility of altered throwing motions. Finally, Hoyet
et al. [108] conducted several phsycophysical experiments to measure
the perceived realism of pushing interactions, evaluating the influ-
ence of timing errors or force mismatches.

4.3 stimuli creation

In order to cover a reasonable range of different fabric appearances
and dynamics, we chose seven commonly used woven cloths. In ap-
proximate order of more to less stiff, the selected fabrics are: Burlap
(also commonly known as Sackcloth), Canvas, Denim, Linen, Cot-
ton, Polyester satin and sheer Silk. We acquired real samples of all
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Burlap Canvas Bull
Denim

Linen
Solid

Cotton Polyester
Charmeuse

Iridescent
Silk

a)

b) 100% Jute 100% Cot-
ton

100% Cot-
ton

100%
Linen

100%
Kona®
Cotton

100%
polyester

100% silk

c) 206.82 345.84 361.44 308.54 145.79 139.01 27.12

d) 0.69 0.56 0.76 0.43 0.24 0.36 0.1

e) Plain Plain
2x1 basket

Twill
1 warp x
3 weft,
1 warp off-
set

Plain Plain Satin
4 warp x
1 weft,
2 warp off-
set

Crepe de
chine

f) 4, 4 30, 11 26, 20 17, 12 27, 23 60, 60 42, 42

g) 1, 1 0.33, 0.33 0.38, 0.5 0.3, 0.5 0.24, 0.24 0.17, 0.17 0.08, 0.08

Table 7: Manufacturer details for the real fabrics used in the experiments,
which are used to simulate the CG replicas. a) 5x5mm closeup; b)
Composition; c) Weight (g/m2); d) Thickness (mm); e) Weaving Pat-
tern; f) Threads/cm: warp, weft; g) Thread diameter: warp, weft
(mm).

of them, cut into squares of 1x1 meters. They all are of roughly the
same albedo, in order to avoid color being a confounding factor for
the experiments (see Figure 45).

We then recorded videos of all the fabrics in a studio with diffuse
black walls, floor, and roof, using two spot lights placed at about 45

degrees from the focal plane (Figure 46, left). Every piece of cloth was
recorded while draping over a flat swivel stool which then spins, in or-
der to show as many mechanical and dynamic properties of the fabric
as possible (e.g., shape of the folds, angle of swing). View-dependent
appearance features for each fabric are also visible in this way. We
ensured that the movement was as similar as possible for each fabric.

To create computer generated replicas of the reference fabrics, we
needed to emulate both the appearance and the dynamics. Note that
appearance refers to the spatially varying reflected radiance of the
cloths, which depends on several factors such as the texture pattern
or the optical properties of the fabrics (e.g.: albedo or surface scatter-
ing). Thus, all pieces of cloth were rendered using path tracing with
deferred shading [66], simulating rough dielectric materials with dif-
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Figure 45: Comparison between the real fabrics and the CG replicas (from l-
r): burlap, canvas, denim, linen, cotton, polyester satin and sheer
silk. Images are renderings and the insets show close-ups of the
real fabrics in the first five cases. For polyester satin and sheer
silk, the weaving pattern is too small to notice at normal viewing
distances. For polyester satin the inset shows the fabric wrapping
a cylinder along the warp and weft directions to show the view-
ing and lighting dependent anisotropic highlights. For sheer silk,
the inset shows the real fabric draping the swivel stool.

fuse transmittance, together with albedo, bump and opacity textures.
For these, a set of close-up pictures perpendicular to the fabrics was
taken to generate tileable seamless textures representing patches of
30x30 cm. The only exception was polyester satin; given its more
anisotropic reflectance and color shifts, we relied on the empirical
microcylinder model of Sadeghi and colleages [191]. This approach
represents the state of the art for rendering specular woven cloths
when they are represented by a triangle mesh as a thin layer (Irawan
and Marschner [112] only handle specular reflection). Other options
such as the works of Khungurn et al. and Zhao et al. [132, 248] really
represent the state of the art for realistic cloth appearance, but were
discarded by several reasons: the need of a computer tomography
scan for capturing the micro volumes, the need of a real lighting set
up to fit the volumetric rendering parameters of the model, and the
fact that such optimization to derive the scattering parameters has
only been proved for static images. The appearance of the final CG
replicas can be found in Figure 45.

Our choice of methods for the simulation part are also currently
used in production. Works like Cirio et al. [42] are able to yield yarn-
scale detail, but have not been designed for higher-scale simulations
(like our draping garment), and the parameters that need to be set are
difficult to obtain from real pieces of cloth, to create accurate replicas.
Thus, the dynamics of the different fabrics were simulated by mod-
eling the cloth as a triangular mesh, along with proximity forces to
prevent primitives near each other from colliding, as proposed by
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Figure 46: Left: Lighting studio setup for capturing the the real cloth videos,
(bottom and side views). Right: Comparison between the move-
ments of the real cloth samples and the CG replicas. The first row
shows the cotton rotating at the maximum speed. The second
row shows the burlap at the frame just before starting to stabilize.
Note that the real and CG samples are rotating in the same direc-
tion in these images just for comparison, but do so in opposite
directions during the experiments to avoid exact image match-
ing. To emulate the cloth motion, we paid special attention to the
number, size and shape of the folds created (both at static and
dynamic frames), the amount of bouncing, the effect of air forces,
and the maximum height and width reached when rotating.

Baraff and Witkin [17]. Similarly, we use additional constraints for
cloth-object collisions. If continuous time collisions remain after the
initial solve, we rely on the robust collision algorithm from Bridson et
al. [33], augmented by a fail-safe that cancels impact while maintain-
ing sliding motion [103]. We relied on physical parameters given by
the manufacturer1 when available, such as density and thickness (e.g.,
burlap weighs 207g/m2 with 0.69mm thickness, while the values for
silk are 207g/m2 and 0.69mm; see Table 7 for more details); all the
remaining parameters were manually adjusted to obtain a result as
close as possible to the real cloth properties (see Figure 46, right). We
considered using an automatic method for estimating the material
properties from real cloth, as Bouman et al. [31] do for videos. The
problem is that the high level parameters estimated, like stiffness or
density, do not have a direct connection with the simulation models
employed in practice. In fact, this is a hard problem that Sigal and col-
leagues [208] attempted to solve in a concurrent work, where a model
was built to map perceptual parameters to low level parameters spe-
cific in each simulation engine. In addition, the range of movements,
friction and self collisions exhibited in our videos made us discard
any automatic method, opting to have full control with the goal of
achieving simulations as close as possible to the real replicas, using
affordable tools and resources in a production pipeline. The swivel
stool was not included due to limitations in our rendering system at
the time when the tests were being carried out. While this may af-
fect the perception of the most transparent cloth (silk), many other

1 Michael Levine, Inc.,http://www.lowpricefabric.com/

http://www.lowpricefabric.com/
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cues for transparency are already obtained through the overlapping
moving folds of the cloth itself.

We then rendered all possible combinations of appearance and
dynamics, yielding 7x7=49 videos (six seconds each) replicating the
movement in the recorded video (Figure 47). Thus for each row (col-
umn) of the matrix, only one rendered video matches the appearance
with the correct dynamics. In addition, to study the effect of viewing
distance on the perception of mismatched properties, we rendered all
of the stimuli at three different camera distances, resulting in resolu-
tions of 1728x1123, 1000x650 and 520x338 from close to far viewing
distances respectively. These resolutions were set empirically with the
goal of having a perceptual level of detail, also taking into account the
latter arrangement in the screens within the experiment setup and the
screens’ size and resolution.
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Figure 47: All CG stimuli from Experiments One and Two. All appearance
(vertical axis) and dynamics (horizontal axis) combinations for
our seven fabrics are shown at a fixed viewing distance. In this
figure, we chose a frame of the video where all the fabrics are
stabilized so that the folds and drape can be better appreciated
without motion. Note that we rendered all videos with the swivel
stool rotating in the opposite direction from the real videos, to
avoid participants basing their judgments on exact visual match-
ing.
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Figure 48: Two screen layout for Experiment One. On the left, the navigation
screen with the seven real (ground truth) reference fabrics. Each
thumbnail has a radio button for selection and a replay button.
On the right, the CG cloth that is currently being displayed.

4.4 experiments

In the introduction, we asked whether both appearance and dynam-
ics need to be simulated with a high degree of accuracy for plausible
cloth simulation. To answer this question we conducted a set of per-
ception experiments. The first two experiments were both carried out
in counterbalanced order with 63 naive participants (34F/29M, aged
18–27) who had varying levels of experience in computer graphics.
We found that participants were more sensitive to the appearance of
the fabrics than to the dynamics, so we then carried out a third ex-
periment with 15 naive participants (9M/6F) to further explore some
perceptual attributes of the various fabrics.

4.4.1 Experiment One: Ground Truth comparison

The goal of the first experiment is to answer two questions: (i) How
effective are our cloth simulations at emulating the appearance and
dynamics of the real stimuli; and (ii) are dynamics and appearance
equally important when comparing photo-realistic cloth animations
with videos of the real fabrics?

Method: Two equally calibrated screens of the same model were
used for the experiment (Dell U2311H IPS FullHD 23”) arranged
in parallel at about 50 cm far from the participants. At the start,
all participants familiarized themselves with all real stimuli on the
left screen, by clicking on a thumb-nail reference to view the corre-
sponding six-second video, which they could repeat as many times as
needed. These real stimuli remained available for viewing throughout
the experiment. On the right screen, one of the 147 rendered videos
is shown, and the participant is asked the question: ‘Which of the
reference cloths on the left best matches the one on the right?’. The
participant can answer by choosing any of the seven reference cloths
shown in thumbnails on the left (Figure 48), which may be replayed
as often as needed (with no time limit). Each time a reference video
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is replayed at full resolution on the left, the current CG replica that is
being evaluated is played on the right for comparison purposes. Both
videos are synchronized, but the cloths rotate in opposite directions
to discourage exact visual pattern matching.

In order to avoid fatigue, each participant viewed a subset of the
stimuli, distributed so that each video is seen by 45 different people,
and each person sees 105 different samples of the total set of 147. The
experiment took between 25 and 45 minutes, including a 5-min break.
An option for showing each participant the whole set of stimuli could
have been to limit the amount of replays and/or the viewing time per
trial. However, the average number of repetitions was close to 0 ex-
cept for the first ≈10 trials (typically 1-2 repetitions for those cases),
and the viewing time was the minimum to have enough dynamics
cues to judge (the piece draping and rotating). Then, increasing the
total length of the test in about a 40 percent would have drawn par-
ticipants attention.

Figure 49: Experiment 1 results (means with standard error bars). Top Left:
correct responses for fabrics with consistent appearance and dy-
namics, i.e., how often the correct real cloth was matched by the
corresponding consistent simulation; Top Right: response times
(RT) for fabrics with different Appearance (A); Bottom: results
for fabrics with mis-matching Appearance (A) and Dynamics (D),
showing how often the real cloth chosen was determined by ei-
ther the corresponding A or D of the mis-matched simulation.

Results: We first summarized all participant responses in a Multi-
way Frequency Table, with frequency counts for each combination of:
Distance (close, medium, far), Appearance (A-Burlap, A-Canvas, A-
Cotton, A-Denim, A-Linen, A-Polyester, A-Silk), Dynamics (D-Burlap
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– D-Silk) and Response x 7 (R-Burlap – R-Silk). We then analyzed these
data using Log-Linear Analysis and found that the best model that
fits the observed data is (Appearance,Response), (Dynamics,Response),
with a likelihood ratio of χ2 (216) = 218.57,p = 0.4382. This means
that there was a main effect of both Appearance and Dynamics on
which real fabric was chosen. However, the distance from the camera
appears not to have a significant effect on the responses.
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Figure 50: Experiment 1 results, sorted by Appearance (top) and Dynamics
(bottom), summarized as a radar graph and collapsed over dis-
tance. The colored areas in the graph represent how often each
Response was given for the Appearance/Dynamics combinations
depicted on the perimeter.
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Dynamics vs Response
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Appearance vs Response

Figure 51: Experiment 1 results, showing how often each Response ’R-fabric’
was given for the different appearances (top) and dynamics (bot-
tom). It is interesting how appearance is very well matched in av-
erage, only getting more confusion for cotton-made fabrics (Can-
vas is wrongly identified as Cotton, and both Denim or Linen are
perceptually close to Canvas). For the case of dynamics, even if
Silk, Polyester, Denim and Cotton are well matched, the devia-
tion is higher than in the case of appearances, with Burlap being
identified as Canvas and vice versa, or Linen wrongly identified
as Polyester.

To explore these effects further, we ran several unbalanced ANOVAs
using the Variance Estimation and Precision function in STATISTICA™.
This was necessary as there were unequal numbers of observations
for each combination of variables. As described in [157], we report
ANOVA results (univariate tests of significance) using Type 1 sums
of squares for the unbalanced scores. In each case we tested for main
and interaction effects of fixed independent variables Distance, Ap-
pearance and Dynamics (Fixed) and random independent variable Par-
ticipant on the dependent variable of interest.

In Figure 49 (top right) we see the main effect of Appearance (F(6, 372) =
25.74,p < 0.001) on the Response Time (RT) dependent variable. Fab-
rics with the appearance of Burlap, Polyester and Silk were recog-
nized significantly faster than the other materials (post-hoc LSD tests
confirmed these results). We found no main effect of either distance
or dynamics on response time. As we included synthetic fabrics in
which the dynamics and appearance were consistent, we tested these
results separately from the mis-matched stimuli. In Figure 49 (top
left) we see the main effect of independent variable Fabric on depen-
dent variable %Correct (F(6, 367) = 88.87,p ≈ 0). In this case, Burlap,
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Polyester and Silk were correctly matched with their real counterpart
significantly more often than the other fabrics. Again, we found no ef-
fects of distance or dynamics. These results together already suggest
that appearance is having a more dominant effect on recognition than
dynamics. It also indicates that some fabrics are being confused with
each other quite often, with recognition of Canvas well below chance
level.

In Figure 49 (bottom) we see the main effects of dynamics and
appearance on the real cloth chosen. In this case the dependent vari-
ables were %A-Chosen and %D-Chosen, indicating the percentage of
times Appearance or Dynamics respectively determined the choice
of the corresponding real fabric. We found no effect of distance in
either case. For A-Chosen, we found a main effect of Appearance
(F(6, 372) = 98.04k,p ≈ 0), where Burlap, Polyester and Silk drove
the choice of the real fabric at above chance levels (Figure 49: bot-
tom left). An effect of Dynamics on A-Chosen was found (not shown,
F(6, 372) = 19.21,p ≈ 0), as when the dynamics of the synthetic stimu-
lus was Burlap, Polyester or Silk, the percentage of times that the Ap-
pearance dominated was reduced, in particular for silk. For D-Chosen
(Figure 49: bottom right), we can see that the effect of Dynamics on
the choice of the real fabric was much lower than for Appearance.
However, the dynamics of Silk had a significantly higher influence
on recognition than any of the other fabrics (F(6, 372) = 22.26,p ≈ 0).
Appearance also had an effect on D-Chosen (F(6, 372) = 43.32,p ≈ 0),
again with Burlap, Polyester and Silk appearances reducing the num-
ber of times that dynamics determined the choice of real cloth. Since
the same effect was seen on dynamics over appearance, the results
suggest that when either the appearance or the dynamics are very
particular, they tend to introduce some confusion on the participants
responses even if the other factor is the correct match. This effect is
more prominent when the appearance is very distinct, as Figure 49

bottom right shows.
In order to determine whether there was an effect of participant sex

on performance, we ran a mixed repeated measures ANOVA with cat-
egorical predictor Sex and independent variable Chosen (A or D). The
ANOVA was balanced in this case due to the way in which we dis-
tributed the stimulus combinations. As expected, we found that Ap-
pearance was chosen more often than Dynamics (F(1, 61) = 47.69,p ≈
0). However, there was also a marginally significant Chosen*Sex in-
teraction (F(1, 61) = 3.87,p = 0.054), where men chose appearance
significantly more often than women, and vice versa for dynamics.

All results are summarized in Figure 50, where we can see more
details on when Appearance dominated the responses for the three
fabrics: Burlap, Silk and Polyester. There was more confusion between
the other materials. We can also better see when Dynamics affected
the choices, and the only material where dynamics was in any way
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influential was for Silk, where the green line in the figure shows how
the response was always silk when the dynamics were silk, and silk
was also often picked when the appearance was a different material.
For an additional view to the data, responses based on Appearance
and Dynamics are shown in Figure 51.
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Figure 52: Left: perceptual distance of the fabrics by using the dissimilarity
matrix including all kinds of mismatching (appearance wrong;
dynamics wrong; appearance and dynamics wrong), using κ = 1

in Equation 4.4.1. We can observe how the fabrics are grouped in
a way that Burlap is pretty isolated, and groups of two are formed
by Silk with Polyester, Cotton with Linen, and Denim with Can-
vas. The last one is expected, since both are made of cotton with
tight weaving patterns that result in very similar dynamics and
appearance. Polyester and Silk have very characteristic dynamics
and appearance, being lightest fabrics. Thus, they are at a very
far distance from Denim and Canvas, the stiffest ones. Burlap lies
at a similar distance from every group, since it is very stiff but
not as heavy as Denim or Canvas. Its transparency can make its
position to be closer to Silk. Right: perceptual map just using the
total mismatched weights (appearance and dynamics wrong) to
set the distances (κ = 0). This way we can better see how fab-
rics were identified completely wrong. Canvas and Denim are
the most confused, a fact that was observed in reality due to their
similar look and dynamic behavior. On the other hand, Burlap
and Silk also get closer, which could mean there is indeed an
effect of transparency in these cases. The increased distance be-
tween Silk and Polyester also reveals that their very characteristic
appearance and movements prevent users from confusing them
whenever their attributes are set right.

In addition, we use multidimensional scaling to better visualize
the similarity of the set of fabrics studied. To do so, we establish a
7x7 distance matrix D using a metric such that:

Di,j = fi,i,j + fj,j,i + κ
(
fi,j,i + fj,i,i + fi,j,j + fj,i,j

)
(14)

where fi,j,k is the frequency the fabric k was matched as response
given a fabric with the appearance i and the dynamics j, being i, j,k ∈
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{Burlap,Canvas,Denim,Linen,Cotton,Polyester,Silk}. The term κ

weights the effect of the perfect mismatches vs the mismatches where
either appearance or dynamics are correct (e.g.: silk appearance / silk
dynamics / burlap response vs silk appearance / burlap dynamics /
burlap response). Results are shown in Figure 52.

Discussion: We may now attempt to answer the questions we asked
above. (i) How effective are our cloth simulations at emulating the appear-
ance and dynamics of the real stimuli? It is difficult to provide a con-
clusive answer to this question at this point. On the one hand, the
accuracy results for some of the consistent simulations was very high
for Burlap, Polyester and Silk; yet for the other four fabrics there was
a lot more confusion. (ii) Are dynamics and appearance equally important
when comparing photo-realistic cloth animations with videos of the real fab-
rics? The results for the mismatched simulations indicate that there
were far more accurate matches based on the appearance of the fab-
rics, than on the dynamics. In the latter case, only Silk and Canvas
were accurately matched at above chance levels (i.e.,> 1/7 ≈ 14%).
We discuss this further in the conclusions.

4.4.2 Experiment Two: Identifying Mismatches

In Experiment Two we further explore the sensitivity of participants
to mismatches between the appearance and dynamics of photo-realistic
cloth animations.

Method: The screens and controlled settings are as in Experiment
One, and again participants first familiarize themselves with the seven
real videos. Thereafter, one of the real videos is shown on the left
screen while two CG videos are shown side-by-side on the right
screen (Figure 53). One CG video is the corresponding replica of the
real video shown, with matching appearance and dynamics, whereas
the other is mismatched with either the appearance or the dynamics
from a different cloth. Order is randomized throughout. This leads
to 252 combinations in total: 7 fabrics x 12 mismatched options (6
each for appearance and dynamics) x 3 viewing distances. The partic-
ipant is asked which of the two simulated cloths on the right is most
similar to the ground-truth cloth video shown on the left. There is
no time limit, and the participant is allowed to replay the videos as
often as necessary. As before, each participant only watches a subset
of the stimuli, where each stimulus pair seen by 45 different people,
and each person sees 180 different samples of the total set of 252.
This experiment lasted between 50 and 70 minutes, including a 5-min
break.

Results: We cross-tabulated all participant data in a multi-way fre-
quency table, with frequency counts (i.e., %correct responses) for each
combination of: Distance (close, medium, far), Fabric (Burlap – Silk),
WrongFabric (Burlap – Silk) and Mismatch Type (Appearance, Dynam-
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Figure 53: Two screen layout for Experiment Two. On the left, the current
reference real fabric is shown. On the right, the CG replicas being
evaluated are displayed synchronously. Here, both dynamics are
the same, but only one appearance matches.

Figure 54: Experiment Two results. Left: All results summarized as a radar
graph and collapsed over distance. The outermost labels on the
perimeter indicate the “correct” fabric, while the innermost ones
show the mismatched one. Right: Interaction effects between the
mismatch type (Appearance or Dynamics incorrect) and the cor-
rect or mismatched fabric type.

ics). Log-Linear Analysis shows that the best fit model is (Fabric,
WrongFabric, MismatchType), with a likelihood ratio of χ2 (196) =
68.89,p = 1.00. Therefore, these three factors interact to influence the
choice of the correct synthetic cloth, but again distance appears to
have no effect.

As before, we report ANOVA results (univariate tests of signifi-
cance) using Type 1 sums of squares for the unbalanced scores. We
tested for main and interaction effects of fixed independent variables
Distance, Fabric, WrongFabric and MismatchType (Fixed) and random
independent variable Participant, on the dependent variable %Correct.
(We also tested for dependent variable Time but found no significant
effects). We found main effects of Fabric (F(6, 372) = 22.57,p ≈ 0),
WrongFabric (F(6, 372) = 121.96,p ≈ 0) and MismatchType (F(1, 62) =
77.87,p ≈ 0). Performance was above 66% correct for all fabrics,
but was significantly higher for Burlap, Denim, Polyester and Silk.
When Silk was the WrongFabric, performance was highest, followed
by Burlap and then Polyester. Appearance mismatches were more
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easily identified than Dynamics (84% vs 71%), again indicating that
appearance dominates.

The results are shown in Figure 54 (Left). We found no main or
interaction effects for Distance, as before. These results can be fur-
ther understood by exploring the two significant interaction effects:
Fabric*MismatchType ((F(6, 372) = 4.94,p < 0.000001) and Wrong-
Fabric*MismatchType (F(6, 372) = 29.72,p ≈ 0) as shown in Figure 54

(Right). In particular, we can see that both mismatching appearance
and dynamics were equally salient for Silk and Canvas, and close
for Burlap. Instead, Polyester is where appearance dominates most
over dynamics, followed by Cotton, Denim, Linen and Burlap. In this
experiment, there was no effect of participant sex.

4.4.3 Experiment Three: Perceived Cloth Features

From Experiments One and Two, we may conclude that the Appear-
ance of a fabric is consistently more salient than its Dynamics. Fur-
thermore, this effect appears to be independent of viewing distance.
In order to explore this finding further, we picked the most poorly
matched fabrics for appearance and dynamics respectively attempt-
ing to isolate the effect of each factor. Log-Linear Analysis found an
effect of appearance and dynamics independently on the responses,
with a perfect fit to the observed data in both cases χ2 (0) = 0,p =

1 (summary can be seen in Figure 55). In addition, we tested the
saliency of several key dynamics and appearance features of the fab-
rics, which is the bulk of the Experiment 3, detailed in the following.

Method: In order to explore the features related to the Dynamics
factor, an identical and neutral appearance is needed for every cloth,
as neutral as possible. We therefore rendered all seven cloth dynamics
with the same gray diffuse material, free of texture, and displayed
them at the medium viewing distance. For the case of Appearance
factor, we displayed cropped images showing the fabrics with the
same folds under homogeneous lighting. We chose cropped images
in this case to reduce the impact of any intrinsic information about the
dynamics properties of the cloth, thus allowing participants to focus
on the appearance. We chose a 3AFC design, where three samples
are displayed with each other on one screen. We distributed these
combinations of three fabrics in such a way that each one appears 6

times on the left, center and right of the screen, leading to 42 possible
combinations. This design allowed all of the fabrics to be compared
with all of the others in the most efficient manner. Some examples
can be seen in Figure 56.

Fifteen participants volunteered for this experiment (6F/9M, aged
18-35), and the entire experiment took approximately 30 minutes.
Each participant viewed both conditions in counterbalanced order,
and in each case all 42 combinations were shown in randomized or-
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Figure 55: Frequency of chosen fabrics when dynamics (top) and appear-
ance (bottom) are fixed. Attempting to study the effect in isolation
of each factor, we chose the most poorly matched fabric in each
case: cotton dynamics and canvas appearance (see Figure 49). We
can see how appearance is very well recognized in many cases,
excelling for Burlap, Polyester and Silk, getting more confused
for fabrics with similar middle-roughness look, weaving patterns
and materials (cotton). Instead, canvas appearance is mostly iden-
tified as denim except for very particular dynamics like Silk or
Linen, in agreement with the multidimensional scaling shown in
Figure 52

.

der. In the Dynamics condition they are asked to indicate which of
the fabrics is most Stiff, and which one is most Heavy (Figure 56, left).
For the Appearance condition, they are asked which fabric looks most
Glossy and which one looks most Rough (see Figure 56, right).

Results: We performed repeated measures single factor ANOVAs
on each set of ratings and post-hoc analysis using Newman-Keuls
pair-wise comparisons of means. The results are shown in Figure
57. For dynamics attribute Stiffness (F(6, 84) = 255.51,p ≈ 0), the
ranking was as follows (from most to least stiff): Burlap > Canvas
> Linen > (Canvas = Denim) > (Silk = Polyester). For Heaviness
(F(6, 84) = 2.66,p < 0.05), all choices were at chance level (i.e., ap-
prox 33%) except for cloth, which was only chosen as most heavy
14% of the time. For appearance Glossiness (F(6, 84) = 21.40,p ≈ 0),
polyester was chosen as most glossy 90% of the time, with burlap and
linen only being chosen about 10% of the time each; the others were
in between these extremes but in overlapping homogeneous groups



4.4 experiments 95

Figure 56: One screen layouts for Experiment Three. Left: three videos of
neutral appearance and different dynamics are played simultane-
ously, with the swivel stool rotating in the same direction; Right:
three cropped images of the fabrics draping the stool with the
same folds but different appearances are shown.

Figure 57: Experiment 3 results, showing the mean percentage of times each
fabric was chosen as being the most Glossy, Rough, Stiff or Heavy,
along with standard error bars.

based on the post-hoc tests. The ranking for appearance Roughness
(F(6, 84) = 29.95,p ≈ 0) was as follows: Burlap > (Denim = Canvas
= Linen) > Polyester, Cotton and Silk. Again, we found no effect of
participant sex on the results.

We can see from these results that participants appear to discrimi-
nate better between the appearance attributes of the cloth, with more
significant differences between the choices of glossiness and rough-
ness for all fabrics. The stiffness of a fabric appears also to be a
salient feature, but participants appeared to be unable to distinguish
between the weights of the different fabrics, which is surprising, as
this is an intrinsic property of its dynamics. These results further em-
phasize the findings of the previous experiments that the Appearance
of a cloth is the most robust indicator of its identity.
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4.5 conclusions

In this chapter, we have presented the results of three perceptual
experiments where we explored the interactions of the Appearance
and Dynamics of seven common woven fabrics and also explored
the saliency of some of their key attributes (stiffness and heaviness
for dynamics; glossiness and roughness for appearance). We demon-
strate how appearance dominates over dynamics, except in the case
where where dynamics is very characteristic, i.e., for silk. We also
found that these effects are robust across different viewing distances.
We found that there is a significant tendency for men to rely on ap-
pearance more than women do when identifying fabrics. Perhaps this
is because women often have more experience with wearing a larger
variety of fabrics and flowing garments and hence may be more fa-
miliar with their dynamics.

We have explored only a small range of different fabrics in this
work to keep the problem tractable, and a wider choice with more
varied dynamics would be needed to draw any definitive conclusions.
In fact, it would be interesting to further explore the no effect of dis-
tance on the results, which was unexpected beforehand. This should
be addressed with a wider sampling of the relationship between the
weaving pattern sizes, their projection onto the image plane, and the
image resolution itself. Our results indicate that, in general, appear-
ance dominates over dynamics in our study. We speculate that this
may be due to the fact that we are more accustomed to understanding
appearance information; when looking at different fabrics, we always
see their appearance, whereas watching them in motion occurs more
rarely. This may not be the same in other appearance vs. dynamics
studies involving different elements other than fabrics. As in all stud-
ies of similar nature, our conclusions are only strictly valid for our
chosen stimuli. Our particular choice of fabrics is intended to provide
an ample enough range of appearances and dynamics, while keeping
the experiments tractable; it could be that using different visual stim-
uli, such as non-shiny, opaque fabrics, or adjusting the thickness to
be similar across fabrics, the result would vary somehow. From the
results we can observe that when either the dynamics or the appear-
ance are particularly dominant, the other factor has perceptually less
contribution. Without the cue of appearance, we have the intuition
that fabrics with characteristic movements (Polyester, Silk, Burlap or
Canvas) would get high accuracy ratios. Among fabrics with simi-
lar behavior, like cotton, denim or canvas for instance, the threshold
to distinguish between them would remain low, since the materials
chosen for those fabrics are very neutral.

We should also be wary of drawing any general conclusions re-
garding perception of appearance and dynamics in general, as it is
plausible that some of our results could be affected by the fact that
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rendering techniques are far more advanced than dynamics simu-
lation, having been studied for longer. It is therefore possible that
appearance has been synthesized with more fidelity to the real fab-
ric than the dynamics have been. Furthermore, performing a similar
study with animated characters wearing clothes made from these fab-
rics would allow us to confirm our findings in more ecologically valid
and familiar scenarios.

It would be interesting to consider some other factors that may
have an effect on the perception of moving cloth (e.g., different illumi-
nation conditions such as environment lighting), or to explore more
deeply the influence of the most important factors of cloth simula-
tion considered here (e.g. BRDF and spatial frequency of the textures
in the case of the appearance, dynamics parameters in the case of
motion synthesis).





5
A N A P P E A R A N C E M O D E L F O R T E X T I L E F I B E R S

Accurately modeling how light interacts with cloth is challenging,
due to the volumetric nature of cloth appearance and its multiscale
structure, where microstructures play a major role in the overall ap-
pearance at higher scales. Recently, significant effort has been put
on developing better microscopic models for cloth structure, which
have allowed rendering fabrics with unprecedented fidelity. However,
these highly-detailed representations still make severe simplifications
on the scattering by individual fibers forming the cloth, ignoring the
impact of fibers’ shape, and avoiding to establish connections be-
tween the fibers’ appearance and their optical and fabrication param-
eters.

Figure 58: Volumetric rendering of three fabric samples using our highly-
detailed physically-based BCSDFs models. Our model is based
on the optical and structural parameters particular of each cloth
fiber. From left to right, a 2-ply knitted garter (7 twist/cm, 120

fibers/yarn) of cotton fibers, a single-ply woven satin made of
silk (1 twist/cm, 30 fibers/yarn) and a 2-ply knitted garter (4
twist/cm, 160 fibers/yarn) made of polyester fibers. Silk and cot-
ton pieces are colored with reactive dyes, and a disperse dye is
used for polyester.

In this work we put our focus in the scattering of individual cloth
fibers; we introduce a physically-based scattering model for fibers
based on their low-level optical and geometric properties, relying on
the extensive textile literature for accurate data. We demonstrate that
scattering from cloth fibers exhibits much more complexity than cur-
rent fiber models, showing important differences between cloth type,
even in averaged conditions due to longer views. Our model can be

99
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plugged in any framework for cloth rendering, matches scattering
measurements from real yarns, and is based on actual parameters
used in the textile industry, allowing predictive bottom-up definition
of cloth appearance.

5.1 introduction

Rendering realistic fabrics is an active research field in computer
graphics, with many applications in other areas like entertainment
or textile design. Accurately reproducing the appearance of cloth re-
mains challenging, due to the micro-structures found at fiber level,
and the complex light scattering patterns exhibited at such scales.
This affects the overall look of cloth both in close-ups, and at longer
viewing distances, with effects like anisotropic specular highlights, or
anisotropic multiple scattering.

Given this intrinsic complexity, and the effect of microscale appear-
ance at coarser scales, it is necessary to accurately represent appear-
ance at very small scales, to capture the subtleties and rich optical
phenomena of cloth fibers. Recent approaches have made significant
advances in this direction, either by modeling the arrangement of
the fibers [199], or capturing the structure of small pieces of cloth
using macro photographs [203] or Computed Tomography scanners
(CT) [247, 131, 251]. However, these works focus on reconstructing
the geometry of the fibers, while adopting several convenient simpli-
fications to simulate the scattering of light, such as using parametric,
simplified fiber scattering models. While these models improve over
general volumetric phase functions such as microflakes when render-
ing cloth [131], they 1) still rely on very simplified models of fibers,
and 2) lack the actual fabrication parameters used when physically
manufacturing the fiber. These two points limit the applicability of
current models for predictive rendering, based on optimization-based
approaches.

In this work we introduce a novel appearance model for cloth, fo-
cusing on high-quality scattering functions, which takes into account
the optical and structural properties of real-world cloth fibers, from
a ray-optics perspective. We leverage the wealth of measured, real-
world data available from the textile research community, and build
digital replicas of different types of fibers (polyester, wool, silk and
cotton). We then rely on brute force simulations of light scattering
of such fibers to obtain highly detailed tabulated Bidirectional Curve
Scattering Distribution Functions (BCSDF), without the most common
simplifications assumed in current BCSDF models [255, 130] (e.g. cir-
cular or elliptical cross sections), which are unable to capture the rich
visual features of real fibers. Moreover, since our model is based on
low-level real-world fiber properties, it allows us to specify actual fab-
rication parameters used by fiber makers; this is very relevant in fields
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such as textile or cloth design, where manual or optimization-based
parameters fitting might not match the properties of actual existing
fibers. To our knowledge, ours is the first scattering model based on
such physical and optical measurements, including fibers’ index of
refraction, surface roughness and dye concentration.

We compare our model against state-of-the-art BCSDFs at differ-
ent scales: at highly detailed close-up views where the scattering of
individual fibers is visible, as well as at longer shots where the scat-
tering of the individual fibers is averaged, and the macroscopic ap-
pearance of cloth becomes clear. Our BCSDFs can be directly used
for rendering both volumetric-based (see e.g. Figure 44) and explicit
fiber-based representations of cloth; moreover, since it allows for a
bottom-up definition of cloth appearance, it bridges the gap between
actual fiber fabrication parameters and simulated cloth appearance in
a predictive manner.

5.2 related work

We focus on detailed volumetric or explicit representations of cloth
appearance, although other approaches using planar representations
of cloth exist, based either in bidirectional texture functions (BTFs) [46,
194] or in parametric local scattering models [113, 190]. For more de-
tails we refer to the original papers, or the survey by Schröder and
colleagues [201].

volumetric cloth modeling Two different approaches for vol-
umetric cloth representation have been widely adopted in the field: 1)
assuming cloth as an heterogeneous anisotropic volume [117] and
posing the rendering problem as volumetric light transport, and 2)
modeling the geometry of each yarn or fiber explicitly, similar to re-
cent hair rendering approaches.

Zhao and colleagues [247] followed the former approach, leverag-
ing Micro-CT scanners of cloth in order to obtain highly detailed vol-
umes at micron resolution of small pieces of fabric. Micro-CTs have
also been used as building blocks for larger garments with repeated
patterns [249], and to take advantage of the repeated structure of
cloth to precompute inter-blocks light transport to accelerate render-
ing [250]. While CT-based models allow for high-quality renders of
cloth, they rely in complex and expensive capturing setups, and man-
ual intervention or optimization [131] with respect to a target cloth ap-
pearance is needed to define the optical parameters of cloth garments.
Instead of relying on captured data, Schröder and colleagues [199]
procedurally generate cloth garments as a collection of individual
yarns. These yarns are then transformed into a volumetric representa-
tion using Gaussian distributions of fiber orientation and density. Al-
though such model can produce realistic results, it does not hold for
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close-up views where a huge number of voxels needs to be computed.
Similarly, Lopez-Moreno et al. [142] build a volumetric representation
of cloth on the GPU. They adapt the classic lumislice algorithm [238]
to interactively create high-quality volumetric representations of cloth
at fiber scale.

As opposed to volumetric approaches, Schröder and colleagues
[203] relied on a fully geometrical representation of individual yarns,
each with a different scattering function. They extended their pre-
vious work [199] entirely avoiding the volumetric representation of
cloth. Their fully procedural fiber generation method even simulates
the small fibers protruding from the yarn (hairiness) and allows pre-
dictive reverse engineering of real cloth. Zhao et al. [251] automated
the fitting of such yarn procedural models from physical measure-
ments acquired using micro CT imaging. Recently, Wu and Yuksel [237]
demonstrated real-time rendering of cloth modeled using explicit
yarns.

Despite their differences, both approaches (volumetric and explicit
geometry) are able to deliver comparable high-quality results [131].
Our work is orthogonal to the chosen cloth representation, and our
realistic fiber-based scattering functions can be applied to both.

Finally, although not explicitly for cloth, we note that hybrid ap-
proaches considering volumetric and explicit representation of packed
discrete media have been proposed, taking the best of each world by
keeping the high-frequency details of explicit geometry in the first
bounces, while accelerating rendering for higher-order scattering us-
ing a volumetric approximation [156, 160].

scattering models Most previous approaches have assumed
general scattering models for fibers, ranging from microflakes [117,
105] for volumetric models, to explicit fiber scattering models similar
to hair rendering e.g. [127, 148, 255, 242].

While both extremes can produce visually realistic results, and
many approaches have successfully used microflakes for rendering
cloth [247, 250, 142], it has been shown that microflakes cannot match
the appearance of real-world cloth, while fiber scattering models are
more suitable for this task [131]. In this context, Schröder and col-
leagues [199, 203] use the parametric BCSDF model proposed by
Zinke and Weber [255]. Khungurn et al. [131], on the other hand,
proposed a simple fiber-based model suitable for both rendering and
appearance capture of real garments. The authors highlight the im-
portance of the fiber-specific scattering model to achieve good results,
and choose a simplified BCSDF that fits well within their optimization
framework. However, their fiber scattering model has certain limita-
tions from a physical point of view, since it assumes only direct re-
flection and transmission, ignoring longer scattering orders within
the fiber, and allowing colored reflectance which is not predicted in
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Fresnel’s equations. The recent paper of Zhao et al. [251] relies on the
same scattering model.

A common limitation shared by previous physically-based fiber
scattering models [148, 255, 53, 242] and artist oriented models [187,
39] is the lack of generality: they assume fibers are cylinders with a
cross section that can be elliptical up to some degree. Ogaki et al. [169]
proposed a similar approach to ours for fur modeling, where explicit
geometry was used to obtain hair scattering functions from fibers
with arbitrary geometry. Their work, however, does not account for re-
alistic fiber geometries based on Scanning Electron Microscope (SEM),
and does not consider real-world measurements of optical parame-
ters. The recent model by Khungurn and Marschner [130] is able to
handle arbitrary eccentricity for the first time. However, fabric fibers
lie far from this assumption (see Figure 59), leading to scattering pat-
terns much more anisotropic and difficult to represent through cur-
rent models. In addition, these models do not provide any connection
between fabrication parameters and optical properties of the fibers; as
we will show, these fabrication parameters have a major impact on the
scattered field.

textile research Beyond computer graphics, several works in
textile research have used simulation to predict the appearance of
cloth. Most of these works use light simulation in yarns or fibers
focusing on quality assessment of specific features such as luster
[212, 15], and on determining the optical properties of cloth by means
of inverse rendering [99, 184]. Closer to our work, Yamada et al.
[239] compare through simulations the scattering functions of syn-
thetic fibers with circular, triangular or rectangular cross sections. A
similar approach is followed by Liu et al. [139] and Aslan et al. [16]
for synthetic and cotton fibers respectively. None of these works use
the computed scattering functions for rendering, nor propose a full
bottom-up approach for defining cloth appearance. Finally, similar to
other related works in graphics [247, 131], Grasso et al. [95] rely on
simulation to study the effect of textile properties in the macroscopic
appearance of cloth, while alternative approaches evaluate radiative
transfer in fibers and textiles [241, 146, 240], and compare simulations
and measurements of the propagation of polarized light through tex-
tile materials [177]. These approaches focus either on a few proper-
ties individually, or on particular types of fiber, and do not attempt
to provide a general model suitable for computer graphics. Instead,
our model is capable of reproducing the appearance of cloth, based
on fiber fabrication and measured optical parameters, making it well
suited for predictive applications.
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Figure 59: SEM images of cross sections and shapes for real polyester, silk,
cotton and wool fibers. Images from [55], [207], [165] and [128],
respectively.

5.3 light scattering from textile fibers

Most cloth fibers are made of an absorbing dielectric medium. Al-
though their shape has been traditionally considered as a cylinder
extruded from circular or elliptical cross sections, their actual cross
sections greatly differ from these simplified shapes, depending on the
type of fiber, as well as its chemical or mechanical treatment. More-
over, the assumption of a smooth cylindrical shape does not hold for
some natural fibers such as wool, which presents overlapping, tilted
scales on its surface (similar to human hair [148]). This can be seen in
Figure 59, showing SEM samples of real textile fibers.

Figure 60: Left: spherical coordinates and local frame defined for the fiber,
aligned along the t axis. Right: illustration of coordinate system
and shape of lobes observed in the scattering plots; circle in the
middle is the reflection cone under illumination angle θi = −45◦.

This leads to visually important reflectance features such as self oc-
clusions or caustics, which cannot be simulated with current BCSDF [255].
Figure 8 shows several examples of 2D slices of the four-dimensional
BCSDF for different incoming directions ωi (the coordinate system
is described in Figure 60), computed for a set of fibers of polyester,
silk, cotton and wool, each with different fiber cross sections and op-
tical properties. While the BCSDF of polyester, a synthetic radially-
symmetric fiber, is rotation-invariant and exhibits uniform high-frequency
lobes due to sharp reflection and caustics on the cone of reflection, the
rest of the natural fibers yield heterogeneous and highly anisotropic
scattering profiles, dependent on the cross section and the incident
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light direction ωi. Silk for instance exhibits sharp, highly anisotropic
caustics due to its flat irregular shape. Cotton, on the other hand,
presents wider lobes due to its higher surface roughness, its inside
hole, and the multiple self-interreflections within the fiber bound-
aries, specially in the case of non-mercerized fibers. Finally, the re-
flectance of wool is more similar to perfect cylindrical fibers (e.g.
polyester) due to the low eccentricity of its cross section, but presents
a set of high-frequency anisotropies due to the irregular cuticle varia-
tion along the longitudinal axis.

In addition to structural properties, light scattering in a cloth fiber
also depends on its optical properties, such as its index of refraction
or the absorption, which in turn is highly dependent on the concen-
tration of the dye used to color the fiber. Most previous work have
attempted to model these parameters using a top-down approach,
either by directly defining the fiber color [117, 199], or matching a
specific appearance through optimization [131]. While this leads to
visually plausible results, these approaches may lead to physically in-
valid parameters, such as absorption values out of the range of actual
fabrics, or artifacts like colored specular reflections. Instead, we opt
for a bottom-up approach, defining fiber appearance from real-world
low-level structural and chemical data, including the specific dyes
used with different types of cloth.

Given this complexity, it is not feasible to derive an analytical BCSDF
to simulate fiber appearance without major simplifications; instead,
we follow previous works on modeling complex reflectance and ap-
pearance [189, 156, 160], and build a tabulated BCSDF from a physi-
cally accurate fiber model, which takes into account precise structural
and optical properties. This is described in detail in the following sub-
sections, and compared against state-of-the-art fiber scattering mod-
els. Later we will show how to use these complex BCSDFs for render-
ing volumetric models of cloth.

cross section and longitudinal structure To take into
account how the different cross sections affect the optical proper-
ties of cloth, we analyzed SEM samples of real fibers, and manually
modeled a representative set of different cross sections for each type.
While some fibers such as polyester fit well into the assumption of
cylindrical cross section, natural fibers present significant variability
in their shapes, as we have seen. In addition, we also take into account
the absolute size of each type of fiber; for instance, wool can be up to
eight times larger in diameter than silk (see Table 9). Of all the fibers
analyzed, wool presents an additional challenge: its surface is made
up of overlapping cuticles (not present in other fibers, see Figure 59),
which significantly affect light scattering. We approximate this effect
by modeling shape variations along the longitudinal axis.
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Type Diameter Density IOR Ra (l) β

µm g/cm3 η‖, η⊥ nm degrees

Polyester 10 1.39 1.73, 1.54 2.33-5 (30) 2.7-3.5

Silk 5-10 1.34 1.591, 1.538 8-9 (30) 6-7

Cotton 17-20 1.52 1.578, 1.532 12.5-15.8 (50) 14-17

Wool 24-40 1.31 1.553, 1.542 6 (50) 5

Table 9: Measurements of the physical and optical properties of four of the
most common fabrics, acquired from the textile literature: fiber di-
ameters from Trotman [219]; fiber densities (in a standard atmo-
sphere of 65% relative humidity, 20oC) and index of refraction from
Hearle and Morton [104]; surface roughness Ra and l from [90, 137].

5.3.1 Fiber properties

surface roughness The dielectric boundaries of the fibers present
roughness at nanoscopic scale, which prevents us from using directly
the Fresnel equations (see index of refraction for all fibers in Table 9;
note that the wavelength dependency on η is neglectable [104]). As
in recent work [58, 164], we model surface roughness statistically, fol-
lowing a microfacet-based approach, where the Normal Distribution
Function (NDF) is modeled as a Beckmann distribution with average
orientation β, following a V-cavity model [44, 170]. The average nor-
mal orientation is thus modeled as β = arctan (Ra/l), where Ra is the
average peak-to-valley height, and l is the profile length (both in nm).
Note that this models roughness at the nanometer scale only; coarser
features are captured by the geometry of the fibers and our specific
cross sections.

absorption Absorption inside the fiber plays a crucial role on its
appearance [104]. The main source of absorption is the dye used to
color the fiber. Thus, we compute the absorption coefficient µa [m−1]

based on the amount of dye and its particular absorption as µa = κ ε,
where κ is the dye concentration [g l−1], and ε is the extinction per
gram [l g−1 m−1]. The latter is given by ε = εm w−1

m , being εm
the molar extinction coefficient in [l mol−1 m−1], and wm the molar
weight of the dye [g mol−1].

We model the dye concentration κ as a function of the fibers’ den-
sity ρ [g l−1] (see Table 9), and the Depth of Shade (DoS) ζ, as κ = ρζ.
The DoS ζ is a quantity used in industry for controlling the satura-
tion of dyed cloth, which is the ratio of grams of dye to grams of
fiber (ranging from 0.1% for pale shades to 4% for deep shades [166]).
Note that at such small dye concentrations the impact of the dye on
other optical properties of the fiber is minimal [104]. We choose two
of the most common dyes suitable for a very wide range of commer-
cial fabrics (reactive and disperse). Depending on their chemical and
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a

b

Figure 61: Light absorption in fibers and threads. First row shows images
under the microscope of a real silk thread of 3 plys, each com-
posed by 90 fibers. The rightmost image shows how a single fiber
has very low absorption, but the cumulative effect of each of the
90 fibers per ply give the thread its overall yellowish color. Sec-
ond row shows the effect in our model of the DoS ζ used to dye
the fibers, in particular, the scattering of a silk fiber (see cross sec-
tion on the inset on the left) lit fromωi = 〈0◦, 45◦〉with an orange
dye with a different ζ parameter: from left to right, it varies from
very pale to very deep DoS (µa= 5.08, 40.46 and 84.68 mm−1).
While the reflection cone remains uncolored (specular reflection,
(a) in the rightmost figure), it can be seen how the colored lobes
increase in saturation when the amount of dye increases (b). Since
the silk fibers are thin, note also that the refraction lobe remains
sofly colored even for deeply dyed fibers (right).

physical properties, some dyes are more suitable to be used for differ-
ent kinds of fabrics: reactive dyes, which are mainly used for cotton,
silk and wool, have an extinction coefficient ε ranging from 0.005 to
0.0158 [l mg−1 cm−1]; disperse dyes, often used for polyester and
other synthetic fabrics, have much higher extinction values, ranging
from 0.045 to 0.246 [174, 102]. Figure 61 shows the effect of the DoS
on a fiber of silk; it does not have a large effect on the color of an
individual fiber, however its effect accumulates and becomes visible
as it interacts with all the fibers in the cloth.

5.3.2 Obtaining the BCSDFs

Since no existing analytical BCSDF model can represent the com-
plex high-frequency, anisotropic features of light transport in realistic
fibers, we opt for precomputing light transport under different view
and light directions, and tabulate this information to be used directly
as a BCSDF.

We place a single straight fiber lit by a beam of light whose width
equals the projected area of the cross section in the incoming direc-
tion. We consider an infinitesimal longitudinal patch, and adopt a
far-field approximation of the BCSDF, a suitable approximation that
has been shown to introduce a very low error [255]. This setup allows
us to simplify the eight dimensional BCSDF f(xi,ωi, xo,ωo), with
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Type Average Cost Resolution (ωi,ωo) Storage BCSDF Total Storage

Polyester 7 min 45× 1, 90× 180 2.7 MB 5.56 MB

Silk 360 min 45× 180, 90× 180 500.5 MB 1001 MB

Cotton 420 min 45× 180, 90× 180 500.5 MB 1001 MB

Wool 900 min 90× 180, 90× 180 1001 MB 2002 MB

Table 10: Average computation and storage cost for each of the four types
of fiber considered in this work. The computation cost is affected
both by the complexity of the geometry modeling the fibers, and
the number of angular measurements. For rotationally symmetric
fibers, such as polyester, very few angular samples are needed to
characterize the full BCSDF. Fibers with longitudinal symmetry
(silk, cotton) require half the measurements than wool. The total
size of the BCSDF (in 32 bits floats for a monochromatic BCSDF) is
directly proportional to the total resolution of the BCSDF. Finally,
note that in addition to the BCSDF we also store the tabulated
CDF for sampling, and the directionally-resolved albedo Λ(ωo)
and fiber’s projected area A(ωo).

xi and ωi (xo and ωo) the incoming (outgoing) point and direction,
respectively, into a four-dimensional BCSDF f(ωi,ωo).

We discretize the angular domain in 2◦ intervals, which our tests
showed to be enough to capture the sharpest illumination features
due to direct reflection and caustics (present in polyester and silk).
This results into an angular resolution of 180 × 90 in 〈φ, θ〉, for a
total of (180× 90)2 combinations of ωi and ωo. For each light direc-
tion, we shoot sixteen million photons from the light, and simulate
their random walk as they interact with the fiber. These photons are
collected in an infinite sphere bounding the fiber, as a function of
ωo = 〈φo, θo〉, using the irradiance meter sensor in Mitsuba [116].
We compute a two-dimensional slice of our 4D function for each in-
coming light direction. Our final BCSDF f(ωi,ωo) is characterized by
the fiber’s parameters (cross section, size, index of refraction, surface
roughness, dye used, and depth of shade), and is stored as a 4D table
which is accessed directly in rendering time. We use the same ap-
proach for computing the directionally resolved fiber projected area
A(ωo), which will be used later for rendering (see Section 5.5). The
average precomputation time and storage cost for each type of BSCDF
is listed in Table 10. Our BCSDFs are publicly available at online1.

5.4 analysis & discussion

far-field assumption We assume that light interactions occur
at the same differential point x in the fiber, which allows us to re-
duce the dimensionality of the BCSDFs to four dimensions. We also
leverage this assumption to consider that the fiber is locally straight,

1 http://giga.cps.unizar.es/~ajarabo/pubs/clothEGSR17/data/

http://giga.cps.unizar.es/~ajarabo/pubs/clothEGSR17/data/
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Figure 62: Comparison between our BCSDFs (top) and the results predicted
by Khungurn and Marschner’s elliptical fiber model [130] (bot-
tom), for fibers of silk, cotton and wool, illuminated by a beam
of light with incoming direction θi = 45◦. We use the best physi-
cal fit of the elliptical model, by setting the same or closest fiber
parameters - roughness, bounding ellipse and diameter, cuticle
slope, etc.- to match the fiber’s real parameters (bounding ellipses
are rotated accordingly). Elliptical cross sections are unable to
capture the complexity of realistic fiber reflectances.

homogeneous, and has the same cross section in all cases but wool,
similar to most previous works on hair rendering [148, 53, 242]. This
is a reasonable simplification given the small diameter of the fibers, in
general much lower than the fibers’ curvature, and assuming that the
fiber’s cross section and twisting varies slowly along the longitudinal
axis with respect to the path length.

comparison to elliptical fiber models Most previous fiber
reflectance models have assumed circular, or moderately elliptical,
cross sections [255, 53, 242, 131]. Recently, Khungurn and Marschner
[130] presented a fiber model supporting elliptical cross sections of
arbitrary eccentricity. We compare against this model in Figure 62, by
adjusting their elliptical cross section to fit ours as closely as possi-
ble and using real optical parameters. As the figure shows, even an
advanced elliptical fiber model is unable to represent the rich and
complex outgoing radiance field of natural fibers. Moreover, even in
fibers with an actual elliptical cross section, such as wool, the complex
patterns in the reflectance due to the tilted cuticles are better approx-
imated with our model. Finally, the complexity of the azimuthal scat-
tering component requires costly numerical integrations that cannot
be performed on the fly during rendering; therefore we rely on pre-
computed tabulated data, similar to most current models, to produce
highly accurate results.

geometric optics assumption Our computation setup used
to generate the BCDSFs (Section 5.3.2) is based on geometric optics.
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This means that wave effects such as polarization are not taken into
account. However, given that even for polyester the surface is not a
perfectly smooth dielectric, the degree of polarization introduced by
Fresnel reflection is small, and its impact on the final image would be
minimal. In addition, most cloth fibers present a small amount of bire-
fringence [230], specially polyester (see Table 9). We assume isotropic
dielectrics, and set an average index of refraction. Our model does not
account for diffraction, which will probably appear due to the small
fiber’s cross section and geometric features. It is unclear how much
diffraction would impact the BCSDF, although its effect will proba-
bly be slightly masked by the surface roughness and the medium
absorption. Finally, some dyes may present fluorescent appearance.
We assume only elastic scattering (i.e. with no energy transfer be-
tween wavelengths [97]), although a more sophisticated model could
include a bispectral BCSDF, similar to the bispectral BRDFs [109]. Al-
though our results show improved accuracy over previous existing
models, a deeper exploration on wave-related phenomena remains as
future work.

Figure 63: Volumetric renders of a knitted stockinette fabric, where each
yarn has one ply and 60 fibers, and a twist of five turns per cm,
with fiber types (from left to right): cotton, polyester, silk and
merino wool. All fibers are rendered with the same DoS. The
almost perfectly dielectric polyester fiber produces a highly satu-
rated fabric since very few light is directly reflected out, while the
silk cloth has a clear white specular reflection that previous ap-
proaches [131] are unable to capture. Given that wool fibers are
significantly wider than the rest, for the same DoS wool fibers
absorb a larger amount of light.
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Figure 64: Renders of cotton (red) and silk (green) yarns, captured by Zhao
et al. [251]. From top to bottom, using 1) only one of our BCS-
DFs for every fiber, with varying cross section orientation per
fiber; 2) a precomputed average of 15 and 8 BSDFs of cotton and
silk, respectively; and 3) five of our BCSDFs randomly distributed
among the fibers. Differences between 3), and 1) and 2) are shown
in the insets (3x scaled for a better visualization).

5.5 rendering

Our BCSDFs from Section 5.3.2 can be plugged in both volumetric-
based and fiber-based representations of cloth [131], with a few minor
modifications. The main difference is the need of keeping track of the
the full frame of the fibers, not only their direction ωf, given the lost
rotational symmetry of the cross section. This affects both the phase
function fr, as well as the fiber’s projected area Ai. We define the
frame centered around ωf using the rotation angle ψf which defines
the angle between the up-vector of the fibers frame with respect to
the plane defined by ωf and the y-axis2 When rendering, each fiber
is assigned with an initial random rotation, as well as a BCSDF from

2 When ωf is aligned to the y-axis, we compute the rotation based the plane defined
by ωf and the x-axis.
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our dataset. Both values are uniformly sampled from [0, 2π) and our
set of BCSDFs, respectively.

Including fiber’s rotation ψf is straight forward when the fibers are
represented by explicit geometry in the form of curves. For the volu-
metric approach, we build upon the anisotropic radiative formulation
by Jakob et al. [117], where the incoming radiance at x in directionωo
is:

L(x,ωo) =
∫s
0

Λ(xt,ωo)µt(xt,ωo)Tr(x, xt)Li(xt,ωo)dt, (15)

where xt = x −ωo t, Λ(xt,ωo) and µt(xt,ωo) are respectively the
directionally-resolved albedo and extinction, and Tr(x, xt) is the trans-
mittance between x and xt. Li(xt,ωo) is the inscattered radiance at
xt in direction ωo:

Li(xt,ωo) =
∫
S2
fr(xt,ωo,ωi)L(xt,ωi)dωi, (16)

with fr being the normalized phase function at xt, L(xt,ωi) repre-
sents the incoming radiance at point xt from direction ωi, and S2

is the spherical domain. We include the fiber’s rotation ψf into the
extinction µt(xt,ωo) by approximating it as:

µt(x,ωo) ≈
1

V

N∑
i=1

Ai(ω
′
o) sin(ωo,ωf,i)

≈ N
V
A(ω ′o) sin(ωo,ωf), (17)

where N is the number of fibers falling into a voxel and V is the
voxel’s volume, Ai(ω ′o) and A(ω ′o) are the projected cross section
of fiber i and the mean projected cross section of all N fibers in di-
rection ω ′o = Rf(ωo), which is the outgoing direction transformed
to match the frame of the fibers. ωf,i and ωf are the direction of
fiber i and the fibers’ mean direction. Note that we approximate both
the distributions of fibers directions ωf, rotations ψf and projected
cross sections A(ωo) using their respective mean value. The albedo
Λ(xt,ωo) is computed analogously.

implementation details We implemented our BCSDFs in the
physically-based renderer Mitsuba [116] as specialized BSDF and phase
functions, fed in both cases with the tangent frame defined by the
fibers direction ωf and rotation ψf. We tabulate the BCSDFs, and
their CDFs for efficient sampling; the BCSDFs are normalized to one,
with a separated table coding the directionally-varying albedo. We
also tabulate the projection of the fibers cross section A(ψf). The total
memory cost of each of these tabulations can be found in Table 10. We
do not use any compression for the BCSDFs, although standard com-
pression techniques for high-dimensional data (e.g. tensor decompo-
sition [186]) could be applied to significantly reduce the memory cost.
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d’Eon et al. [53] Khungurn et al. [131] Ours

C1

C2

S1

S2

Figure 65: Comparison between renderings of the same base fibers using
the models of d’Eon et al. [53] and Khungurn et al. [131] and our
model. We fit these parametric models to match our cotton (C)
and silk (S) BCSDFs as close as possible. The parameters of the
fits, as well as our BCSDFs, can be found in Figure 68.

To account for inter-fiber variability we randomly assign to each fiber
a fixed cross section from our database, which spins with the fiber’s
local frame; we assume that this cross section does not vary along the
fiber. Introducing geometrical variability along the fiber is an interest-
ing avenue of future work.

5.6 results

We demonstrate the use of our BCSDFs with the two main types
of representations for cloth: volumetric and explicit fibers geometry.
We use the former to render cloth garments illustrating the effect
of our BCSDFs on the macroscopic appearance of cloth, and explicit
fiber representations for rendering small yarns showing very detailed,
close shots. We generate the volumetric garments using the work of
Lopez-Moreno et al. [142] over simulations at the yarn level [41, 43].
Figure 44 and Figure 63 show examples on the macroscopic effect on
the cloth appearance of an accurate BCSDF. In particular, Figure 63

shows the exact same knitted pattern rendered using our four types
of BCSDFs, keeping the rest of the parameters constant. Significant
differences on the overall appearance of the garment can be found
between each type of fiber.

effect of average bcsdfs The effect of a single, detailed high-
frequency scattering function can be downplayed due to the multiple
bounces in the volume, as well as by the multiple individual fibers
with different BCSDFs falling in a single pixel (or voxel in a volumet-
ric representation). In Figure 64 we investigate the effect of having a
single BCSDF for all fibers in a yarn, an average BCSDF, and differ-
ent BCSDFs for each fiber in the yarn. As expected, the most realistic
scenario (different BCSDFs for each fiber) introduces the largest vari-
ability in terms of specular reflections, leading to a more detailed
appearance. This confirms that, for very detailed shots we need to
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Figure 66: Comparison between our BCSDFs (top), and the scattering mod-
els of d’Eon et al. [53] and Khungurn et al. [131], fitted to match
our BCSDFs (see Figure 68), for silk (left) and cotton (rigth) gar-
ments, rendered using a volumetric representation of cloth.

preserve the variability on the fibers BCSDFs to obtain optimal re-
sults. However, even the less detailed scenario (the average BCSDF)
preserves the overall look of the BCSDFs, including an anisotropic
look, which suggests that even in a convoluted volumetric rendering
the final look will still vary when using detailed BCSDFs rather than
parametric simplified models. In the following, we investigate this in
more detail.

comparison with parametric models Figure 65 compares
the resulting appearance of rendering four high-quality yarns from [251]
using our BCSDFs and two state-of-the-art BCSDF models [131, 53]
fitted numerically to our BCSDFs (see resulting BCSDFs and fitted
parameters in Figure 68). Given the non-linearity of volumetric scat-
tering, small differences in the fit result in very different appearances:
this is specially visible in the specular reflections, where current para-
metric methods are unable to match the anisotropic scattering found
in real-world fibers, even in relatively diffuse fabrics such as cotton.
This emphasizes that these models are very good for matching macro-
scopic appearance in top-down optimization frameworks [131], but
might lack expressivity for bottom-up definitions of appearance.
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Figure 67: Renders of virtual replicas of the Gütermann sweing yarns de-
scribed in Table 11. From left to right, and top to bottom, the
yarns are Skala360 (polyester), ORA 120 (polyester), CNe 50 (cot-
ton), and S 303 (silk), with varying DoS.

Figure 68: Comparison between our model (left) and the parameteric fiber
scattering models by Khungurn et al. [131] (middle), and d’Eon
et al. [53] (right), fitted to match our BCSDFs. Left: slices of our
cotton (top) and silk (bottom) BCSDFs, averaged over 15 and 8

different fiber’s cross section, respectively. Center: numerical fit
for the BCSDF of Khungurn et al. [131], with parameters (cotton,
silk): CR = 0.001, 0.1 , CTT = (0.5, 0.25), βR = (32◦, 8◦), βTT =

(16◦, 16◦), γTT = (57◦, 46◦). Right: numerical fit for d’Eon et al.’s
BCSDF [53], with parameters β = (20◦, 13◦) , IOR = (1.55, 1.55),
µ = (0.1, 0.1).

Figure 66 shows a similar comparison, this time at a macroscopic
level on a volumetric representation of a full cloth garment, with fab-
rics made of silk and cotton, respectively.

5.6.1 Validation

We validate our model against sewing thread samples of 100% polyester,
cotton and silk, measuring how each yarn scatters light, with different
parameters to cover a reasonable range of yarn examples. We build
digital replicas of these yarns (see Figure 67 for renders, and Table 11

for detailed specifications), and render them using the BCSDFs pre-
sented in Section 5.3.
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Sample Composition Fiber Length Twist Fibers/ply Plys

Skala 360 (*) Polyester continuous 5 24 1

ORA 120 Polyester 3 - 4 8.8 90 2

CNe 50 (*) Cotton 3 - 4 12.8 70 3

S 303 (*) Silk 5 - 8 9 90 3

Table 11: Specifications of the set of Gütermann sewing yarns rendered in
Figure 67. For completeness we also include the dtex [g/10000m]

measurement, which is a value typically used in industry, being
from top to bottom: 74 dtex × 1; 140 dtex × 2; 90 dtex × 3; 90

dtex × 3. Scala360, CNe 50 and S 303 are used for validation of our
model (Section 5.6.1).

acquisition setup We capture the reflectance of the yarns us-
ing a controlled setup at the optics laboratory. The light source is a
633 nm He-Ne laser, with a spatial filter to produce a clean Gaussian
beam. The spatial filter assembly consists of a microscope objective, a
pinhole aperture, and a collimating/focusing lens. An iris diaphragm
is placed before the photodetector to limit its aperture acceptance to
≈ 10 mrad. The photodetector is a silicon PIN-photodiode with con-
ventional transimpedance amplifier circuit, mounted on a goniometer,
providing a measurement range of 360◦. Since the laser beam is con-
stant, it needs to be modulated by an optical chopper. Also, a lock-in
amplifier is referenced to the operating frequency of the modulator
to discard ambient light and improve the SNR allowing to extract
the signal in the noisy environment. This is done by a data acquisi-
tion module connected to a computer with a lock-in amplifier algo-
rithm [34].

Measurement repeatability is over 0.5%. Figure 69, a shows pho-
tographs of the full measurements setup. Note that two different ap-
paratus were needed for holding the yarn vertically (Figure 69, b)
and horizontally (Figure 69, c). Yarns were carefully attached to the
holders with a soft tension to avoid appearance variations due to
stretching or shearing.

discussion Following Sadeghi et al. [190], we plot the light scat-
tered by yarns in the longitudinal axis θ (Figure 70). These plots com-
pare the reflectances from measurements against the simulated scat-
tering of the virtual replicas. Given the inherent difficulty of captur-
ing the transmission lobe (e.g. calibrating the collimated laser beam,
avoiding the saturation of the sensor) we decide to capture only the
longitudinal scattering over the upper reflected directions. This al-
lows us to observe the most notable differences in the scattering func-
tion between different pairs of fibers-yarns. Despite the limitations of
the capturing setup, and the large amount of variables involved, our
measurements and their virtual replicas match in terms of relative
size and shape of the scattering lobes, and remain consistent between
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Figure 69: Top: Full view of the measurement setup, which includes a laser
light source and a photodetector mounted on a goniometer. Bot-
tom: Close ups of the two different apparatus for scanning re-
flectance along ψ and θ, respectively.

yarns with similar (but different) structure and fibers, showing in-
teresting effects such as stronger specular reflections for fibers with
higher dye concentrations.

5.7 conclusions

In this work we have focused on the definition of scattering functions
for realistic cloth rendering, for both explicit and volumetric repre-
sentations. Most previous works have been directed towards accurate
modeling of the mesostructure of cloth, including the type of knit-
ting or weaving, or in formulating models for the yarns giving form
to these structures. In this regard, we have gone a step further in the
level of detail, by focusing on the particular scattering functions of
individual fibers.

For this purpose, we have left behind common assumptions from
previous fiber scattering models, such as considering fibers as cylin-
ders with circular cross section and, together with physically-based
optical parameters directly related with the fabrication properties of
the fiber, developed a bottom-up approach for defining the appear-
ance of cloth in a predictive manner. In this regard, ours is the first
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Figure 70: Longitudinal scattering plotting (following the plots in [190]) of
three real yarns (bottom) compared to their replicas obtained by
getting the best fit approximation (top), under incoming illumina-
tion at 15

◦ and 45
◦ from the normal direction of the yarn. From

left to right: polyester (ORA 120), silk (S 303), and cotton (CNe50)
(specifications in Table 11). Abrupt changes in the measured lobes
(see the 15

◦ lobe of silk) are due to the unavoidable occlusions
between the sensor and the laser (see Figure 69).

appearance model for fibers accounting for such detailed input. We
have shown that the scattering of individual fibers is important for
defining the appearance at detailed shots, and analyzed the emerg-
ing effect of these different scattering functions on cloth appearance.
Further on, we have shown the limitations of previous fiber models
on describing the complex features exhibited by the BCSDF of realis-
tic fibers.

While our work is, to our knowledge, the most detailed on defin-
ing the reflectance field of cloth fibers, several assumptions have been
made to build our model. The main one is related to the geometric
optics assumed on the definition of the BCSDF: while the obtained re-
sults are sound and agree with the scattering acquired from measured
real-world fibers, diffraction would be expected to appear when light
interacts with very thin fibers. While previous work has shown that
ray-optics are a good model for closely approximating complex elec-
tromagnetic phenomena at the diffraction limit (e.g. [189]), it is un-
clear up to what extent diffraction would affect our model, although
the fiber’s surface roughness and medium absorption are likely to
slightly reduce its effect. Investigating the wave-based phenomena,
and whether it can be approximated using data processing as in pre-
vious work [189, 58] are interesting avenues for future work. In this
context, other effects such as birefringence and fluorescence are also
expected to play an important role on fibers appearance.

Despite these limitations our work has shown that more accurate
physically-based BCSDFs have an important impact on the appear-
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ance of cloth. We believe that, given that rendering highly realistic
cloth is a matter of subtle but important details, the approach pro-
posed in this work is a promising path for higher-quality predictive
cloth rendering.



6
C O N C L U S I O N S & F U T U R E W O R K

This thesis presents contributions in several topics relevant to the vi-
sual perception, modeling and rendering of virtual humans appear-
ance. Starting from an artistic perspective, aiming for a better under-
standing of the role of stylization on the perception of the characters,
we have progressively focused in photorealism and the difficulties in-
volved in modeling the appearance of skin and cloth, two materials
that are crucial in virtual humans. In the following we summarize the
contributions of each part separately.

perception of digital characters In Chapter 2 we presented
a thorough study about the effect of stylization on the perception
of digital faces. The study focuses in the perceptual effects of differ-
ent stylizations along shape and material, two of the main aspects
that define the appearance of a virtual character. To this aim, several
psychophysical experiments were performed by using five manually
crafted stylizations of two virtual characters, a male and a female,
from very realistic (captured) to highly stylized in both their shape
and materials. The results point to the shape as the main contributor
to the perceived realism, while the effect of the material stylization
becomes more prominent when the realism of the shape increases at
the same time. The study also shows how mismatchings in the level
of stylization of material and shape are much less salient on abstract
characters. In the case of extreme mismatchings, very realistic mate-
rials on stylized shapes resulted in the most unappealing characters;
instead, subtle stylizations over realistic faces can be preferable, since
they remove impurities of the skin, making the character more appeal.
Also, when shape and material stylizations are matched, the appeal
quickly increases. In summary, material stylization affects strongly
the appeal of the character and the shape stylization is very crucial
for enhancing the expressivity of the characters.
The study was done over still images where peak expressions were
performed by the characters. A very interesting future avenue of work
is to validate the observed trends in videos. This would allow to also
measure the effect of stylized animation, which was outside the scope
of the study due to the size of the stimuli and the complexity of
creating a scale of animated expressions. Other possibilities like the
lighting conditions or the mood of the illumination, would also be
interesting to test.
Although the obtained results are valid just for the particular set of
stimuli employed, the study explores combinations of a considerable
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amount of variations over shape and material, that were carefully per-
formed following typical designs used in feature animation, with the
help of professional artists. And also the observed trends are consis-
tent between the two characters. Thus, the study shed some light on
the process of creating appealing virtual characters, through practical
guidelines and interesting insights that can inspire future research on
the perception of digital faces.

modeling skin appearance Chapter 3 presents a biophysically-
based model of the optical properties of the human skin and how
they evolve with age. It can simulate the changes in the appearance
of elderly skin thanks to a multi-layered structure, together with de-
tailed biophysical parameters coming from the extensive medical and
optical tissue literature. These parameters are the ones that affect ap-
pearance the most. Namely, variations in the chemical compounds
responsible for absorbing light (mainly melanin and haemoglobin);
variations in the structure of collagen, which is the main scatterer of
light in the skin; and structural changes like the progressive slimming
of the skin layers, and other morphological changes like the flatten-
ing of the interfaces between the dermis and the epidermis. Thus,
our model can be expressed not only through the optical parame-
ters commonly used in computer graphics (absorption and scattering
coefficients), but also in terms of biophysical properties or, more in-
tuitively, through high level parameters like age, gender, skin type
or lifestyle habits. When any type of skin in terms of the mentioned
variables wants to be depicted, the presented model avoids the need
for artistic input or costly capturing processes, being suitable for any
rendering system that uses diffusion profiles, even in real-time.
An interesting extension for future work would be to consider the de-
pendence on incoming light direction, in order to model anisotropic
light transport instead of radially constant diffusion profiles. Also, an-
alytical functions could be fitted to the obtained tabulated profiles to
gain efficiency. Another possibility is to use neural networks to learn
a model capable to interpolate or even extrapolate new types of skin,
making use of the extensive dataset already generated in this work.
Last, modeling the time-varying distribution and properties of hetero-
geneities, like the the increased uneven distribution of melanin with
age, would really complete the model, but we are bounded by exist-
ing measurements and there is no existing bio-physical data available
about it. In any case, the model in its current form represents the most
detailed one for simulating changes in aging skin, and it can be po-
tentially used in other domains than graphics, due to its predictive
nature, in applications such as cosmetics, dermatology, or tissue op-
tics.
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cloth appearance Almost half of the content of this thesis is
dedicated to cloth. First, from a perceptual side in Chapter 4, then
from a modeling and rendering perspective in Chapter 5. The percep-
tual study [8] consists of a set of psychophysical experiments to ex-
plore the effect of dynamics and appearance, two of the main factors
that contribute to the perception of realistic cloth. To create the stim-
uli, we started by a real video footage of several fabrics that cover a
reasonable range of visual appearance and dynamic behaviors of the
fabric types commonly used in real garments. Then, digital replicas
are created to mimic both key attributes, appearance and dynamics,
for a latter exploration of every combination of these two attributes.
The goal is to gain knowledge about the interplay between appear-
ance and dynamics and provide insights into how efficiency can be
maximized without sacrificing plausibility. From the results one can
conclude that the appearance dominates over dynamics except for
very characteristic movements (e.g.: silk). Interestingly, this effect is
more prominent in men, maybe because women often wear a larger
variety of fabrics and flowing garments and they are more familiar to
their dynamics.
There are many possibilities for future work. A similar study with
animated characters wearing garments made of these fabrics could
confirm our findings in a more familiar scenario. Also, the study cur-
rently focuses on high level attributes, but it would be very interesting
to deeply explore the many variables involved in each factor; for in-
stance, the material models or textile patterns / spatial frequency of
the textures in the case of the appearance, or dynamics parameters
in the case of motion synthesis. Last, other higher level factors could
be considered, like different illumination (e.g.: environment lighting),
since humans are much less used to see fabrics lit by a spot studio
light than under natural lighting conditions.

On the other hand, Chapter 5 is focused on cloth appearance mod-
eling and rendering, particularly centered in defining scattering func-
tions for the individual fibers. This model is the most detailed on
defining the reflectance field of cloth fibers, discarding common as-
sumptions about the fibers in computer graphics, like the elliptical
shape of the fibers’ cross-sections. It relies on physically-based param-
eters directly related with the manufacturing features of real cloth,
based on existing measurements and available data in the textile re-
search community.
As a future avenue of work, the effect of diffraction is not taken into
account in the current framework and it is expected to appear when
light interacts with fibers as thin as several micrometers, at least the
edge diffraction. In the same direction, our BCSDF model relies on
geometric optics and does not account for polarization or fluores-
cence, both effects also expected to play some role on the appear-
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ance of fibers. Nevertheless, our work shows how accurately model-
ing the light scattering of textile fibers in a physically-based way has
an important effect on the overall appearance of cloth, both at close
up views and larger distances, due to its cumulative effect. This fact
was demonstrated through different common BCSDFs: silk, polyester,
wool and cotton. This work opens a promising path for a predictive,
bottom-up approach to define the appearance of cloth, which can
help to render highly realistic cloth, but can also have potential for
textile prototyping and other applications in textile industry.

personal conclusions During these four years I participated
in different projects, in collaboration with external universities and
companies from this country and abroad, thus having the opportu-
nity to work in different groups of people in a variety of environ-
ments, both in academia and industry. This has allowed me to expe-
rience the workflows particular to each atmosphere, helping me to
have a wide vision of this field. In that sense, I always tried to re-
tain the aspects and mechanisms I considered best from each world,
giving shape to what I am today. Since the beginning, the people sur-
rounding me at the Graphics & Imaging Lab and the great collaborative
atmosphere and inertia of the group not only increased my passion
for computer graphics, it also aroused my interest in computational
imaging or computer vision. Leaving aside the invaluable technical
knowledge acquired at the lab during these years of lots of work and
discussions, the stay at the lab gave me the basic and most important
guidelines to be a researcher, capable to think out of the box but also
succeed solving concrete problems. Thanks to the multidisciplinary
nature of the lab, I really developed my adaptation skills throughout
the journey.
Collaborations with other institutions also help in the process of open-
ing your mind to different ways of thinking and working, specially
when you are the new incorporation to the crew, as happens with
internships in companies. From my point of view, it is a perfect com-
plement to academia during your PhD, since in industry you can
experience procedures that are typical from each company but have
a common distinctive aspect with respect to academia: the need of al-
ways being close to the development departments, making sure what
you do is, if not directly applicable to product or the current pipeline,
at least of clear help to future research and development, always with
practical usefulness in mind. This aspect is very important for me: it
is very rewarding when you can see that your work is applied in pro-
duction, and technicians or artists are making use of it.
Along this process I went through many different emotional states,
but the overall sensation of this sort of roller coaster is very positive.
I feel very lucky to have met amazing people in the way, and have
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lived awesome experiences that made me grow professionally, and
are of great value also for my personal life.
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