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A B S T R A C T

This thesis presents contributions on the different stages of the imaging pipeline,
from capture to display, and including interaction as well; we embrace all of them
under the concept of Computational Imaging. The addressed topics are diverse,
but the driving force and common thread has been the conviction that a combina-
tion of improved optics and hardware (optics), computation and signal processing
(computation), and insights from how the human visual system works (perception)
are needed for –and will lead to– significant advances in the imaging pipeline. In
particular, we present contributions in the areas of: coded apertures for defocus
deblurring, reverse tone mapping, disparity remapping for automultiscopic and
stereoscopic displays, visual comfort when viewing stereo content, interaction
paradigms for light field editing, and femto-photography and transient imaging.

M E A S U R A B L E C O N T R I B U T I O N S A N D M E R I T S

The realization of this thesis has yielded the following results; a more detailed
list can be found in Section 1.5:

• 7 JCR-indexed journal publications (3 of them ACM Transactions on Graph-
ics) [305, 302, 308, 307, 112, 459, 490]

• 5 peer-reviewed conference publications (one of them a SIGGRAPH Talk) [303,
304, 458, 199, 135]

• 1 peer-reviewed tutorial course [151]

• 2 research stays (totalling seven months) at MIT Media Lab

• 1 research visit (ten days) to Tsinghua University

• 2 PhD grants and an NVIDIA graduate fellowship

• 3 supervised PFCs and 1 more in progress

• 2 best papers

• 4 invited talks

• Participation in 5 research projects

• Reviewer for 4 journals and 8 international conferences, and program com-
mittee member for 3 international conferences
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R E S U M E N

Esta tesis presenta contribuciones en distintas partes del pipeline de imagen,
desde la captura de imágenes, hasta la presentación de las mismas en un monitor
u otro dispositivo, pasando por el procesamiento que se produce en los pasos in-
termedios. Englobamos las distintas técnicas y algoritmos utilizados en las difer-
entes etapas bajo el concepto de Imagen Computacional (Computational Imaging
en inglés). Los temas son diversos, pero el motor e hilo conductor ha sido la idea
de que una combinación de óptica avanzada, computación y procesamiento de
señal, y conocimiento del funcionamiento de la percepción y el sistema visual hu-
mano son necesarias y conducirán a mejoras significativas en cómo capturamos
y mostramos el mundo.

Las primeras cámaras fotográficas comerciales datan de 1839. Hoy en día, tras
más de 150 años, y con la aparición de la fotografía digital, el concepto de cámara
fotográfica es muy similar al de esas primeras cámaras. La luz que viaja a través
de una escena se puede ver como una función multidimensional denominada
función plenóptica [6]; una fotografía convencional muestrea sólo dos dimen-
siones de dicha función, integrando sobre un rango de las otras dimensiones.
Así, una gran cantidad de información de la escena se pierde.

La fotografía computacional, combinando dos pilares, óptica y computación,
parte de la idea de codificar la información que llega al sensor, de forma que po-
damos muestrear otras dimensiones de esa función plenóptica, para a posteriori
decodificarla, obteniendo una imagen que no hubiera sido posible capturar con
técnicas tradicionales.

El tercer pilar de esta tesis es la percepción, el funcionamiento del sistema
visual humano. Argumentamos y mostramos que conocer el sistema visual hu-
mano y explotar sus características ayuda a superar las limitaciones del hardware
y los algoritmos existentes, y puede contribuir a mejorar la experiencia del espec-
tador o usuario.

Esta combinación de óptica, computación y percepción también puede dar y
ha dado sus frutos en el campo de los displays (monitores, dispositivos de vi-
sualización), a los que se dedica la segunda parte de esta tesis. Los displays
son limitados en cuanto a su capacidad de representar el mundo real, y conocer
cómo procesa nuestro sistema visual la información puede ayudar a superar lim-
itaciones existentes. Esta idea no es nueva, pero todavía hay un gran número de
problemas sin resolver que se pueden beneficiar de esta manera de abordarlos,
de este enfoque multidisciplinar. A lo largo de esta tesis hemos ahondado en
esta idea, proponiendo soluciones a un número de problemas existentes en el
pipeline de imagen. En particular, presentamos contribuciones en las siguientes
áreas: correción de desenfoque mediante aperturas codificadas, reproducción de
tono inversa, remapeo de disparidades (disparity remapping) para monitores au-
tomultiescópicos y estereoscópicos, comfort y fatiga durante la visualización de
contenido estéreo, paradigmas de interacción para edición de light fields, y femto-
fotografía.
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Le vrai luxe, c’est le temps.
— J. J. Goldman, 1951–

(via G. Drettakis)
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Part I

I N T R O D U C T I O N & O V E RV I E W





1
I N T R O D U C T I O N

“If I have seen further it is by standing on the shoulders of giants."
Sir Isaac Newton, 1642–1727.

This thesis presents contributions on the different stages of the imaging pipeline,
from capture to display, and including interaction as well; we embrace all of
them under the concept of Computational Imaging. The addressed topics are
diverse, but the driving force and common thread has been the conviction that
a combination of improved optics and hardware (optics), computation and signal
processing (computation), and insights from how the human visual system works
(perception) are needed for –and will lead to– significant advances in the imaging
pipeline. This chapter tries to provide a brief overview of the relevant areas and
the contributions of this thesis.

1.1 photography and computational photography

Ibn Al-Haytham (also known as Alhazen), Muslim astronomer and mathemati-
cian, was the first to make an early analysis of a camera obscura, the predecessor
of modern photographic cameras [460]. He demonstrated that, through an aper-
ture small enough, the image of an outdoors scene could be reproduced inside a
dark room, as depicted conceptually in Figure 1.11. The addition of a lens to the
aperture to increase light throughput, and the use of a photosensitive material
to record the image of the scene being formed inside the camera obscura essen-
tially gave birth to the photographic camera. The first permanent photograph
dates back to 1826, taken with materials that required hours of exposure. After
that, the first commercial cameras appeared in 1839, based on the photographic
process called daguerrotype, after Louis Daguerre. Today, more than 150 years
later, and with digital photography, the concept behind a photographic camera is
hardly different from that of those early cameras. Perhaps most surprising is the
fact that digital cameras, with their processing power and potential, have, since
their birth, been trying to mimic their analog counterparts, let aside that there
is no longer need for development. Of course there is a great amount of pro-
cessing typically done in the camera: A/D conversion, demosaicing, denoising,
color space conversion, white balancing, color enhancement, gamma encoding
and final quantization before saving the image as a jpeg file [151]. But still, the
idea of an image being formed by rays of light converging through a lens and
impinging on a photosensitive material to form the image persists.

Computational photography emerged as a field trying to change this. Light travel-
ing through a scene can be seen as a multidimensional function, as noted by Adel-

1 The idea of the camera obscura, and the fact that light would travel through small apertures and
illuminate the other side, was already known in ancient China and by the Greek philosophers
such as Aristotle, or Euclid, who used it as a proof that light travels in straight lines.

3
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Figure 1.1: Illustration of camera obscura from Sketchbook on military art, including geom-
etry, fortifications, artillery, mechanics, and pyrotechnics. 17th century. Library of
Congress Online Catalog.

son and Bergen [6]. They define the plenoptic function as a complete representa-
tion of the visual world, and this is formalized as light being a function of posi-
tion (x,y, z), direction (θ,φ), wavelength λ, and time t: L = L(x,y, z, θ,φ, λ, t).

A conventional photograph samples just two dimensions of the plenoptic func-
tion (x,y), integrating over a certain range of all the other dimensions: The shut-
ter is responsible for the integration over t, the lens and aperture determine the
angular integration over (θ,φ), and the sensor and color filter array are responsi-
ble for the sampling and integration in λ. An enormous amount of information
from the scene is lost when taking a conventional photograph. The reason for
this is probably that cameras have aimed at mimicking what can be captured
by our own eyes, which essentially works the same way as a camera does. Com-
putational photography, by combining optics, specialized hardware, and com-
putation, has shown us that this need not be the case, that much more can be
done.

Examples of this include cameras that can refocus after an image has been
taken by avoiding the integration in the angular dimension [332]; cameras that
can capture a sharp (and properly exposed) image from a moving scene by cod-
ing the shutter [360]; cameras that can recover depth from a single image [259],
or a pair of images [508], and/or correct for defocus blur [506, 305] by coding the
aperture; we can now capture images whose spatial resolution is not bounded by
sensor resolution [84]; and of course (it was one of the first problems addressed
by computational photography) capture images of a larger dynamic range than
that possible with a 10- or 12-bit sensor [289, 98]. Recently, we have demonstrated
that, by using computational photography techniques, we can even capture light
at a temporal resolution of picoseconds, effectively allowing us to see light as it
propagates through a macroscopic scene [459] (part of this work is described in
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Part V of this thesis). Such is the power of this computation and optics combina-
tion.

Some of the aforementioned techniques have even, despite the youth of the
field, made it to the consumer market and are present in most new cameras,
such as the bracketing function for HDR creation. Others have given rise to new
commercial cameras with enhanced capabilites over a traditional digital camera:
This is the case of light field cameras such as those sold by LytroTM or RaytrixTM.

Thus, as we explain in [151], “when we speak about computational photog-
raphy, we commonly refer to how its goal is the enhancement of the abilities
of conventional digital (or analog) photography". This is done by sampling the
plenoptic function along more dimensions in non-trivial ways, which we refer
to as plenoptic imaging (see the work by Wetzstein and colleagues [481] for
a comprehensive survey on the topic). Typically, the gist is to somehow code
the information arriving to the sensor in ways in which more information from
the scene is acquired, that a posterior decoding step allows to recover. Ramesh
Raskar, leader of the Camera Culture Group at MIT Media Lab, summarized it
by saying: “Photographs will no longer be taken; they will be computed".

1.2 displays and computational displays

Displays, understood as any means capable of showing a previously captured (or
generated) image (or representation) of a scene, can be seen as the next stage of
the imaging pipeline after the capture and processing has been done. Somehow,
and as was introduced in the seminal work dual-photography [396], they can
be seen as the counterparts of cameras, as interchangeable, and thus a lot of
concepts applied in computational photography can be taken advantage of in
computational displays.

We have argued that cameras have changed relatively little since invention,
and that it is in the recent years, with computational photography and plenoptic
imaging, when efforts are systematically devoted to capturing richer representa-
tions of the scene. With displays, a similar analogy can be made: Computational
Displays have aimed at enhancing the content along the different dimensions of
the plenoptic function explained in Section 1.1. Again, it has been the combina-
tion of hardware and processing that has allowed for this. Chapter 4 of this thesis
contains a survey of computational displays (published in [308]); we will thus not
extend ourselves here in the topic, and will just provide an illustrative example.
Automultiscopic displays are displays capable of showing stereo content to mul-
tiple viewers or different viewpoints without the need to wear glasses or other
additional equipment. Currently, consoles, desktop monitors, tablets, and even
cell phones exist that have an automultiscopic display. All these displays are
based on a technology which was presented more than a century ago, and that
is parallax barriers, patented by Frederic Ives in 1903 [198], and integral imag-
ing, introduced by Gabriel Lippmann in 1908 [266]. Apart from those, volumetric
displays have been developed, but that can only reproduce scenes within the en-
closure of the display [130], and holographic imaging has been described and
developed (see e.g. [410]), but as of today the cost –together with other issues
such as the need for controlled illumination [232]– restrict or prevent its com-
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mercial or widespread use. In 2011, a group of researchers presented a new type
of displays which could reproduce three-dimensional (3D) images outside the
enclosure of the display without the need to wear glasses [482]. These are multi-
layer displays with a number of discrete layers in which patterns are shown and
rear-illuminated to produce the final scene; these patterns are obtained based
on principles from computed tomography, and individually do not resemble
the original scene, yet together they succeed at creating a 3D scene with higher
spatio-angular resolution than displays based on parallax barriers or integral
imaging. Later, directional backlighting was added to these displays [478]. This
example shows how non-trivial processing of the data, together with improved
hardware, yielded new display architectures with enhanced capabilities.

1.3 introducing perception in the pipeline

Plato, in his book The Republic, includes the well known “Allegory of the cave".
In this allegory, Plato, by means of a dialogue between Glaucon and Socrates,
presents a situation in which a set of prisoners are kept inside a cave all their
lives, facing its wall, with their backs to the entrance, and without the ability to
turn their heads around or see anything other than the wall in front of them.
Behind the prisoners, a fire is set, and objects are moved between the fire and
the prisoners, projecting shadows on the wall that the prisoners see. Those shad-
ows are all that the prisoners have seen of reality, and they thus believe that that
is how the world looks like. While the allegory then goes on to describe what
happens when one of the prisoners is set free of his chains and sees the world
outside the cave, this first part already conveys a key idea, still valid today: the
world that we perceive through our senses is, or can be, just a “bad" copy, or a
fragment, of the real world, and is often influenced by our previous knowledge
and assumptions. Plato would use this idea to defend his rationalist view of
epistemology, here, we want to convey the much more modest idea that it is im-
portant to take into account the way we perceive the world, the way we perceive
images, when designing capture and display devices.

Optical illusions allow us to reveal and better understand the functioning of
the human visual system (HVS) and the assumptions that are made by it. In
Figure 1.2, left, the right eye (left for the observer) of the girl is seen as cyan,
despite it being gray; the reason is color constancy, a feature of our color percep-
tion system which is essentially what allows us to recognize the same material
under different illumination conditions, by “subtracting" the light. Our brain as-
sumes the left half of the picture is illuminated by red light, and subtracts it
from the image; as a consequence, the gray eye, once red is subtracted by our
visual system, appears as being cyan. Figure 1.2, right, depicts an illusion known
as Adelson’s checkerboard: Squares A and B are the shade of gray, but square
A appears much darker. One of the reasons is local contrast2. The intensity of
its neighboring squares influences our perception of brightness for a particular
square.

2 A complete explanation of all the factors involved can be found in http://persci.mit.edu/

gallery/checkershadow

http://persci.mit.edu/gallery/checkershadow
http://persci.mit.edu/gallery/checkershadow
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Figure 1.2: Left: Drawing by artist Akiyoshi Kitaoka. The girl’s right eye, despite being
gray, appears cyan due to color constancy (image adapted from [297]). Image
Right: Adelson’s checkerboard. Squares A and B are the same shade of gray,
yet square A appears darker; one of the reasons is local contrast [5].

These two illusions clearly show that our visual system does not work like
an absolute light meter, or a color meter (while still, many image processing
algorithms work with absolute intensity values, or RGB values), and illustrate
the importance of understanding and taking into account visual perception in
the imaging pipeline. Knowing, and exploiting can help overcome limitations of
current hardware

1.4 goal and overview of this thesis

The overall goal of this thesis is to improve the imaging pipeline by delving in
the idea that a combination of enhanced hardware and optics, computation and
processing, and knowledge of visual perception can help us overcome inherent
limitations of current hardware and algorithms and overall improve the view-
ing experience. As outlined above, we are not the first to dwell on this idea of
combining optics and computation, which has already yielded a number of suc-
cessful techniques over the last years and the idea of applying perception to the
imaging pipeline, is of course not new either (see, e.g., [100]). Still, there is a long
way to go, and numerous unsolved problems in imaging that can benefit from
this joint and holistic approach. Throughout this thesis we push further in this
direction, providing solutions to a number of varied existing problems along the
imaging pipeline.

Figure 1.3 provides an overview of the structure of this thesis. The different
parts of the thesis correspond roughly to different stages of the imaging pipeline.
Within each part, different computational imaging problems are tackled, as de-
scribed below. This division in parts should not be seen as a “hard” division;
due to the inherent interrelations between stages of the pipeline there are cer-
tain contributions which could be placed in more than one part. In particular,
we have devoted a final part to femto-photography; this project could have been
placed under “capture and processing” (Part II). However, because of the con-
text in which it was done (I participated in this project as a consequence of my



8 introduction

Figure 1.3: Overview of the structure of the thesis

visit to the Camera Culture Group at MIT, inventors of this technique), and be-
cause there is no perceptual component to it, we have decided to include it as a
separate part (Part V).

• Part II deals with the capture and processing stages. In Chapter 2 we tackle
the problem of defocus deblurring of images, with the use of coded apertures,
and incorporate perceptual metrics to the design of the aperture. The topic
of Chapter 3 is reverse tone mapping, or how to expand the dynamic range
of a conventional image to be shown on a high dynamic range display.
We perform a study that allows us to identify a limitation of existing algo-
rithms, and we provide and validate a solution that improves over existing
approaches for that limitation. Further, we also propose a more artistic
semi-automatic technique for range expansion.

• Part III is devoted to displays. Chapter 4 is a survey of computational dis-
plays. In the survey we categorize existing displays and display-related
algorithms along the dimensions of the plenoptic function, and for each
of them we outline the main relevant perceptual aspects, and the work in
display architectures and in generation of content or software solutions. In
Chapter 5 we address a limitation of automultiscopic displays, namely their
limited depth of field. We leverage computational models of perception to
propose a disparity remapping method that strives to minimize visible errors.
The final chapter dealing with displays, Chapter 6, investigates the prob-
lem of discomfort associated to stereoscopic viewing, and in particular, the
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influence of motion in this visual comfort. We perform the most compre-
hensive measurements of the influence of stereo motion in comfort up to date,
and also propose a comfort metric derived from this measurements.

• Part IV (Chapter 7) describes a project which belongs to the field of inter-
action: We study interaction paradigms for light field editing, that is, what is
the best way to edit a high dimensional representation of a scene that is a
light field [261, 143].

• Part V is devoted to femto-photography. The ability to capture light at pi-
cosecond resolution opens up a whole new world of possibilities. In Chap-
ter 8 we describe the acquisition system and the processing the data under-
goes for correct visualization. Visualization of the data is further explored
in Chapter 9, in which we deal with the relativistic effects that arise if the
camera is moved through the scene.

This thesis and its contributions would not have been possible had I worked
all by myself, or only with my supervisor. Multiple projects here presented have
involved collaborations with other researchers, and oftentimes, the project is de-
scribed in its whole to provide context and smooth readability. Thus, at the be-
ginning of each chapter, a section named “About this chapter” contextualizes the
work presented in it and describes, when necessary, which parts have been done
by myself.

1.5 contributions and measurable results

1.5.1 Publications

A large part of the work presented in this thesis has already been published (in
seven journals indexed in JCR, including three papers in ACM Transactions on
Graphics presented at SIGGRAPH or SIGGRAPH Asia, and five peer-reviewed
international conferences):

• Coded Apertures for Defocus Deblurring (Chapter 2, Part II):

– The work on coded apertures for defocus deblurring (Chapter 2) has
been published in Computer Graphics Forum [305]. This journal has
an impact factor of 1.63, and its position in the JCR index is 15

th out
of 103 (Q1) in the category Computer Science, Software Engineering
(data from 2012).

– Previous results were published in the international conference SIACG 2011 [304].

– Follow up related work has been published in the Spanish Conference on
Computer Graphics (CEIG) 2012 [135].

• Reverse Tone Mapping (Chapter 3, Part II):

– The main work on reverse tone mapping was accepted to SIGGRAPH
Asia 2009 and published in ACM Transactions on Graphics [302], and
in a technical report [301]. This journal has an impact factor of 3.62,
and its position in the JCR index is 2

nd out of 93 (Q1) in the category
Computer Science, Software Engineering (data from 2009).
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– Follow up related work has been published in the Spanish Conference on
Computer Graphics (CEIG) 2010 [303].

• Survey on Computational Displays (Chapter 4, Part III):

– This survey has been accepted for publication in Computers & Graph-
ics [308]. This journal has an impact factor of 1.00, and its position
in the JCR index is 40

th out of 103 (Q2) in the category Computer
Science, Software Engineering (data from 2011).

• Display Adaptive Disparity Remapping (Chapter 5, Part III):

– This work has been accepted for publication in Computers & Graph-
ics [307]. This journal has an impact factor of 1.00, and its position
in the JCR index is 40

th out of 103 (Q2) in the category Computer
Science, Software Engineering (data from 2011).

• Comfort in Stereoscopic Motion (Chapter 6, Part III):

– This work has been accepted to SIGGRAPH Asia 2013 and will be
published in ACM Transactions on Graphics [112]. This journal has
an impact factor of 3.49, and its position in the JCR index is 2

nd out
of 103 (Q1) in the category Computer Science, Software Engineering
(data from 2012).

• Femto-photography and Transient Imaging (Chapters 8 and 9, Part V):

– The acquisition system and data visualization techniques (Chapter 8)
have been accepted to SIGGRAPH 2013 and published in ACM Trans-
actions on Graphics [459]. This journal has an impact factor of 3.49,
and its position in the JCR index is 2

nd out of 103 (Q1) in the category
Computer Science, Software Engineering (data from 2012).

– Previously, it was accepted as a talk to SIGGRAPH 2012 [458].

– The relativistic rendering framework (Chapter 9) has been accepted to CEIG
2013 [199].

– A minor collaboration on a project dealing with analysis of light transport
using time-resolved data (included at the beginning of Chapter 8) which
has been accepted for publication in the International Journal on Computer
Vision (IJCV) 2013 [490]. This journal has an impact factor of 5.35, and its
position in the JCR index is 5

th out of 92 (Q1) in the category Artificial
Intelligence (data from 2010).

1.5.2 Awards

We include here a list of awards and fellowships received throughout this thesis.
Their generous support allowed the realization of the work here presented:

• FPU grant from the Spanish Ministry of Science and Education (4-year PhD
grant)

• NVIDIA Graduate Fellowship Program grant3 (includes the donation of
$25,000 for the development of the awarded project)

3 https://research.nvidia.com/content/nvidia-graduate-fellowship-results-2012

https://research.nvidia.com/content/nvidia-graduate-fellowship-results-2012
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• PhD grant from Diputacion General de Aragon (4-year PhD grant, had to
give it up to accept the FPU grant, since they are incompatible)

• NVIDIA Academic Program: Tegra prototype gift (Mobile Computational
Photography: Appearance Capture and Editing; with A. Jarabo and D. Gutier-
rez)

Additionally, some of the projects of this thesis were awarded a special recog-
nition:

• Best paper (1 in 2) at CEIG 2013 for the work Rendering Relativistic Effects
in Transient Imaging (proposed for extension and submission to the journal
Computer Graphics Forum; the extension is currently work in progress)

• Best paper (1 in 3) at SIACG 2011 for the work Coded Apertures for Defo-
cus Deblurring (proposed for extension and submission to the journal Com-
puter Graphics Forum; the extension got accepted to the journal)

1.5.3 Research Stays and Visits

Two research stays were carried out during this PhD; both funded mainly by
the Spanish Ministry of Science and Education (tuition and administrative fees
were covered by the receiving institution). Based on them, a fruitful collaboration
started between the Graphics & Imaging Lab (GIGA) in Universidad de Zaragoza
and the Camera Culture group at MIT, which continues today and from which a
number of publications have spawned.

• August 2011 – December 2011 (four months): Visiting student at Camera
Culture Group, MIT Media Lab. Supervisor: Prof. Dr. Ramesh Raskar.

• March 2013 – June 2013 (three months): Visiting student at Camera Culture
Group, MIT Media Lab. Supervisor: Prof. Dr. Ramesh Raskar.

Additionally, a visit of 10 days to Tsinghua University (Beijing, China) took
place in November 2012. The collaboration on the project on visual comfort in
stereo motion [112] emerged as a result of that visit.

1.5.4 Supervised Students (PFCs)

The students supervised throughout the course of this thesis are final year stu-
dents of the Spanish 5-year engineering degrees. Supervision is during their final
degree project, termed Proyecto Fin de Carrera or PFC.

• In progress: Sara Álvarez. Low-Cost Recovery of Spectral Power Distributions
of Light Sources. Expected graduation date: December 2013.

• 2011 – 2012: Luis García. Refocusing High Dynamic Range Images: Coded and
Multiple Apertures. Co-supervised with Lara Presa. Graduated June 2012.
Grade: 9.8/10.
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• 2011: Lara Presa. Coded Apertures for Depth Estimation and Image Recovery.
Graduated June 2011. Grade: 9.7/10.

• 2010 – 2011: Adrián Corrales. Design of Coded Apertures for Defocus Deblur-
ring. Graduated June 2011. Grade: 9.0/10.

1.5.5 Research Projects

The following are research projects in which I have been involved, at different
levels, during my Ph.D. studies.

• GOLEM: Realistic Virtual Humans. European Commission Marie Curie Industry-
Academia Program, Seventh Framework. Grant agreement no.: 251415. PI: Diego
Gutierrez.

• MIMESIS: Técnicas de bajo coste para la adquisición de modelos de apari-
encia de materiales. Spanish Ministry of Science and Education (TIN2010-21543).
PI: Diego Gutierrez.

• Aumento del rendimiento gráfico, para sistemas de simulación y visual-
ización en tiempo real, a través de técnicas de antialiasing morfológico.
Fundación ARAID (OTRI 2011/0180). PI: Diego Gutierrez.

• TANGIBLE: Humanos realistas e interacción natural y tangible. Spanish
Ministry of Science and Education (TIN2007-63025). PI: Francisco J. Seron.

• Fotografía computacional: nuevos algoritmos de procesamiento de imá-
genes en alto rango dinámico. Universidad de Zaragoza (UZ2007- TEC06).
PI: Diego Gutierrez.

1.5.6 Other merits

We include here, in somewhat random order, some additional merits:

a. Practical Morphological Anti-Aliasing (MLAA)

During the development of my PhD I had the chance to participate in an-
other project, not directly related to the topic of my thesis. This project,
led by Jorge Jimenez, was a real-time anti-aliasing algorithm [203]. It was
published in a peer-reviewed book on GPU techniques, GPU Pro 2, highly
relevant and well-regarded by professionals in the field. The technique had
an enormous impact in the industry and the media:

• It has been used in the Torque 3D engine and in games, e.g. Rabbids
Alive and Kicking.

• It has been featured in relevant media such as Game Developer Maga-
zine, Eurogamer or Games Industry.

• It has drawn the attention of game and hardware companies including
Activision, Microsoft, Ubisoft, ZeniMax, Criterion and Intel.
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• It has generated a broad interest and discussion over the internet, our
project page being linked by over 5400 pages.

• It was featured on the cover of GPU Pro 2.

b. Impact of Femto-Photography

This project has drawn a large amount of attention from both the research
community and the media. The work has appeared in numerous media
including the New York Times, the BBC, or MIT News. There is also a TED
Talk on the topic by Prof. Ramesh Raskar.

c. Invited Talks

The work presented in this thesis has also been presented (partially or as
a whole) in a number of invited talks at Tsinghua University (November
2012), Microsoft Research Asia (November 2012), the Max Planck Insti-
tut für Informatik (September 2013), and REVES-INRIA Sophia Antipolis
(September 2013).

d. Professional Service

I have been given the chance to give something back to the research com-
munity by reviewing and serving on the program committee of several
journals and conferences. Over the years I have reviewed papers for ACM
SIGGRAPH, ACM SIGGRAPH Asia, Eurographics, Pacific Graphics, IEEE
Transactions on Image Processing, Pattern Recognition Letters, Computers
& Graphics, IEEE Computer Graphics & Applications, APGV and SIACG;
and I have served on the committee of the International Conference in
Central Europe on Graphics, Visualization and Vision (WSCG), the Interna-
tional Conference on Computer Graphics and Visualization, and will serve
next year for the Spring Conference on Computer Graphics. Finally, I was
on the local organizing committee for the Eurographics Symposium on
Rendering (EGSR) 2013, held in Zaragoza and hosted by our group.





Part II

C A P T U R E A N D P R O C E S S I N G

The first half of this part is devoted to coded apertures for defocus
deblurring; in particular the main contribution lies in the introduc-
tion of perceptual metrics in the design of the aperture. The topic of
the second half is reverse tone mapping, or how to expand the dy-
namic range of a conventional image to be shown on a high dynamic
range display; the main contribution here is that we perform a study
that allows us to identify a limitation of existing algorithms, and we
provide a new solution for it that improves over existing approaches.





2
C O D E D A P E RT U R E S F O R D E F O C U S D E B L U R R I N G

about this chapter

The work here presented has been published in three papers: an initial paper
was presented at an international conference, the Iberoamerican Symposium on
Computer Graphics (SIACG) 2011, and selected as one of the three papers in-
vited to submit an extended version to the journal Computer Graphics Forum.
The paper was subsequently extended and published in the journal. This first
part explores the use of perceptual metrics in the design of coded apertures for
defocus deblurring. While I led the line of work (under the supervision of Diego
Gutierrez), Lara Presa and Adrián Corrales participated in the work, helping
mainly in capturing the databases, and generating the results. Lara Presa further
helped with the analysis. The second part was a follow-up of this work, carried
out as the final degree project of Luis García, co-supervised by Lara Presa and
myself. This part deals with the use of coded apertures for deblurring of high dy-
namic range images; and was published in the Spanish Conference in Computer
Graphics (CEIG) 2012.

B. Masia, A. Corrales, L. Presa and D. Gutierrez.
Coded Apertures for Defocus Deblurring.

In Proc. of SIACG 2011.

B. Masia, L. Presa, A. Corrales and D. Gutierrez.
Perceptually-Optimized Coded Apertures for Defocus Deblurring.

Computer Graphics Forum 2012.

L. Garcia, L. Presa, D. Gutierrez and B. Masia.
Analysis of Coded Apertures for Defocus Deblurring of HDR

Images. In Proc. of CEIG 2012.

2.1 introduction

In the past few years, the field of computational photography has yielded spec-
tacular advances in the imaging process. One strategy is to code the light infor-
mation in novel ways before it reaches the sensor, in order to decode it later and
obtain an enhanced or extended representation of the scene being captured. This
can be accomplished for instance by using structured lighting, new optical de-
vices or modulated apertures or shutters. Here we focus on coded apertures. These
are masks obtained by means of computational algorithms which, placed at the
camera lens, encode the defocus blur in order to better preserve high frequencies
in the original image. They can be seen as an array of multiple ideal pinhole
apertures (with infinite depth and no chromatic aberration), whose location on

17
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the 2D mask is determined computationally. Decoding the overlap of all pinhole
images yields the final image.

Some existing works interpret the resulting coded blur attempting to recover
depth from defocus. Given the nature of the blur as explained by simple geometrical
optics, this approach imposes a multi-layered representation of the scene being
depicted. While there is plenty of interesting on-going research in that direction,
in this work we limit ourselves to the problem of defocus deblurring: we aim to
obtain good coded apertures that allow us to recover a sharp image from its
blurred original version. We follow standard approaches and pose the imaging
process as a convolution between the original scene being captured and the blur
kernel (plus a noise function). In principle, this would lead to a blind deconvolu-
tion problem, given that the such blur kernel is usually not known. Assuming no
motion blur nor camera shake, this kernel is reduced to the point spread func-
tion of the optical system. Traditional circular apertures, however, have a very
poor response in the frequency domain: not only do they lose energy at high fre-
quencies, but they exhibit multiple zero-crossings as well; it is thus impossible to
recover information at such frequencies during deconvolution.

Inspired by previous works [506], we rely on the average power spectra of
natural images to guide an optimization problem, solved by means of genetic
algorithms. Our main contribution is the use of two existing image quality per-
ceptual metrics during the computation of the apertures; this leads to a new
evaluation function that minimizes errors in the deconvolved images that are
predicted to be perceived by a human observer. Our results show better perfor-
mance compared to similar approaches that only make use of the L2 metric in
the evaluation function. Additionally, we explore the possibility of computing
non-binary masks, and find a trade-off between ringing artifacts and sharpness
in the deconvolved images. Our work demonstrates a novel example of apply-
ing perceptual metrics in different contexts; as these perceptual metrics evolve
and become more sophisticated, some existing algorithms may be revisited and
benefit from them.

2.2 previous work

Coded apertures have been traditionally used in astronomy, coding the direction
of incoming rays as an alternative to focusing imaging techniques which rely
on lenses [192]. Possibly the most popular patterns were the MURA patterns
(Modified Uniformly Redundant Array) [144]. In the more recent field of com-
putational photography, Veeraraghavan et al. [455] showed how a 4D light field
can be reconstructed from 2D sensor information by means of a coded mask.
Placed at the lens, the authors achieve refocusing of images at full resolution,
provided the scene being captured contains only Lambertian objects. Nayar and
Mitsunaga [330], extended the dynamic range capabilities of an imaging system
by placing a mask of spatially varying transmittance next to the sensor, and then
mapping the captured information to high dynamic range.

Other works have proposed different coded apertures for defocus deblurring
or depth approximation. To restore a blurred image, the apertures are designed
to have a broadband frequency response, along with none (or distinguishable)
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zero-crossings in the Fourier domain. Hiura and Matsuyama [172] proposed a
four-pinhole coded aperture to approximate the depth of the scene, along with
a deblurred version of it, although their system required multiple images. Liang
et al. [264] use a similar approach, combining tens of images captured with
Hadamard-based coded patterns. Levin et al. [259] attempted to achieve all-focus
and depth recovery simultaneously, relying on image statistics to design an op-
timal aperture and for the subsequent deconvolution. Depth recovery is limited
to a multi-layered representation of the scene. Last, the idea of encoding the
information before it reached the sensor has not only been limited to the spa-
tial domain but also transferred to the temporal domain by applying a coded
exposure aimed at motion deblurring [360].

Another approach to recovering both a depth map of the scene and in-focus
images was that of Zhou et al. [507], in this case obtaining a pair of coded aper-
tures using both genetic algorithms and gradient descent search. The same year,
a framework for evaluating coded apertures was presented, based on the quality
of the resulting deblurred image and taking into account natural image statistics
[506]. Near-optimal apertures are obtained by means of a genetic algorithm. In
this work we extend previous approaches by introducing two existing percep-
tual metrics in the optimization process leading to an aperture design. Further,
we explore the potential benefits of non-binary masks.

2.3 the imaging process

Image blur due to defocus is caused by the loss of high frequency content when
capturing the image. The capture process can be modeled as a convolution be-
tween the scene being captured and the point spread function (PSF) of the cam-
era, plus some noise:

f = kd ∗ f0 + η (1)

where f0 represents the real scene being photographed, f is the captured image,
kd is the PSF and η accounts for the noise introduced in the imaging process.
Subscript d accounts for the dependency of the PSF with the defocus depth d
(distance of the scene to the in-focus plane). Additionally, the PSF varies spatially
across the image and depends on the absolute position of the in-focus plane as
well. We will assume that the noise follows a Gaussian distribution of zero mean
and a standard deviation denoted by σ, N(0,σ2). By means of deconvolution, an
approximation f̂0 of the original sharp image can be obtained.

As Figure 2.1 shows, the PSF is also characterized by the pattern and size of
the aperture. Since, as mentioned, blur is caused by the loss of information at cer-
tain frequencies, the response of an aperture is better analyzed in the frequency
domain, where Equation 1 can be written as:

F = Kd · F0 + ζ (2)

Figure 2.2 shows two plots of the power spectra of different apertures: the tra-
ditional circular pattern, an optimal aperture from related previous work [506],
and three of the perceptually-optimized apertures presented in this paper. Note
that the y-axis, showing the square of the amplitude of the response for differ-
ent frequencies, is log-scale. Circular apertures exhibit zero crossings at several
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frequencies, and thus information at those frequencies is lost during the imag-
ing process and cannot be recovered. Optimal apertures for deblurring therefore
seek a smooth power spectrum, while keeping the transmitted energy as high as
possible.

Figure 2.1: Left: Disassembled Canon EOS 50mm f/1.8 used in our tests. Middle: Point
spread function for different apertures and degrees of defocus (from top to
bottom: circular aperture, focused; circular aperture, defocus depth = 90cm;
and one of our coded apertures, defocus depth = 80cm). Right: The lens with
one of our coded apertures inserted.

Figure 2.2: Power spectra of different apertures. Spectra for a conventional circular aper-
ture and for an aperture specifically designed for defocus deblurring [506]
are shown in black and gray, respectively. Blue, red and green curves show
the spectra of some of our perceptually-optimized apertures (please refer to
the text for details).

2.4 perceptual quality metrics

Devising an aperture pattern whose frequency response is optimal can be done
in different manners. In this paper we build on the approach of Zhou and Nayar
[506]; in their work, the authors define their quality metric, i.e. the objective
function, as the expectation of the L2 distance between the deconvolved image
F̂0 and the ground truth image F0 with respect to ζ.
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However, objective metrics working at pixel level (such as the L2 norm) are
not necessarily correlated with human perception: images with completely dif-
ferent per-pixel information may share a visual quality that will be easily iden-
tified by humans [4]. Inspired by this observation, we introduce two additional
perceptually-based metrics to guide the design of the apertures, by minimizing
errors in the deconvolved images that are predicted to be perceived by a human
observer. Furthermore, we include a more reliable prior based on the statistics
of a large number of natural images from a recently published database [353].
The perceptual metrics that we use are SSIM (Structural Similarity)[467] and the
recent HDR-VDP-2 [294], which we briefly describe in the following subsections.

ssim : The Structural Similarity Index Measure (SSIM) was introduced by Wang
et al.[467], to compute the similarity between two images. It is based on a mea-
sure of structural similarity between corresponding local windows in both im-
ages. It assumes that the human visual system is very well adapted to extract
structural information from a scene, and therefore evaluates the similarity be-
tween a distorted image and a reference image based on the degradation of such
structural information.

Assuming x and y to be non-negative image signals, belonging to the two
images to be compared, SSIM compares luminance l(x, y), contrast c(x, y),and
the structure s(x, y) between the images. The latter, s(x, y), is termed structural
similarity and defined as the correlation between the two image signals after
normalization. The three components are multiplied to obtain the final similarity
measure (please refer to the original publication for details):

SSIM =
(2µxµy +A1)(2υxy +A2)

(µ2x + µ
2
y +A1)(σ

2
x + σ

2
y +A2)

(3)

where µ represents mean luminance, and σ is the standard deviation, used as an
estimate of the image contrast. υ is the correlation coefficient between the images,
obtained as the inner product of the unit vectors (x− µx)/σx and (y− µy)/σy.
In our case, the local window to compute the needed statistics has been set to
a 8 × 8 pixels square window weighted by a rotationally symmetric Gaussian
function with a standard deviation σ = 1.5. The constants Ai avoid instabilities
when either (µ2x + µ

2
y) or (σ2x + σ

2
y) are very close to zero; we set their values to

A1 = (B1L)
2 and A2 = (B2L)

2 where L is the dynamic range of the pixel values
(255 for 8-bit grayscale images), B1 = 0.01, and B2 = 0.03.

hdr-vdp-2 : HDR-VDP-2 is a very recent metric that uses a fairly advanced
model of human perception to predict both visibility of artifacts and overall
quality in images [294]. The visual model used is based on existing experimental
data, and accounts for all visible luminance conditions. The results of this met-
ric show a significant improvement over its predecessor, HDR-VDP. This metric
makes use of a detailed model of the optical and retinal pathway (including intra-
ocular light scatter, photoreceptor spectral sensitivities and luminance masking)
and takes into account contrast sensitivity for a wide range of luminances, as
well as inter- and intra-channel contrast masking. We again refer the reader to
the original publication for the details.



22 coded apertures for defocus deblurring

HDR-VDP-2 can yield different outputs: an estimation of the probability of
detecting differences between the two images compared, or an estimation of the
quality of the test image with respect to the reference image. In this work we
have used the latter, a prediction of the quality degradation with respect to the
reference image, expressed as a mean-opinion-score (from 0 to 100). We set the
color encoding parameter of the metric to luma-display in order to work with the
luminance channel of LDR images; the pixels-per-degree parameter, related to the
viewing distance and the spatial resolution of the image, is set to a standard
value of 30.

2.5 perceptually-optimized apertures

The Fourier transform of the recovered image F̂0 can be obtained using Wiener
deconvolution as follows [506]:

F̂0 =
F · K̄

|K|2 + |C|2
(4)

where K̄ is the complex conjugate of K, and |K|2 = K · K̄. |C|2 = C · C̄ is the matrix
of noise-to-signal power ratios (NSR) of the additive noise. We precompute this
matrix as |C|2 = σ2/S, where S is the estimated power spectra of a natural image
and σ2 is the noise variance. To estimate S, we rely on recent work on statistics
of natural images by Pouli et al. [353], and select from their database 180 images
from an extensive collection of two different categories: half of the images be-
long to the manmade-outdoors category, while the other half belongs to the natural
category. The estimated power spectra is obtained as the average of the power
spectra over small windows of each of the 180 images and will be used as our
prior in the deconvolution process.

The quality of the recovered image f̂0 with respect to the real image f0 is
measured using a combination of the L2 norm, the SSIM index and the HDR-
VDP-2 score (VDP2). The aperture quality metric Q is then given by:

Q = λ1(1− L2) + λ2(SSIM) + λ3(VDP2/100) (5)

For the normalized L2 norm, 0 represents perfect quality, while 1 means worst
quality. The SSIM index can yield values in the range [-1, 1], but we observe
that for the specific case of blurred images the structural information does not
change enough for the index to reach negative values. Therefore, values for the
SSIM index range from 0 (worst quality) to 1 (best quality). The values for VDP2
range from 0 (worst quality) to 100 (best quality). Last, the vector Λ = {λ1, λ2, λ3}
represents the weights assigned to each metric (discussed in Subsection 2.5.1).

2.5.1 Optimization

Our goal is to obtain apertures with the largest possibleQ value according to our
quality metric. Once we have introduced a way of evaluating a certain aperture
with Equation 5, an optimization method can be used to obtain the maximum
value of Q over the space of all possible apertures. This space is infinite, limited
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only by physical restrictions (i.e. apertures with negative values are not realiz-
able in practice and resolution is limited by the printing process). Resolution is
additionally limited by diffraction effects, which appear as the size of the pixels
in the aperture gets smaller, and hinder its performance. In our case, we fix the
resolution of the apertures to 11× 11.

Transmissivity is an additional issue to be taken into account when designing
an aperture. Coded apertures typically have lower transmission rates than their
circular counterparts, and the use of a longer exposure time to obtain an equiva-
lent brightness to that of the circular aperture can cause other problems such as
motion blur. We fix the transmission rate in our apertures to 0.578. We have cho-
sen this value empirically since it yields adequate exposure times, while being
similar to other coded apertures proposed for defocused deblurring.

Figure 2.3: Left: Image pattern, after [210], used in the evaluation function of the genetic
algorithm. Right: Wide bandwidth power spectra of the selected pattern.

In order to search for the best aperture pattern we have implemented a genetic
algorithm (similar to [506, 304]), which uses our novel quality metric as evalua-
tion function (i.e. objective function). The algorithm has the following scheme:

• Initialization. An initial population of N = 1500 apertures is randomly gen-
erated. An aperture is defined by a vector of P = 121 elements, each ele-
ment corresponding to an aperture pixel.

• Selection. We evaluate each aperture by simulating the capture process, mul-
tiplying the Fourier transform of a sharp image F0 by the OTF (response of
the aperture in the frequency domain) and adding the Fourier transform
of the gaussian noise (Equation 2). We then perform Wiener deconvolution
with our prior |C|2 of natural images (Equation 4). The quality of the recov-
ered image is measured using our quality metric Q (Equation 5), and the
M = 150 apertures with best quality result are selected. The image used
to perform this step, which is 200× 200 pixels in size, is similar to the pat-
tern used by Joshi et al. [210] (see Figure 2.3), since this pattern has a wide
bandwidth spectrum in the frequency domain.
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• Reproduction. The M selected apertures are used to populate the next gen-
eration by means of crossover and mutation. Crossover implies randomly
selecting two apertures, duplicating them, and exchanging corresponding
bits between them with probability c1 = 0.2, obtaining two new apertures.
Mutation ensures diversity by modifying each bit of the aperture with prob-
ability c2 = 0.05.

• Termination. The reproduction and selection steps are repeated until the
termination condition is met. In our case, the algorithm stops when the
increment in the quality factor is less than 0.1%, which generally occurs
before G = 80 generations.

The standard deviation of the noise applied in the selection process is set in
principle to σ = 0.005 (we later explore this parameter in Section 2.6.2). This is
based on previous findings where apertures designed for σ values of 0.001 and
0.005 proved to work best for a wide variety of images [304]. Following Equation
5, we consider four variations of our evaluation function, characterized by the
weight assigned to each metric:

• Λ = {1, 0, 0}: just using the L2 norm

• Λ = {0, 1, 0}: just SSIM

• Λ = {0, 0, 1}: just HDR-VDP-2

• Λ = {1, 1, 1}: combining L2, SSIM, and HDR-VDP-2

We have run the genetic algorithm three times for each variation of the eval-
uation function, yielding three executions to which we will refer as I = {1, 2, 3}.
The top row for each weight vector Λ in Figure 2.4 shows the twelve binary aper-
tures obtained. The other two rows show the results for non-binary apertures,
explained next.

non-binary apertures Binary codes have the initial advantage of reducing
the search space, and are usually preferred in the existing literature. However,
there is no principled motivation to restrict the aperture pixel values to either
black or white, other than apparent simplicity. A notable exception in this regard
is the work by Veeraraghavan and colleagues [455], where the authors report the
advantages of continuous-valued apertures, found by gradient descent optimiza-
tion: reduced computational times and less noise in the recovered (deblurred)
images.

In order to analyze if our perceptual metrics also improve the performance
of non-binary apertures, we repeat our optimization process, but allowing the
solutions of the genetic algorithm to include values between 0 and 1. In order to
limit the search space, in practice we restrict the set of possible values to i) one
level of gray (the allowed pixel values thus being {0, 0.5, 1}) and ii) three levels
of gray ({0, 0.25, 0.5, 0.75, 1}). We call the results of both options non-binary type
A and non-binary type B, respectively. The middle and bottom rows in Figure
2.4 show the apertures obtained for both types (again, we obtain three different
apertures for each weight vector Λ).
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(a) a) Λ = {1, 0, 0} (b) b) Λ = {0, 1, 0}

(c) c) Λ = {0, 0, 1} (d) d) Λ = {1, 1, 1}

Figure 2.4: Apertures obtained for the four variations of the evaluation function. For each
weight vector Λ, the top row shows the results of the binary apertures; while
second and third rows show the non-binary type A and non-binary type
B results. Columns correspond to the different executions I = {1, 2, 3}. The
apertures which exhibit the best performance (Section 2.6) are highlighted in
red.

2.6 performance of the apertures in simulation

In this section, we analyze first the performance of binary apertures; then discuss
their non-binary counterparts. We simulate the capture process by first convolv-
ing a sharp image f0 with the aperture kd and adding noise η as described by
Equation 1. To recover the deblurred image f̂0, we perform Wiener deconvolu-
tion using our prior |C|2 derived from natural images (Equation 4). Note that in
practice we work in the frequency domain.

The quality of each recovered image is measured using the L2 norm, the SSIM
index and the HDR-VDP-2 score. In order to take in account the results of all
three metrics together we calculate the aggregate quality factor Qa as:

Qa = (1− L2) + (SSIM) + (VDP2/100) (6)

where larger values of Qa correspond to better quality in the recovered images
(Qa ∈ [0, 3]).
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Figure 2.5: Some of the images used for evaluating the obtained apertures. Image li-
censed under Creative Commons copyright of freemages and flickr users (in
reading order) Christophe Eyquem, Stig Nygaard, Paola Farrera and Juampe
Lopez.

We repeat this process using 30 images of different types of scenes (nature,
people, buildings), in order to include a large and varied enough selection. A
few examples of the images used are shown in Figure 2.5. For each aperture, we
calculate the values for the three different metrics plus the aggregate quality fac-
tor Qa for the 30 recovered images. We therefore have, for each type of aperture
(binary, type A or type B) and each weight vector Λ, a total of 90 Qa values. We
denote each of these values as Qa(i,j), where i refers to the execution number
(I = {1, 2, 3}) and j to the image number (J = [1..30])1. In the following we ana-
lyze separately the influence of the perceptual metrics and the noise level in the
performance of the obtained apertures.

2.6.1 Influence of the Perceptual Metrics

We compute the aggregate quality factor of the best binary aperture obtained for
each Λ averaged along the 30 imagesQa(ibest,J) (together with the corresponding
standard deviation); we also compute the mean along the 30 test images of the
individual scores of the three metrics L2, SSIM and HDR-VDP-2. These serve as
an indicative of the performance of a particular aperture. Additionally, we obtain
the mean aggregate quality factor of the three executions, Qa(I,J), together with
its standard deviation σ(Qa(I,J)). These values will illustrate the appropriateness
of including each of the perceptual metrics in the evaluation function.

1 Note that Qa values conform a four-dimensional set of data. One dimension corresponds to the
type of aperture (binary, type A, or type B), another dimension is the weight vector Λ, and the
third and fourth dimensions are the number of executions i ∈ I and the number of test images
j ∈ J.
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Table 2.1 compiles these results for binary apertures. The first five columns
refer to individual data for the best aperture of the three executions, whereas the
last two refer to the averaged values for that particular evaluation function:

Qa(I,J) =
1

|I|

∑
i

 1

|J|

∑
j

Qa(i,j)

 , (7)

with |I| = 3 and |J| = 30. It can be seen how the combination of the three metrics
(Λ = {1, 1, 1}) yields the highest Qa scores, which translates into better apertures
for defocus deblurring. Although we have limited ourselves in this work to equal
weights when combining the three metrics, leaving further exploration of other
possibilities for future work, these results clearly suggest the benefits of using
perceptual metrics when deriving the apertures.

2.6.2 Influence of Noise

The apertures analyzed so far have all been computed assuming an image noise
level of σ = 0.005. We now explore performance of our apertures over a wider
range of noise levels, to ensure that our findings generalize to different image
conditions. Figure 2.6 shows L2, SSIM, HDR-VDP-2 and Qa for images captured
and deblurred using our best perceptually-optimized binary aperture. The im-
ages used are the same 30 test images described before, but after synthetically
adding to them noise of increasing standard deviation: σ= 0.0001, 0.0005, 0.001,
0.002, 0.005, 0.008, 0.01 and 0.02. It can be seen how our optimized patterns per-
form well across all noise levels, in contrast to standard circular apertures which
have been proved to be very sensitive to high noise levels [506].

2.6.3 Comparison with other metrics

We now compare the performance of our best binary aperture (marked in red
in Figure 2.4) with a conventional circular aperture and with the best aperture
described by Zhou et al. [506] for a noise level of σ = 0.005. Note that Zhou’s
aperture has been optimized using only a L2 norm quality metric.

Figure 2.7 shows the results for both comparisons (top: against a circular aper-
ture; bottom: against Zhou’s aperture). We have used each of the three metrics
to compare the quality of corresponding recovered images. Each dot in the di-
agrams represents the values obtained for a given image in the 30-image data
set used in this work. Thus, values on the diagonal would indicate equal perfor-
mance of the two apertures being compared. For the case of the L2 norm, values
above the diagonal favor our binary aperture (plotted in the x-axis), whereas for
the other two metrics, values below the diagonal are preferred. It is clear from
these data that our binary aperture consistently outperforms not only the con-
ventional circular aperture, but Zhou’s aperture as well (although obviously by a
lesser margin). This translates into recovered images of better quality according
to all the metrics, as will be shown in Section 2.7.

We perform the same simulated validation explained above for the non-binary
apertures. Our results confirm that again the combination of the three metrics
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Figure 2.6: Performance of the best perceptually-optimized binary coded aperture across
eight different levels of noise, measured with the L2, SSIM, HDR-VDP-2 and
Qa metrics. The L2 norm shows percentages with respect to the maximum
error.

with equal weights Λ = {1, 1, 1} yields apertures with better overall performance.
Table 2.2 summarizes the results. In an analogous manner to the analysis for bi-
nary apertures, the first five columns show data for the best non-binary aperture
in each case, averaged across the 30 test images. The last two columns show av-
eraged values across the 30 images and the three executions computed for each
evaluation function.

2.7 performance of the apertures with real data

While in the previous sections we have evaluated the performance of the aper-
tures by simulating the capture process, in this section we test our apertures on
a real scenario; we print and insert the masks into a camera, calibrate the sys-
tem, and capture real scenes. We have used a Canon EOS 500D with a EF 50mm
f/1.8 II lens, shown (disassembled) in Figure 2.1. To calibrate the response of the
camera (PSF) at different depths, we used a LED which we made as close as pos-
sible to a point light source with the aid of a pierced thick black cardboard. We
locked the focus at 1,20 m and took an initial focused image, followed by images
of the LED at 20, 40, 60 and 80 cm with respect to the in-focus plane. For each
depth, the actual cropped image of the LED served us as PSF, after appropriate
thresholding of surrounding values which contain residual light, and subsequent
normalization for energy conservation purposes. The resulting PSFs for one of
our binary apertures are shown in Figure 2.8, next to the PSFs of a conventional,
circular aperture for comparison purposes.

Once calibration has been performed, images of three scenes at the four defo-
cus depths (20, 40, 60 and 80 cm) were taken with each of the selected apertures.
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Figure 2.8: PSFs at four different defocus depths (20, 40, 60 and 80 cm). Top row: For our
binary coded aperture. Bottom row: For a circular aperture.

During the capture process, the aperture was set to F2.0, and the exposure time
to 1/20 for all scenes and apertures, to ensure a fair comparison. The captured
defocused images are then deblurred using the corresponding calibrated PSF by
means of Wiener deconvolution. We used Wiener deconvolution with a NSR of
0.005 instead of the prior of natural images, since in real experiments it gave bet-
ter results. This may be caused by the fact that our prior |C|2 is calculated with the
power spectra of images from manmade day and natural day scenes, which have
similar spectral slopes, while the spectral slope for images from manmade indoors
scenes (similar to the scenes we capture) is slightly different [353]. The same ex-
posure and aperture settings were used for all our coded apertures. Figure 2.9
depicts the recovered images for three different apertures: a circular aperture,
our best binary coded aperture and the best aperture obtained by Zhou et al.
[506] for a noise value of σ = 0.005, to which we have also compared in Section
2.6. Defocus depths are 60 cm for recovered images (b), (c) and (d) and 80 cm for
(e) and (f). Insets depict the corresponding PSF.

Our aperture clearly outperforms the circular one, which was to be expected
from the existing body of literature about coded apertures. More interesting is
the comparison with a current state-of-the-art coded aperture; when compared
to the aperture described by Zhou et al., our perceptually-optimized approach
yields less ringing artifacts, exhibiting, qualitatively, a better overall performance.
Additional results for two other scenes at four defocus depths (20, 40, 60 and 80

cm) can be seen in Figure 2.10. Please note that the slight changes in brightness
in the images are due to different illumination conditions, and not to the light
transmitted by the aperture.

Minor artifacts that appear in our recovered images are probably due to errors
in the calibrated PSF. Another possible cause of error may be inaccurately mod-
eled image noise [398]. Additionally, although the PSF actually varies spatially
across the image [259], we consider here one single PSF, measured at the center
of the image, for the entire image plane.

The non-binary apertures obtained in Section 2.5.1 were also evaluated in a real
scenario. Figure 2.12 shows the recovered images obtained with the best binary
aperture (left), the best non-binary aperture of type A (middle) and the best non-
binary aperture of type B (right). Although non-binary apertures seem to yield
images with lower background noise, evidence is not strong enough to derive
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(a) a) Defocused image captured with our best
binary aperture

(b) b) Result obtained for a circular aperture
(d = 60cm)

(c) c) Result obtained for our best binary aper-
ture (d = 60cm)

(d) d) Result for the aperture by Zhou et al. for
σ = 0.005 (d = 60cm)

(e) Close-ups of c) (f) Close-ups of d)

(g) e) Result obtained for our best binary aper-
ture (d = 80cm)

(h) f) Result for the aperture by Zhou et al. for
σ = 0.005 (d = 80cm)

(i) Close-ups of e) (j) Close-ups of f)

Figure 2.9: Recovered images for different apertures (circular, Zhou’s for σ = 0.005
and our best perceptually-optimized binary aperture) and different defocus
depths d. Close-ups of this images show the improved quality and fewer
ringing artifacts of images recovered with the perceptually-optimized aper-
ture. Insets depict the PSF of the aperture used in each case. Note that results
for the circular aperture are significantly brighter because of its higher trans-
mission rate.
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(a) a) d = 20cm (b) b) d = 40cm

(c) c) d = 60cm (d) d) d = 80cm

(e) a) d = 20cm (f) b) d = 40cm

(g) c) d = 60cm (h) d) d = 80cm

Figure 2.10: Defocused and recovered images at four different defocus depths d obtained
with the perceptually-optimized binary coded aperture for two different
scenes.
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any definite conclusion. It is worth noting that metrics based on simulations of
the capture process yield similar quality values for binary apertures and their
non-binary counterparts (see Tables 2.1 and 2.2). This may suggest the need for a
more complex image formation model, essentially in what regards to the additive
noise, a need which has already been observed by other authors in the field [455].

(a) (b)

(c) (d)

Figure 2.11: Correlation between real-capture and simulated-capture results. Average
quality of the recovered images for both cases (real and simulated) accord-
ing to each metric for the four defocus depths tested (20, 40, 60 and 80 cm)
and to the aggregate quality factor Qa calculated according to Equation 6.

Figure 2.12: Comparison between deblurred images captured using perceptually-
optimized binary (left), non-binary type A (middle), and non-binary type
B (right) apertures.

Observations from real-world images are consistent with the power spectra
shown in Figure 2.2, where our perceptually-optimized apertures exhibit larger
amplitudes for the majority of the spectrum compared to Zhou’s and the circular
aperture. Additionally, in order to assess how well real results correlate with sim-
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ulated ones we have compared results from a real setup with results simulated
for the same conditions. We have done this for our best binary coded aperture
selected in red in Figure 2.4. To do this we compute the size of the blur for the
different defocus depths used in the real scenario (20, 40, 60 and 80 cm) and scale
the PSF accordingly when computing the simulated blurred images. Althought
this scaling is only an approximation to what the real PSF would be, it does give
information on how well simulated results extrapolate to real results. Figure 2.11

shows the results obtained by the different quality metrics (plus the aggregate
factor Qa) for real and simulated results. We can clearly see how both exhibit
the same behavior and trends, thus showing the validity of the use of simulated
capture processes for the evaluation of the different apertures.

Finally, the time until convergence when running the algorithm on an Intel
core i7 930 @2.80GHz is 13,72 hours for the evaluation function using (Λ =

1, 1, 1), which is obviously the most expensive scenario. As expected, computing
the HDR-VDP 2 metric consumes the largest amount of time (62% of the total
execution time when Λ = 1, 1, 1), followed by SSIM; there is clearly a trade-off
between complexity of the metrics included and performance of the resulting
apertures.

2.8 exploring coded apertures for defocus deblurring of hdr im-
ages

While it was well known that the use of coded apertures for defocus deblurring
offers good performance with LDR images [506], to our knowledge it had not
been tested in the context of HDR imaging, so we set out to explore how they
would perform in this context. For this purpose, we rely on a coded aperture
specifically designed for defocus deblurring of LDR images by Zhou et al. [506]
and use it to analyze this problem in HDR images. The pattern of this aperture
can be seen in Figure 2.2 (gray line) together with its power spectrum compared
to that of a circular aperture. Note that this aperture offers a better frequency
response for defocus deblurring than the circular aperture, as seen before.

In this section we propose and analyze three different processing models for
recovering focused HDR images, one from a single blurred HDR radiance and
two from an input of blurred LDR exposures, and analyze them first in a sim-
ulation environment and finally in real scenarios. We also analyze the use of
deconvolution statistical priors, made both from HDR and from LDR images,
taking into account the work of Pouli et al. [353] and following the idea that, to
solve HDR problems, the use of HDR priors instead of LDR ones would lead
to better results due to the existing statistical differences between both types of
images.

2.8.1 Processing Models

The capture process of an image can be modeled with a convolution, as explained
in Section 2.3. In order to study the viability of the employment of coded aper-
tures for defocus deblurring in HDR images, we simulate the capture process
and attempt to recover a sharp image from the simulated blurred image.
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Being fHDR0 an HDR scene, we can use the approximation given by Equation 8

to simulate the capture of a High Dynamic Range radiance fHDR only if we are
able to capture it in one single shot.

fHDR = k ∗ fHDR0 + η (8)

Some existing cameras allow the capture of extended dynamic range, but in
most cases HDR images are obtained by capturing series of LDR exposures and
merging them later.

Then, being fLDR0n , (n = 1, ...,N) a set of LDR exposures of the same focused
HDR scene fHDR0 , we can simulate the capture of the defocused HDR radiance
by first simulating the capture of each exposure following Equation 9, and second
merging them into a single HDR defocused radiance as expressed in Equation
10, g being the HDR merging operator.

fLDRn = fLDR0n ∗ k+ η (9)

fHDR = g(fLDR1 , fLDR2 , ..., fLDRN ) (10)

Once fHDR is obtained, we can recover the focused HDR radiance f̂HDR0 by per-
forming a single deconvolution. However, since we have the LDR defocused ex-
posures, it is possible to deblur them separately with a set of N deconvolutions
and merge them later to obtain f̂HDR0 , following Equation 11.

f̂HDR0 = g(f̂LDR01 , f̂LDR02 , ..., f̂LDR0N ) (11)

According to this, we present three different models for recovering focused HDR
radiances:

1. One-shot model: Processing HDR radiance obtained with a single shot.
Equation 8 is used to model the capture process and the focused radiance
is recovered with a single deconvolution, as seen in Figure 2.13a.

2. HDR model: Processing HDR radiance obtained by merging LDR expo-
sures. Equations 9 and 10 are used and the focused HDR image is recov-
ered with a single deconvolution. The pipeline of this processing is shown
in Figure 2.13b.

3. LDR model: Processing LDR exposures separately before merging. We fol-
low Equation 9 to model the capture process of the N input images, and
recover the focused LDR exposures with N deconvolutions, then merging
them as in Equation 11 to obtain the HDR focused radiance. This pipeline
can be seen in Figure 2.13c.

2.8.2 Simulation of Processing Models

First we analyze these three models by performing simulations in order to study
their viability before proceeding to real experiments. To carry them out, we use
one of the coded apertures developed by Zhou et al. [506], which is shown in
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(a) Pipeline for the one-shot model

(b) Pipeline for the HDR model

(c) Pipeline for the LDR model

Figure 2.13: Pipelines for all different processing models, where k is the convolution
kernel, GWN is Gaussian White Noise, g is the HDR merging operator and
∗ is the convolution operator.

Figure 2.2 (gray line). This aperture is known to work well for defocus deblurring
LDR images.

For the simulations we use a set of seven HDR photographs with different dy-
namic ranges for the first model, and their three corresponding LDR exposures
for the other two. The main goal is to recover the focused HDR images with all
three processing models. We use the perceptual metric HDR-VDP2 [294] in order
to assess the quality of the results. This metric works on luminance, comparing a
reference HDR image with its distorted version, providing quality and visibility
(probability of detection) measures based on a calibrated model of the human
visual system. In this work we focus in obtaining the quality factor Q, a predic-
tion of the quality degradation of the recovered HDR image with respect to the
reference HDR image, expressed as a mean-opinion-score (with values between
0 and 100). This metric can not only work with HDR images, but also with their
LDR counterparts.

We test four different noise levels (σ = 0.0005, 0.001, 0.005 and 0.05), and
three different deconvolution variations based on Wiener deconvolution, whose
formulation in frequency is given by Equation 4.

From this deconvolution, we study these three different variations:

• Wiener deconvolution without prior, with a constant NSR matrix. Replac-
ing |C|2 in Equation 4 by a constant NSR matrix. We tested several values
and found that there is a trade-off between noise and ringing in resulting
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images. We finally decided to set the NSR to 0.005, achieving good balance
between both artifacts.

• Wiener deconvolution using an HDR image prior. Approximating |F0|
2 in

Equation 4 by a statistical prior matrix averaging power spectra of a series
of 198 HDR images. We construct the prior employing manmade (day and
indoors) HDR images from the database of Tania Pouli2).

• Wiener deconvolution using an LDR image prior. Replacing |F0|
2 as in

the previous, using a prior of 198 manmade (day and indoors) LDR images
instead, extracted from the database of Tania Pouli.

We explore the use of HDR priors in the one-shot and HDR models, given that
we are deconvolving an HDR radiance, inspired by Pouli et al. [353]. Note that
we do not test the LDR model with an HDR prior since we are deconvolving
LDR images in it. Since the aperture we are using is optimized for a noise level
of σ = 0.005, we set this value as standard deviation of the Gaussian noise in our
deconvolutions with priors.

2.8.3 Performance Comparison

Once all the simulations are finished, we compute the mean quality factor Q,
given by the HDR-VDP2 metric, of the seven images obtained with the three pro-
posed processing models shown in Figure 2.13. For each model we analyze four
different noise levels and the three different deconvolution variations explained
in Section 2.8.2 (except for the LDR model, as explained). This information is
collected in Figure 2.14.

(a) One-shot model (b) HDR model (c) LDR model

Figure 2.14: Mean Q obtained with the HDR-VDP2 metric for each processing model,
with all different combinations of noise level and deconvolution prior.

We can see how the use of priors is strongly recommended for the one-shot
model when image noise is very high. In this noisy scenario, an HDR prior offers
better results than an LDR prior. However, when image noise decreases, all three
different deconvolutions produce similar behaviours. As expected, using an HDR
prior outperforms using an LDR prior in the HDR model, but we can see how the
use of Wiener deconvolution with a constant NSR matrix seems to offer similar
or even better quality all along the noise range. For the LDR model, the use of a
constant NSR matrix in the deconvolution seems to offer better results than the
LDR prior, although differences are not significant.

2 http://taniapouli.co.uk/research/statistics/

http://taniapouli.co.uk/research/statistics/
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With regard to the comparison between all three processing models, we can see
how the one-shot model clearly derives in better results than the other two, and
would be the ideal method, if the appropriate hardware becomes widely avail-
able. Meanwhile, the HDR model seems to perform worst. Note that the merging
operation is a non-linear process, and therefore the deconvolution is performed
over content which has been non-linearly transformed. Also, the added GWN
can be amplified during this process. It must be noted, however, that function
g is approximately linear for a wide range of luminances. In the LDR model,
three deconvolutions are performed, and it is well-known that deconvolution is
a noisy process. However, in HDR images the relative difference between neigh-
bour pixels is bigger than in LDR ones. This increases ringing significantly, and
along with the amplified GWN and non-linearity may be what causes the HDR
model results to be the worst of all.

In terms of computational cost, the lowest is offered by the one-shot model, as
it only requires one deconvolution, while the HDR model requires one deconvo-
lution and one exposure fusion, and the LDR model requires one deconvolution
for each exposure and one exposure fusion.

In Figure 2.15 we show the result of one of the noisy simulations (σ = 0.05)
using the one-shot model, with both priors. We can see how the use of an HDR
prior slightly reduces the recovered image noise. In Figure 2.16 we show an ex-
ample of the same HDR scene recovered with the HDR model, with both priors,
this time with σ = 0.0005. In this low noise scenario we can appreciate how the
use of an HDR prior instead of an LDR one results in a reduction of ringing
artifacts.

(a) HDR prior (b) LDR prior

Figure 2.15: Comparison between images recovered after simulation of the one-shot
model, with HDR and LDR priors and σ = 0.05. Note how the use of the
HDR prior instead of the LDR one slightly reduces image noise.

2.8.4 Validation in Real Scenarios

After performing the simulations we proceed to validate the same processes in
real scenarios. We cannot validate the one-shot model in real scenes because of
the lack of the required equipment: an HDR camera that allows to capture an
HDR image with a single shot. For this reason, physical validation is restricted
to the HDR and LDR models. For these, the image capture process is analogous
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(a) HDR prior (b) LDR prior

Figure 2.16: Comparison between images recovered after simulation of the HDR model,
with HDR and LDR priors and σ = 0.0005. Note how using the HDR prior
instead of the LDR one seems to reduce image ringing.

to that described in Section 2.7. We construct a scene with a large luminance
range and capture three images using the multi-bracketing camera option set to
relative exposures of +2, 0 and -2 stops. For these captures we fix the ISO setting
value at 100 and aperture size at F2.0, leading to exposure times of 1/5, 1/20

and 1/80 seconds. We place the scene 180 cm away from the camera, and set
the focus plane at 120 cm, leading to a defocus distance of 60 cm. We also take
three exposures of the well focused scene to obtain a ground truth HDR image
that allows comparison, using the same capture parameters described above. All
images are taken in RAW format, with a size of 4752x3168 pixels. To reduce
computational time and cost we resize images by a factor of 0.2, reducing them
to 951x634 pixels.

In terms of system calibration, the process is again like that described in Sec-
tion 2.7. The only clarification to make is that in this cas, in order to be coherent
with image capture, we obtain three images, one for each exposure value, with
the same capture parameters used to capture the scene. We also obtain an HDR
image of the montage to obtain the PSF that we will use in the deconvolution
in the HDR model. As in Section 2.7, the cropped grayscaled image of the LED
serves us as PSF, after thresholding it in order to eliminate residual light, and
normalizing it to preserve energy in the deconvolution process. Note that the
threshold value changes for each PSF, increasing with the exposure value: 0.39

for underexposed, 0.5 for well-exposed and 0.8 for overexposed. For the PSF used
in the HDR model the threshold value is 0.2. The resulting PSFs are shown in
Figure 2.17. After resizing the kernel, its size is 14× 14 pixels.

Figure 2.17: PSFs obtained for deconvolution. From left to right: PSF for the high, central
and low exposure, used in the LDR model, and PSF obtained by merging
the three exposures used in the HDR model.



42 coded apertures for defocus deblurring

Once we obtain the PSFs we recover the sharp images following the HDR
and LDR models. For the HDR one we merge the defocused exposures into a
defocused HDR radiance and obtain the deblurred HDR image performing a
single deconvolution using the HDR kernel, as in Figure 2.13b. For the LDR
model we perform one deconvolution for each defocused exposure, using the
corresponding PSF for each one, and then we merge the resulting recovered
exposures into the focused HDR image, as in Figure 2.13c. In each case, we
carry out the same Wiener deconvolution variations described in Section 2.8.2,
excluding again the use of an HDR prior for the LDR model. Once we perform all
the experiments, we compare the results of both models. We compute the quality
factor Q given by the HDR-VDP2 metric of the HDR recovered images and show
the results in two different scenes. We also check the effect of the use of the
different deconvolution variations, specially those which employ deconvolution
priors.

2.8.4.1 Model comparison

For our first scene, in Figure 2.18 we show the quality factor Q, given by the HDR-
VDP2 metric, of the HDR images recovered with each processing model. These
results indicate that, while simulation results suggested that the LDR model of-
fered better results than the HDR model (see Figure 2.14), real experiments point
out that both models offer very similar qualities. Note also that, according to
the metrics, the use of priors results in worse performance. We explore this fact
further in Subsection 2.8.4.2.

(a) HDR model (b) LDR model

Figure 2.18: Quality factor Q obtained with the HDR-VDP2 metric for our first real scene,
for each processing model and deconvolution prior. We can observe how in
the HDR model the HDR prior outperforms the LDR one, and how both
LDR and HDR models using constant NSR offer similar quality.

We show the result of both models, using constant NSR, in Figure 2.19, in order
to offer a visual comparison of how both models perform. We also show the
original (blurred) HDR radiance and the ground truth ideal HDR radiance. We
can see how visual appearance is consistent with the results yielded by the metric.
The image recovered with the HDR model shows more ringing due possibly to
the biggest relative difference between neighbour pixels (see also Section 2.8.3).
Furthermore, attending to the highlighted details and comparing recovered and
original images we see how both models are able to recover the well-focused



2.8 exploring coded apertures for defocus deblurring of hdr images 43

HDR radiance (see e.g. book titles or text in the lens box in the images). These
images prove that the employment of coded apertures for defocus deblurring of
HDR images is viable and presents a good performance.

(a) Ground truth (b) Original

(c) HDR model with constant NSR (d) LDR model with constant NSR

Figure 2.19: HDR results obtained for our first real scene with the best processing models
in terms of Q (c,d), compared to the ground truth and original images, all
of them tonemapped. Here we see how both models offer good and similar
results.

We test again our approximations performing the experiments in a new scene,
in order to check if results correlate with the first ones. In Figure 2.20 we show
the quality factor Q given by the HDR-VDP2 metric for this second scene.

(a) HDR model (b) LDR model

Figure 2.20: Quality factor Q obtained with the HDR-VDP2 metric for our second real
scene, for each processing model and deconvolution prior. Note that in the
HDR model the HDR prior outperforms the LDR one, and that in both
models the use of a constant NSR offers the best results.

Again, the use of priors derives in worse results than the use of a constant
NSR, for both processing models. In Figure 2.21 we show the HDR images of
this scene recovered with the HDR and LDR models with constant NSR. As we



44 coded apertures for defocus deblurring

can see, both models offer good results when recovering the focused image, and
again the HDR model exhibits slightly more ringing than its LDR counterpart.

(a) Ground truth (b) Original

(c) HDR model (d) LDR model

Figure 2.21: HDR results obtained for our second real scene with the best processing
models in terms of Q, compared to the ground truth and original images,
all of them tonemapped. We can see how both models are able to recover
sharp details such as the book titles.

In Section 2.8.3 we have already pointed out possible causes for one model
performing better than the other in simulation. When incorporating results in
real scenarios, the Q metric seems to indicate similar results for both models,
although it would be advisable to perform more tests with more data. Also, the
HDR-VDP2 metric works only with luminance values, not taking into account
color, and while it has been specifically tested for some types of distortions, such
as white noise or Gaussian blur, it has not been designed nor tested for e.g.
ringing artifacts. Finally, modelling noise as GWN is another source of inaccuracy,
an approximation, since image noise does not follow a Gaussian distribution.

2.8.4.2 Effects of using a prior

As shown in Figures 2.18 and 2.20, in real experiments we see that both HDR
and LDR models perform much better when no deconvolution prior is used.
We inspect the images recovered with both priors in order to know why this
happens. If we carefully observe these images we can appreciate a grid shaped
distortion, as seen in Figure 2.22. This distortion clearly reduces the visual quality
of the images recovered with deconvolution prior. Further, we notice again that
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(a) HDR model with HDR
prior

(b) HDR model with LDR
prior

(c) LDR model with LDR prior

Figure 2.22: Detail of our recovered images of the first real scene using priors, where we
can appreciate a clear grid shape distortion. Note that, in the HDR model,
using an HDR prior instead of an LDR one reduces this effect. All the images
are tonemapped.

HDR prior outperforms LDR prior in the HDR model, as it minimizes, but not
completely removes, this distortion.

We explore the variation of σ in the deconvolution process and see the im-
pact of this alteration in the described distortion. This variation corresponds to a
higher weight for the deconvolution prior. In Figure 2.23 we see some of the im-
ages obtained with different σ in the deconvolution process for the LDR model.
We see how increasing this value we obtain a better reduction of prior distortion
and ringing. In exchange, we find that this increase leads to less sharp results,
resulting in a trade-off between both effects.

(a) σ = 0.0005 (b) σ = 0.005 (c) σ = 0.05

Figure 2.23: Effect of the variation of σ in the deconvolution for the LDR model. We can
see a trade-off between the grid shape distortion and image sharpness. All
the images are tonemapped.

2.9 conclusions and future work

In this chapter we have presented a method to obtain coded apertures for defo-
cus deblurring, which takes into account human perception for the computation
of the optimal aperture pattern. Following previous approaches, we pose the
problem as an optimization, and, to our knowledge, propose the first algorithm
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that makes use of perceptual quality metrics in the objective function. We explore
the performance of different quality metrics for the design of coded apertures,
including the well-established SSIM, and the state-of-the-art HDR-VDP-2, which
features a comprehensive model of the HVS, as well as the L2 norm, previously
used in related works. The results obtained show that the best apertures are ob-
tained when a combination of the three metrics is used in the objective function,
clearly outperforms existing apertures, both in simulated and real scenarios, re-
sults obtained by conventional circular apertures and by an existing aperture
pattern specifically designed for defocus deblurring.

Additionally, we have explored non-binary aperture patterns, often neglected
in the literature. Even though results with real images seem to indicate a better
performance (i.e. less ringing artifacts) of non-binary apertures with respect to
their binary counterparts, sharpness appears somewhat hindered by non-binary
masks in comparison to binary patterns, resulting in a trade-off between both.

One of the challenges for the future is in noise modeling: Employing a better
model for the noise inherent to the capture process would allow a better model-
ing of the process and thus a better design of coded aperture patterns. Although
we show that simulated and real results correlate fairly well, differences remain,
which may be overcome with a better model.

Additionally, we explore for the first time, to our knowledge, the use of coded
apertures for defocus deblurring of HDR images, showing that these techniques,
which used to be employed in LDR images, can be extended for HDR imaging.
We also see that the use of deconvolution priors made of HDR images instead
of conventional LDR priors leads to better performance. However, maybe due
to the fact that the prior we are employing is far from optimal, the best results
come when no prior is employed in the process. From this, and relying on the
work of Pouli et al. [353], we believe that more research related to HDR priors
is needed. Since many optimization problems benefit from the use of statistical
regularities of the images, and taking into account the advances on HDR imaging,
the construction of good HDR priors is another avenue of future work.
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about this chapter

The work here presented has been published in two papers and one technical
report. The first paper, accepted to SIGGRAPH Asia and published in Transac-
tions on Graphics, studies rTMOs across exposures and proposes an expansion
method for over-exposed content, and was in part inspired by the work of Martin
and colleagues [296]. The technical report further explores and improves upon
the results of that paper, and the third paper, presented at CEIG, seeks a more
artistic, and interactive, approach and proposes a semi-automatic method for
range expansion.
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3.1 introduction

High dynamic range display devices are becoming increasingly common [389],
yet very large amount of existing low dynamic range legacy content and preva-
lence of 8-bit photography persist. This presents us with the problem of reverse
tone mapping. The aim of reverse tone mapping operators (rTMOs) is to endow
low dynamic range (LDR) imagery with the appearance of a higher dynamic
range without introducing objectionable artifacts. Ideally, an rTMO should take
a standard LDR image as input and reconstruct as accurately as possible the
true luminance values of the original scene. As depicted in Figure 3.1, this is an
ill-posed problem. For most scenes and imaging devices, the image data is irre-
versibly distorted by unknown nonlinearities, sensor noise, lens flare, blooming,
and perhaps most importantly, sensor saturation, which clips high intensities to
a constant value. Reverse tone mappers must somehow reconstruct the missing
data, or boost the contrast in a way that does not cause the clipped regions to
appear visually unpleasant.

Existing rTMOs tackle this ill-posed problem in different ways, leading them to
succeed and fail in different conditions. For example, some reverse tone mapping
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strategies may handle small clipped highlights well, but cause large saturated
regions to appear unnatural. Conversely, other rTMOs may avoid introducing
artifacts in over-exposed conditions, but fail to enhance under-exposed images
sufficiently. The key is to understand which strategies produce the best possi-
ble visual experience, for which a number of user studies have recently been
conducted [503, 390, 12, 34]. These experiments have yielded many valuable in-
sights which may guide future rTMO and even HDR display design. However,
they have been applied only to subjectively correctly exposed images, usually with
knowledge of the dynamic range of the original, real-world scene. A key chal-
lenge in rTMO design is how to handle non-optimal LDR content, particularly
images that are incorrectly exposed.

Our research here is dedicated to finding non-intrusive ways to take advantage
of the higher dynamic range of the display medium, irrespective of the dynamic
range of the original image. Reverse tone mapping also sheds light on a general
problem in signal processing: taking partial, distorted or corrupted data and
reconstructing the original as faithfully as possible. Here our quality criterion is
perceptual faithfulness rather than physical accuracy.

The vast amount of LDR legacy content spans a large range of exposures.
Under- or over-exposure may be due to different reasons, including bad choices
by the photographer or pure artistic intentions. Legacy professional material may
have been shot to make the most appropriate use of the dynamic range available
at the time, very different from what is currently available. Additionally, the in-
formation about the dynamic range of the real scene is typically not recorded.
It is therefore crucial to extend previous studies by taking into consideration
varying exposure conditions for a set of images without additional information.

We have performed a series of psychophysical studies assessing how rTMOs
handle images across a wide range of exposure levels. We have found that, while
existing rTMOs perform sufficiently well for dimmer (under-exposed) images,
their performance systematically decreases for brighter (over-exposed) input im-
ages. This suggests that there is a need for an rTM method that effectively deals
with over-exposed content. We show that simply boosting the dynamic range by
means of an adaptive γ curve achieves good results that outperform the current
rTMOs, and propose a simple method to obtain a suitable value of γ for each
image.

We additionally observe that artifacts produced by some rTMOs are also vis-
ible in low dynamic range renditions of the images. This is because many arti-
facts are not simply due to inappropriate intensity levels, but also have a spatial
component. We perform a second user study to shed light on which type of in-
accuracies introduced by reverse tone mapping most hamper our perception of
the final image. This information can further help future rTMO design.

3.2 previous work

3.2.1 Reverse tone mapping

Dynamic range expansion, along with related subsequent problems such as con-
tour artifacts, has been initially addressed by bit-depth extension techniques [90]
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and decontouring methods [91]. However, these techniques are designed for ex-
tension to bit-depths much lower than that of HDR displays. More recently, a
few works have looked at the problem of reverse tone mapping for the display
of LDR images and videos on HDR displays. The general approach of these re-
verse tone mapping techniques has been to identify the bright areas within the
image, and in particular areas that have been clamped due to sensor saturation,
such as light sources. Those areas are typically significantly expanded, while the
rest is left unchanged or mildly expanded, to prevent noise amplification. We
offer here a brief discussion on reverse tone mapping techniques, and refer the
reader to the work by Banterle and colleagues [33] for a comprehensive review
on the topic.

Banterle et al. [30, 31] apply the inverse of Reinhard’s tone mapping opera-
tor [364] to the LDR image and detect areas of high luminance in the resultant
HDR image. They then produce a so-called expand-map by density estimation of
the bright areas, and use this map to interpolate between the LDR image and the
initial inverse tone mapped HDR image, thus modulating the expansion range.
This framework has been extended to video by designing a temporally-coherent
version of the expand-map [32]. The ldr2hdr framework of Rempel et al. [368] is
similar in spirit, but their expand-map (which they term brightness enhancement
function) can be computed in real time using the GPU. The image intensity is
first linearized, and a binary mask is computed by thresholding the saturated
pixels; the brightness enhancement map is computed as a blurred version of
the binary mask, combined with an edge stopping function to retain contrast of
prominent edges. The contrast of the LDR image is then scaled according to the
enhancement map. Note that the expansion is affected by the size of the bright
objects: larger objects may receive more brightness boost. Recently, Kovaleski and
Oliveira [240] presented a reverse tone mapping technique which is also based
on real-time computation of a brightness enhancement function, but substitutes
a bilateral filter for the combination of a Gaussian blur and an edge stopping
function used by Rempel et al. [368].

Meylan et al. [316, 317] explicitly focus on specular highlight detection and ap-
ply a steep linear tone mapping curve to the presumably clamped areas, whereas
the rest of the image is expanded by a mild linear curve. A more sophisticated
segmentation and classification of bright areas in the image is done in the work
of Didyk and colleagues [101]: they segment the bright image areas and label
them as diffuse surfaces, light sources, specular highlights and reflections us-
ing a trained classifier. Different expansion functions are designed for each class
to reproduce the dynamic range more accurately (in particular, the luminance
of light sources and highlights is expanded more than that of reflections, while
bright diffuse surfaces are not expanded). The method is suitable for high-quality
video enhancement thanks to the temporal coherence of the segmentation and
the expansion function. Finally, Wang et al. [465] propose to fill in the texture
information of the clamped bright areas by transferring texture from other (well
exposed) areas, although the method may not be viable if a suitable region for
transferring detail is not found elsewhere. Both methods [101, 465] rely on user
assistance to guide the process, whereas we are interested in more automatic
approaches.
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3.2.2 User studies

It is now generally accepted that HDR displays provide a richer visual experience
than their LDR counterparts. However, different parameters such as luminance,
contrast or spatial resolution influence our visual experience, which makes it dif-
ficult to come up with an ideal combination. Additionally, image content proba-
bly also affects our preferences. In computer graphics, several researchers have
performed a series of user studies, the findings of which may even influence
future hardware development.

Yoshida et al. [503] judged subjective preference (without a reference image)
and fidelity (by comparing to a real world scene) for a series of tone mapped
images. Users could adjust brightness, contrast and saturation for each individ-
ual image. Although their work was geared towards the design of a forward
tone mapping operator, their conclusions are also useful for rTMO development:
they found that, in general, brighter images were preferred over dimmer ones.
Interestingly, however, in certain cases users would break this tendency and keep
a significant portion of the image dark, reducing overall brightness and giving
more importance to contrast.

Seetzen et al. [390] analyzed the influence of luminance, contrast and ampli-
tude resolution of HDR displays, to guide future display designs. Their studies
show that the preferred luminance and contrast levels are related: for a given
contrast, perceived image quality increases with peak luminance, reaches a max-
imum and then slowly decreases.

Akyüz and colleagues [12] performed a series of psychophysical studies which
revealed that a linear range expansion of the LDR image could surpass the ap-
pearance of a true HDR image, suggesting that simple solutions may suffice for
reverse tone mapping. Recently, Banterle et al. [34] have presented a psychophys-
ical evaluation of existing reverse tone mapping techniques, the results of which
indicate that nonlinear contrast enhancement may yield better results overall.

These previous studies provide useful insight into the desirable behavior of
tone mapping operators. A key difference with our work is that they were per-
formed on correctly exposed images, whereas we are interested in analyzing
reverse tone mapping across varying exposure conditions. In this work, we de-
fine over-exposed pixels as those with values > 254, and under-exposed pixels
as those with null values [368, 296].

3.3 experiment one : rtmo evaluation

To assess the overall performance of an rTMO, it is important to evaluate it
across a range of different imaging conditions. To this end, we have performed
a user study in which subjects directly compared the output of three reverse
tone mapping schemes (plus standard LDR visualization) across a range of ex-
posures, from clearly under-exposed to clearly over-exposed images. We asked
subjects to rate the appearance of the reverse tone mapped images on a calibrated
Brightside DR37-P monitor (32.26 ′′ wide and 18.15 ′′ high), with a black level of
0.015 cd/m2 and a peak luminance of over 3000 cd/m2. Calibration of the Bright-
side monitor was performed to confirm linearity and stable performance during
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Figure 3.1: The reverse tone mapping problem. Standard imaging loses data by trans-
forming the raw scene intensities Iscene through some unknown function
Φ, which clips and distorts the original scene values to create the Iimage ,
shown in the bottom panel (values clipped from the original are shown in
red). The goal of an rTMO is to invert Φ to reconstruct the original scene
data, or to convincingly “fake” it.

the experiment and to enable comparison to specific intensities in cd/m2 should
the need have arisen in the analysis, as per standard practice in psychophysics.
Temperature compensation was turned off to avoid changes in intensity (this was
possible thanks to the air conditioning in the room). The LDR versions of the im-
ages were displayed by approximately matching the contrast to a typical desktop
TFT (Dell).

Ambient luminance was kept at about 20 cd/m2, and the participants were
seated approximately one meter away from the monitor. Based on the subjects’
ratings, we can infer which rTMOs are most effective at recreating the experience
of an HDR scene without visually objectionable side-effects. As opposed to other
studies, we do not provide a ground truth HDR image for direct comparison,
since it is almost always unavailable in the case of legacy content.
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Figure 3.2: Representative samples of the stimuli used in our tests. Top: bright images
(Building, Lake, Graffiti, Strawberries, Sunset), each showing a certain degree
of over-exposure. Bottom: dark images (Car, Flowers, Crayons, Pencils), with
varying degrees of under-exposure.

Figure 3.3: The complete bracketed sequence for the Building and Flowers scenes.

3.3.1 Stimuli

The stimuli consist of photographs of nine scenes with different lighting con-
ditions, captured with a Nikon D200 at an original resolution of 3872 by 2592

(down-sampled for visualization purposes on the Brightside monitor, which has
a 1920 by 1080 pixel resolution). Each scene was captured with four different
exposure times. Five scenes were made up of bright images (from approximately
correct exposure to clearly over-exposed), and the remaining four were made up
of dark images (from clearly under-exposed to approximately correct). Figure
3.2 shows a representative image of each scene, while Figure 3.3 shows the four
exposures for two example scenes. The stimuli (please refer to http://webdiis.

unizar.es/~bmasia/downloads/thesis/rTM_Stimuli.zip for the complete series
of all the scenes) have been obtained from a previous study on exposure percep-
tion [296], where the authors analyze basic image data to try to obtain a correla-
tion between image statistics and the perception of under- and over-exposure. s
From each exposure in the bracketed sequence, we obtained three candidate ren-
ditions for display on the HDR monitor using a representative subset of reverse
tone mapping algorithms: ldr2hdr [368], Banterle’s operator [30] and linear con-
trast scaling [12]. Except for the straightforward linear scaling (in Yxy color space,
and thus performed on linearized values) we obtained the images from the au-
thors of the original algorithms, in order to ensure accuracy in the implemen-
tation. For the ldr2hdr algorithm the parameters used were 150 pixels for the
standard deviation of the large Gaussian blur applied to the mask, a brightness
amplification factor α = 4 and a gradient image baseline width for divided differ-
ences of 5 pixels, plus a 9×9-pixel kernel for the antialiasing blur and a 4-pixel
radius for the open operator used to clean up the final edge stopping function
(please refer to the original paper for a detailed explanation of these parameters).

http://webdiis.unizar.es/~bmasia/downloads/thesis/rTM_Stimuli.zip
http://webdiis.unizar.es/~bmasia/downloads/thesis/rTM_Stimuli.zip
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In the case of Banterle’s operator, when generating the expand-map, the parame-
ters of the density estimation were a radius ranging from 16 to 42 pixels (smaller
radius for lower exposures) and a threshold of 1 to 4 light sources (lower thresh-
old for higher exposures), being 2048 the number of generated light sources for
Median Cut sampling. In both cases, Banterle’s operator and ldr2hdr, images
were linearized using gamma correction (γ = 2.2). We also added a fourth LDR
rendition in which the original images are presented within a luminance range
matched to a typical desktop TFT monitor. The goal of this fourth image is to
study whether the established assumption that visual preference is given to HDR
holds over a range of exposures.

3.3.2 Subjects

A gender-balanced set of twelve subjects with normal or corrected-to-normal
acuity and normal color vision were recruited to participate in the experiment.
All subjects were unaware of the purpose of the study, and were unfamiliar with
HDR imaging.

3.3.3 Procedure

Participants viewed the stimuli on the Brightside HDR display in a dark room.
On each trial, subjects were presented with all four renditions of a given exposure
of a given scene in a 2×2 array (a stimulus quadruple). The positions of the four
renditions within the array were random across trials, and the order of the trials
was random with the constraint that consecutive trials did not present the same
scene. The subjects’ task was to rate the quality of the four renditions on a scale
from 1 to 7, according to how accurately the images depicted how the scene
would appear to the subject if they were actually present in the scene. Thus the
key criterion for comparison was the subjective fidelity of the renditions. Subjects
were given unlimited time for each trial and could modify their rating of any of
the renditions on a given trial before proceeding to the next trial. Additionally,
they were free to assign the same values to all four renditions on a given trial,
although they were instructed to try to use as much of the 1-7 scale as possible
within the experiment as a whole. To aid them in setting their scale, and to
accustom them to the experimental procedure, the subjects were presented with
a number of practice trials before the start of the experiment.

3.3.4 Results

Several conclusions can be drawn from this test. First, for our images, there was
a clear difference in perceived quality between the bright and the dark series:
subjects clearly preferred the reverse tone mapped depictions of darker images
over brighter ones. This can be seen in Figure 3.4: not only is the overall mean
value significantly higher in the former case, but it is relatively stable across
exposure as well. In contrast, for the bright images, there is a general downward
trend in ratings across the four exposure levels.
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(i-j) pb(i, j) pd(i, j)

ldr2hdr - Banterle’s 2.0532e-21 2.8633e-7

ldr2hdr - Linear 0.5734 0.0283

ldr2hdr - LDR 1.7762e-6 1.4976e-11

Banterle’s - Linear 1.1739e-22 0,0013

Banterle’s - LDR 4.4489e-11 0.1938

Linear - LDR 1.4697e-7 2.0538e-6

Table 3.1: Results of the Wilcoxon rank sum tests for the bright and dark series (denoted
by subindices b and d respectively). Values of p < 0.05 are considered to in-
dicate statistically significant differences between rTMOs. Thus, all differences
were significant except for ldr2hdr vs. Linear in the bright series and Banterle
vs. LDR in the dark series.

Note that this gradual decrease in performance does not correlate with the
subjective perception of quality of the original LDR image: in a previous pilot
study, users picked different exposures for each series as the subjective best, not
necessarily the same as the objective best (defined as the one with the smallest
proportion of under- and over-exposed pixels [12]). The trend instead correlates
with the proportion of over-exposed pixels and the mean luminance, which do
increase with exposure.

Secondly, we can observe systematic differences between the rTMOs. On av-
erage, subjects rated the ldr2hdr and the Linear rTMOs best (the difference
between the two failed to reach statistical significance), followed by the LDR im-
ages, and finally the output of the Banterle’s rTMO (see Figure 3.4). Pairwise
Wilcoxon rank sum tests (similar to a non-parametric version of the t-test) reveal
that these differences were significant to p < 0.05, except for ldr2hdr vs. Linear
in the bright series and Banterle’s operator vs. the LDR depiction in the dark
series (see Table 3.1 for the complete results).

It is important to note, however, that this ordering does not hold for all condi-
tions. For instance, the LDR depiction was systematically ranked lower than two
of the rTMOs, suggesting that indeed HDR visualization is still preferred over
LDR, even for under- and over-exposed images. Surprisingly, though, it ranked
higher on average than Banterle’s rTMO for bright images. The poor overall per-
formance of Banterle’s rTMO with this data set is probably due to the fact that
it often exaggerates the errors in poorly exposed images, resulting in intrusive
artifacts. This becomes clear when we measure the extent to which each rTMO
yields outlier rating values for each image. We calculate the median rating for
each image across rTMOs. We then obtain the outlier index as the difference in
rating for each rTMO relative to this median value. When an rTMO is neutral,
simply reflecting the overall quality of the exposure of the image, then the out-
lier index tends to be close to zero. However, when an rTMO stands out relative
to the others (for example due to the introduction of artifacts), then the outlier
index tends to deviate from zero. In Figure 3.5, we plot the histogram of the
outlier index values for the three rTMOs and the LDR depiction. It is notable
that for ldr2hdr, Linear and LDR, the distribution tends to be relatively tightly
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Figure 3.5: Distribution of outlier indices for all four rTMOs. Top: bright series. Bottom:
dark series.

tuned, while for Banterle’s the spread is much broader. This means that on the
one hand, when it performs well, it tends to equal or exceed the others. However,
it sometimes introduces substantial artifacts that cause the images to look worse
than if they were not reverse tone mapped at all.

Although this seems to contradict a recent study where Banterle’s operator
actually outperformed other rTMOs [34], it is important to note that the exper-
iments carried out in both cases differ significantly: first of all, in the work by
Banterle et al. [34] the LDR source images were again well exposed, which is the
regime within which Banterle’s rTMO performs well, as we also found. However,
when the source material is less flattering, we found that the algorithm some-
times produces clearly visible artifacts, which leads to lower ratings. Second,
in [34] the authors used a 2AFC paradigm with direct ground truth comparison,
whereas we propose a rating approach, which allows users to report their relative
subjective preferences. Both tasks are valid ways of assessing fidelity. However,
ours has the advantage that it is closer to the real usage scenario: in general the
ground truth is unknown and is not presented for comparison.

3.4 experiment two : hdr vs . ldr monitor

We notice that artifacts produced by ldr2hdr and Banterle’s rTMOs are typi-
cally visible in low dynamic range renditions of the images. This is because they
generally have a spatial component: they are not simply due to inappropriate
intensity levels for certain features, but they also include fringes, visibly boosted
noise and other artifacts. To analyze this, we performed a second experiment
with seven new subjects, which was identical to the first experiment, except that
on each trial, the 2×2 stimulus array was tone mapped using histogram adjust-
ment [470]1. The array was then presented on a standard TFT monitor (note that

1 We have used the pcond program in Radiance to tone map the stimuli.
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this means that the LDR control condition now appears much darker than on a
normal TFT).

In Figure 3.6, we plot the average ratings for each image in the LDR control
condition against the average ratings in the HDR condition. As can be seen from
the scatter plot, the ratings in the LDR control condition correlated extremely
strongly with the ratings in the original experiment on the HDR monitor (r2 =

0.9018). We found no significant difference between bright and dark images.
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Figure 3.6: Scatter plot showing a strong correlation between ratings on an HDR monitor
and ratings when the images were tone mapped back down to LDR and
presented on a standard TFT monitor.

This result does not imply that the images look the same in LDR as in HDR:
the subjects were not asked to compare these conditions directly, and previous
studies have confirmed that HDR depictions are preferred over LDR [12]. In-
deed, none of the subjects saw both renditions. However, it does demonstrate
that the pattern of preferences is extremely well conserved. In other words, the
images that were less preferred on the HDR monitor were also less preferred
when tone mapped back down to LDR. This has two important implications.
First, the strong correlation found suggests that a reasonably predictive evalu-
ation of a rTMO could be made without directly testing on an HDR monitor.
Second, as noted, the subjective ratings of HDR images that have been generated
from LDR images seem to depend more on the presence or absence of disturb-
ing spatial artifacts than on the exact intensities of different features. A similar
observation (confirmed by our test) was made by Aydin et al. [24]: they noted
that the key issue in image reproduction is to accurately maintain the important
features while preserving overall structure, whereas achieving an optical match
becomes relatively less important. This becomes even more salient given that
the dark-adaptation state of the observer is typically unknown, making absolute
intensities meaningless to the user.
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The design philosophy that emerges from these considerations is that it is
generally better to apply simpler, less-aggressive rTMO schemes if the original
image is imperfect. Failing to fully recreate the HDR experience is less disturbing
to users than unintended artifacts that can occur when poorly-exposed images
are adjusted too aggressively. In the following section we present a simple and
robust approach to boosting the dynamic range of over-exposed images, and
show that it is less prone to artifacts than other rTMOs.

3.5 expanding over-exposed content

Our experiments have shown that the danger with computationally sophisticated
reverse tone mapping schemes is the potential to make the image appear worse
than before processing, through the introduction of objectionable artifacts. How-
ever, the goal of a rTMO is to make the image content look better in general and
avoid, under any circumstances, making it look worse. Simple global reverse
tone mappers, such as linear scaling and gamma boosting, never cause polarity
reversals, ringing artifacts or spuriously boost regions well beyond their context.
Our first experiment clearly indicates that there is room for improvement in de-
vising an rTMO for bright input images with large saturated areas, whilst darker
images turn out much better. We thus focus on the former in this section.

Examining the bright sequence in Figure 3.3 we observe that as exposure in-
creases, more detail is lost as pixel values become saturated, and colors fade to
white. It thus seems reasonable to attempt to depict the image in a way that the
remaining details become more prominent, as opposed to boosting saturated ar-
eas as existing rTMOs do. Note that we do not aim to recover information lost to
over-exposure, for which existing hallucination techniques may work [465], but
rather to increase perceived quality.

We make the following key observations, which have been confirmed by pre-
vious studies on reverse tone mapping: on the one hand, darker HDR depictions
are usually preferred for bright input LDR images [316]; on the other hand, in
many cases contrast enhancements improve perceived image quality [368]. These
suggest expansion of the linearized luminance values following a simple γ curve,
which has the desired effect of darkening the overall appearance of the images
while increasing contrast. Linearization of the luminance values prior to the dy-
namic range expansion was done with a gamma curve (γ = 2.2), following the
findings by Rempel et al. [368] which note that simple gamma correction can
be used for linearization instead of the inverse of the camera response without
producing visible artifacts. To avoid amplifying noise, a bilateral filter [440] can
be used prior to expansion [368]. Gamma expansion may potentially boost noise;
however, over-exposed images tend to be significantly less noisy than under-
exposed ones. Our psychophysical tests confirmed that noise amplification did
not affect the final perceived quality.

3.5.1 Determining the value of γ

Obviously, the problem with the proposed expansion lies in automatically ob-
taining an image-dependent suitable γ value, to avoid the cumbersome manual
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readjustment of the display settings for each individual image to be shown. We
asked users in a pilot study to manually adjust the value of γ in a set of images.
Table 3.2 includes the γ values for the image database. Columns 1 to 4 indicate
increasing exposure, while rows correspond to the different scenes captured. We

Table 3.2: γ values for the five scenes and the four exposure levels.

Scene 1 2 3 4

Building 1.22 1.5 1.75 2.6

Lake 1.1 1.2 1.5 2.25

Sunset 1.1 1.35 1.4 1.75

Graffiti 1.2 1.35 1.5 1.75

Strawberries 1.22 1.35 1.55 1.9

additionally compute a series of statistics for each image. For all of them, lumi-
nance is obtained from sRGB linearized values [365]:

L = Y = 0.2126R+ 0.7152G+ 0.0722B, (12)

where L is thus normalized to [0..1].
These statistics include both the arithmetic and the geometric mean luminance

(referred to as Lavg and LH, respectively). The arithmetic mean is simply ob-
tained by averaging the luminance value of all pixels (Lavg = 1/N

∑N
i=1 L(i),

with N being the total number of pixels in the image); the geometric mean,
known to reduce the contribution of outliers, is obtained as follows [37]:

LH = exp

(
1

N

N∑
i=1

log(L(i) + ε)

)
, (13)

where ε is a very small positive number to prevent singularities in black pixels.
We additionally compute the logarithm of this quantity, simply logLH. The key
of the images is also obtained, using the following equation [11]:

k =
logLH − logLmin
logLmax − logLmin

. (14)

In this equation Lmax and Lmin are the maximum and minimum luminance val-
ues, respectively, once a percentage of outlier pixels (both on the dark and bright
sides) has been eliminated. We calculate two key values, k5 and k1, considering
5% or 1% of the pixels as outliers, respectively. Additionally, both the median,
Lmed, and a series of central moments, are computed for the luminance of the im-
ages. These include variance VL (and standard deviation σL), skewness (skewL)
and kurtosis (kurtL). Finally, we compute the percentage of over-exposed pixels
for each of the images, defining over-exposed pixels as those with L · 255 > 254;
we will refer to it as pov. Table A.1 in Appendix A includes the values obtained
for each of the aforementioned statistics for the images of our dataset. In the
following we show the regressions we explored for the obtention of the γ value
of an image from its statistics.
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We proceeded to fitting the data with a multilinear regression, that is, a linear
regression with multiple variables as predictors. Restricting ourselves to linear
regressions was decided to keep the model as simple as possible; if a good model
could not be found assuming a linear relationship, we would move on to more
complex fittings. We initially used ordinary least squares to do the fittings. This
implies a series of assumptions over the errors, mainly that they are normally dis-
tributed, with constant variance, and independent of each other. It also implies
that the independent variables are free of error, or that their error is insignificant
compared to the error of the dependent variable. We tested and analyzed sev-
eral different fittings, varying the subset of image statistics that constituted the
independent variables.

Once the type of model (i.e. linear) has been chosen, the problem which arises
when working with multiple predictors is knowing which of the possible predic-
tors (i.e. the independent variables, in our case the calculated image statistics)
should be included in the model and which should be left out.

The way in which we deal with this is performing F-tests over the possible
models. Computing the R2 value or another goodness of fit metric and compar-
ing their values for both models is typically not enough. The reason for this is
that given two models, A and B, with pA and pB terms, respectively, if pA > pB,
model A will always fit the data at least as good as model B. Thus, what has
to be found out is if the addition of that extra parameter(s) to model A gives a
significantly better fitting; as mentioned, we make use of F-statistics to assess that.
Appendix B describes the use of F-tests in the construction of multiple variable
models.

A stepwise regression is used to build the possible multilinear models [422].
This yields different final models2, for which a series of metrics are computed
in order to evaluate the accuracy of the fitting. In particular we compute the
RMSE and the overall F-statistic for each model obtained (see Appendix C for a
definition of these parameters). Additionally, we check for and remove outliers.
After this, the model which yields the best fit to the data—i.e. the one with the
lowest RMSE, and with the lowest p-value in the overall F-test—is the one given
by the following equation:

γ = 0.9855+ 2.8972LH − 0.8232Lmed + 0.2734skewL − 0.0898kurtL (15)

Figure 3.7 shows the observed γ values in the x-axis, against the γ values pre-
dicted by our model. To further illustrate the predictive accuracy of our model,
the figure also compiles goodness of fit measures, including RMSE, the F-statistic,
R2 and R̃2.

Alternatively, we can retain all the observed data but weight their influence
when computing the regression. To do this, we perform a new regression us-
ing iteratively reweighed least squares. The weight function used is a bisquare
function. The new regression is thus given by the following equation:

γ = 2.4379+ 0.2319logLH − 1.1228k1 + 0.0085pov. (16)

Figure 3.8 shows the predictive accuracy of the model obtained by robust re-
gression compared to ordinary least squares (OLS). Additionally, if we compute

2 More details on possible models and how they are built can be found in [301].
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RMSE = 0.0664

F-stat = 52.8833

p-value = 6.4567·10-8

R2 = 0.9421

Adjusted R2 = 0.9243

Figure 3.7: Predictive accuracy of the regression shown in Equation 15. The x-axis shows
observed γ values, while the y-axis depicts the values predicted by the regres-
sion. The cyan line shows the quadrant bisection.

a robust RMSE estimate for this last regression [114], we obtain an estimate of
0.0962 (while estimates for the previous one, OLS without oultiers, was 0.0664).

Figure 3.8: Predictive accuracy of the model obtained by robust regression against the
one obtained by ordinary least squares. The abscissa shows observed γ values,
while the y-axis depicts the values predicted by the regression. The cyan line
marks the quadrant bisection.

3.5.2 Validation

To provide a subjective evaluation of the performance of our γ-expansion, we
repeated Experiment One (Section 3.3), substituting the LDR depiction with our
γ-expanded versions (see Table 3.2) in order to maintain the 2×2 stimulus array.
The red line in Figure 3.4 shows the results.
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Linear expansion ldr2hdr Banterle’s operator our γ curve

Figure 3.9: Comparing the results of several rTMOs with the image quality metric from
Aydin et al.[24]. The reference LDR images are Lake (top) and Building (bot-
tom) as depicted in Figure 3.2 (which correspond to the third and second
exposure levels in the series. Please refer to Appendix D for all the expo-
sures in all the scenes). Green, blue and red identify loss of visible contrast,
amplification of invisible contrast and contrast reversal respectively. Our γ
expansion does not lose any contrast, while minimizing gradient reversals.
More importantly, it reveals more detail in the most significant areas of the
images (trees, grass, bushes and buildings in the images shown).

Experiment One provides useful information about the subjective perception
of image quality. However, we are also interested in evaluating our approach
from an objective point of view. The problem is the fact that the intended com-
parison needs to be performed between an LDR and an HDR image. Aydin
and colleagues [24] presented a novel image quality metric which identifies vis-
ible distortions between two images, independently of their respective dynamic
ranges. The metric uses a model of the human visual system, and classifies vis-
ible changes between a reference and a test image. The authors identify three
types of structural changes: loss of visible contrast (when contrast visible in the
reference image becomes invisible in the second one), amplification of invisible
contrast (when invisible contrast in the reference image becomes visible in the
second one), and reversal of visible contrast (when contrast polarity is reversed
in the second image with respect to the reference). It is important to remem-
ber that, as Rempel and colleagues noted [368], contrast enhancement tends to
increase perceived quality, and therefore is a desired outcome of the rTMO.

Figure 3.9 shows the results of this metric3 comparing two of the original
LDR images (reference images) with the corresponding outputs using linear ex-
pansion, ldr2hdr, Banterle’s operator and our proposed γ curve. Our method
reveals more detail, shows no loss of contrast and minimizes gradient reversals.
Note that while our approach may fail to utilize the dynamic range to its full ex-
tent in some cases, it has the important and experimentally validated advantage
of avoiding objectionable and unpredictable artifacts.

3 We have used the online implementation provided by the original authors of the paper: http:
//drim.mpi-inf.mpg.de/generator.php

http://drim.mpi-inf.mpg.de/generator.php
http://drim.mpi-inf.mpg.de/generator.php
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3.6 discussion

Experiment One shows that performance of rTMOs decreases for input images
containing a large number of over-exposed pixels, while they seem to perform
significantly better for darker images. This suggests that for bright images the
consensual approach of boosting bright areas could be improved. We have shown
that a simple rTMO based on γ expansion, without the need for explicitly detect-
ing saturated areas, outperforms existing rTMOs in these cases, and propose
an empirical expression to automatically find a suitable γ as a function of the
image’s key, without user interaction. This rTMO has the desired properties of
boosting contrast and detail in non-saturated areas of the image, visually com-
pensating for the lack of information in the saturated ones.

We have performed two validation studies, both subjective and objective. The
first one has confirmed that our approach increases the perceived image quality
for these kind of images. Pairwise Wilcoxon rank sum tests revealed that the
differences in rating were statistically significant with respect to all other rTMOs
tested. Given that it produces darker overall images with increased contrast, this
result is in accordance with previous suggestions [316, 368]. The second evalua-
tion uses a recently published image quality metric which operates with arbitrary
dynamic ranges [24]. The metric concludes that our method reveals more detail
in non-saturated areas, does not reduce contrast and shows less gradient rever-
sals than the other rTMOs tested. Thus, the artists’ original intentions are better
preserved.

In both experiments we used typical numbers of subjects for a within-subject
design in psychophysics, and the results were highly coherent across subjects. In
Experiment One the reported results are statistically significant to the p < 0.05
level, meaning that the chances that the outcome of the pairwise comparisons
would change after running more subjects from the same population is less than
5%. Indeed, for many of the results, the probability is many orders of magni-
tude lower than this, which implies that the qualitative pattern of the results is
well conserved across subjects. Likewise, data from Experiment Two exhibit a
correlation coefficient of 0.9018, notably conclusive in statistical terms.

We also ran the same expansion on the images from the dark series: as ex-
pected, we found no significant improvements over the tested rTMOs, given that
our expansion is designed for bright images (see Figure 3.4, bottom).

The results from our second experiment confirm that spatial artifacts are more
disturbing than inaccuracy in reproduced intensity levels [24]. We found a very
strong correlation in the pattern of preferences when viewing images on HDR
and LDR displays. This does not mean that the images looked the same, but it
does suggest that the artifacts that emerge with poorly-exposed input images are
spatial in nature and severe enough that HDR evaluation is not necessary: they
can also be clearly seen in LDR.

3.7 selective reverse tone mapping

We have seen how, to produce a pleasant HDR image from LDR input, existing
rTMOs work under the general assumption that highly saturated pixels need
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Figure 3.10: Examples of images containing large saturated areas.

to be expanded much more than the rest. As a result, bright image areas repre-
senting features like highlights, or the sun in the sky, are largely boosted, thus
counter-parting the clamping of information in the LDR image and better rep-
resenting the real-world experience. Even though these techniques can produce
appealing results for a wide range of LDR content, there are some cases in which
the general approach of boosting bright areas may not be the best way to pro-
ceed, as shown in the first part of this chapter. These cases include images -such
as those shown in Figure 3.10- which contain large saturated areas, either because
of artistic purposes or due to a bad exposure.

In this section we show how a tailored approach to dynamic range expansion
can be a good alternative in those cases which are unfavorable for existing rT-
MOs. We present two different techniques, one based in Ansel Adams’ Zone
System [3], and another based on detection of salient features, which allow the
user to control dynamic range expansion based on her own preferences or in-
tended goal. The techniques can also be used in combination with each other.
This provides a new method for reverse tone mapping and an artistic tool where
tonal balance and mood of the final HDR image can be adjusted by the user (in a
similar manner to existing tools for LDR or HDR images [65, 260, 27, 268, 126]).

3.7.1 Using the Zone System for rTM

The so-called Zone System was introduced by Ansel Adams as a guide to pro-
duce good photographs with correct tonal values [3]. Exposure is the main fac-
tor which determines the way in which the luminance values of the scene are
finally mapped to the limited range of values which can be reproduced by the
photograph; choosing the right exposure is therefore one of the most important
concerns of a photographer. Common exposure meters are designed to aid in
this task by measuring luminance values of the scene (or object of interest) and
suggesting the lens aperture and shutter speed values. However, irrespective of
the scene -its lighting or content-, the values provided by an exposure meter are
always such that the object of interest will appear as middle gray in the final
image, which in many cases will not be the adequate election. A simple exam-
ple which illustrates this problem is that of photographing a black and white
checkerboard and a scene which is all black except for a white square: the same
exposure settings should be used in both of them, yet the reading of an exposure
meter would give very different exposure settings for each one. Ansel Adams’
Zone System provides a simple way of, using this middle gray reading of expo-
sure meters, choosing the best exposure settings. This system is not only a tool
for photographers still widely in use today [207, 145], but also a formalization
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Figure 3.11: Division of luminance in zones according to Ansel Adams’ System.

of sensitometry principles which provides deep insight into how mapping of
tonal values works. Reinhard et al. [364] already rely on it as a basis for their
well-known tone mapper, and posterior works on interactive tone management
have also built on this system [268]. Following Adams’ technique the luminance
values in a scene can be divided into ten different luminance zones (0 through
IX, see Figure 3.11) according to the equation given by Koren [238]:

p =

((
exp(v sin

(
π
zone− 1

16

)
− 1

)
/ (exp(v) − 1)

)ψ
, (17)

where p represents the zone limits in normalized pixel luminances and ψ is the
encoding function responsible for non-linearities in the LDR values (usually the
inverse of a γ function). The value v = 5.25 is set so that zone V on a properly
calibrated monitor appears as middle gray [3], defined as 21% of the maximum
screen brightness level (this is similar to 18% reflectance referenced to 90% white,
which is pure white on good photographic paper). Equation 17 is designed so
that input values of zero and one map to zones 0 and IX respectively, while the
sine function is responsible for the compression required at high pixel levels.
Once the luminance range of the LDR input image is divided in zones according

IX0 I II III IV V VI VIIIVII

Figure 3.12: Left: Input LDR image. Right: The result of luminance decomposition for
zone-based reverse tone mapping.

to Equation 17 (see Figure 3.12) the reverse tone mapping process is done by as-
signing different expansion functions to the different zones. Although in theory
these functions could be as complex as desired, we choose to use linear functions
for each zone, as they offer a good balance between simplicity and control over
the expansion. Thus, the resulting rTM function is piece-wise linear. The darkest
and the brightest zones (0 and IX, respectively) of the LDR image are mapped
to the lowest and the highest luminance values of the HDR display. A second
constraint is that the rTM function must be monotonically increasing, as other-
wise gradient reversals may appear that spoil the final depiction. Expansion is
performed on the luminance channel, and the RGB channels are then recovered.
Saturation can be tuned when recovering chromaticities in order to obtain the
best depiction. Adjusting the slopes of each of the zones may seem like an in-
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volved process; however, in the end it somehow resembles what photographers
constantly do, as it translates to assigning ranges of the HDR image luminance
to each zone of the LDR input image. Besides, the calculation of the resulting
HDR image is almost immediate, thus allowing the user to try different curves
before choosing the final one. As an example, Figure 3.13, right shows an HDR
image obtained by using a piece-wise linear curve on which only three values
were specified: Zone IV being assigned 10% of the HDR image luminance range,
Zone VI 40% of that range, and Zone VII 60% of it, which translates to adjusting
three points of the LDR–HDR curve shown. We can also appreciate how this sim-
ple tuning of the rTM function yields a more appealing depiction than the linear
scaling (shown to be on par in subject preference with the HDR image itself by
Akyüz and colleagues [12]). Additionally, this zone-based expansion can also be
used as part of a bigger rTM framework, as examples in Section 8.7 show.

Input Image

Zone-based ExpansionLinear Expansion

Input Image

Figure 3.13: Zone-based reverse tone mapping. Left: HDR image obtained by linearly
expanding luminance values, and corresponding expansion function. Top
center: Original LDR image. Right: HDR image obtained with a piece-wise
linear expansion function based on the Zone System, and corresponding
graph showing this expansion function.

3.7.2 Content-aware rTM

As noted before, the general approach in rTM is to allocate most of the addi-
tional dynamic range that an HDR display offers to saturated areas in the scene.
However, this may not always be the optimal choice. To our knowledge, none of
the previous techniques have taken into consideration the semantics of the scene.
In an image where a large region of it is saturated, such as the leaf in the snow in
Figure 3.10, treating in a different way the object of interest (in this case the leaf)
and the saturated background (the snow) can lead to more visually appealing
results than boosting the saturated area while leaving the leaf nearly untouched.
The same reasoning applies to the rest of the images in Figure 1, and in general
to images which, either as a result of the artist’s choice, or because of wrong
exposure, contain large saturated areas. Moreover, when dealing with these type
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of images, linearly expanding the dynamic range (which in general terms is the
other rTM alternative offered by the literature) would result in a significant loss
of visible contrast, which is a crucial characteristic of these type of images.

We therefore propose to use a higher-level approach in these cases, taking into
account the content of the scene and detecting the object of interest in order to
use different reverse tone mapping functions for it and for the background. To
separate the region of interest from the background a saliency detector can be
used.

3.7.2.1 Detecting salient features

Saliency detection techniques pursue the objective of detecting those regions
where the viewer’s attention concentrates when looking at the image. Even though
it is an active field where research continues to offer new and improved methods,
a series of detectors exist which are able to offer convincing results in a wide vari-
ety of images. In general, saliency detection is performed by developing more or
less complex models of the human visual system and using them in combination
with image metrics. Most models of attention are based on the fact that at the
first stage of visual attention low-level visual features (i.e. edges, intensities, ori-
entations) are extracted. Following this, many existing methods obtain low level
features on a first stage, and on a second stage they compute saliency based on
these features, as does the well-known work of Itti et al. [197]. However, for many
purposes it is necessary to perform a third stage in which object segmentation is
applied to extract salient objects instead of just a map of salient locations. In our
case the need for this third stage in the saliency detection is obvious, as we look
for an accurate separation between the object of interest and the background.
From within the saliency detection techniques developed in the last years, we
found two of them to meet our needs and applied them to our content-aware
reverse tone mapping framework. They are both briefly summarized below.

learning-based saliency detection. This method, introduced by Liu
and colleagues [270], delivers, for each input image I, a binary saliency map
A = ai, where ai takes values 1 or 0 depending on whether each pixel belongs or
not to the salient object, respectively. In essence, they formulate the problem as a
Conditional Random Field (CRF) in which P(A|I) is inferred using a combination
of salient features. Learning using a large training database is used to determine
the optimal linear combination of the computed salient features.

Given an image I, whose saliency is to be computed, the objective is to obtain
a binary saliency mask A. To do this P(A|I) is computed as:

P(A|I) =
1

Z
exp(−E(A|I)), (18)

where Z is the partition function (equivalent to a normalizing factor) and the
energy E(A|I) is defined as:

E(A|I) =
∑
i

K∑
k=1

λkFk(ai, I) +
∑
i,i ′
S(ai,ai ′ , I). (19)



68 reverse tone mapping

The first term of Equation 19 corresponds to the linear combination of saliency
features, so that λk are the coefficients which are calculated by learning and
Fk(ai, I) are the K feature functions employed. As for the second term, i and i ′

denote two adjacent pixels, and S(ai,ai ′ , I) is intended so that the pixels in the
homogeneous inner part of the salient object are included as salient ones. The
function S is thus designed so that the likelihood that two adjacent pixels are
assigned different labels decreases the more similar in color the pixels are.

The feature functions Fk follow the expression:

Fk(ai, I) =

{
fk(i, I) ai = 0

1− fk(i, I) a1 = 1
, (20)

with fk(i, I) being a different function depending on the feature computed but
always taking values within the [0, 1] interval. In their work, Liu et al. choose
to use three different feature functions at different levels: multi-scale contrast at
local level, center-surround histogram at regional level, and color spatial distri-
bution at a global level. The experiments performed in their work show how
the combination of the three yields an optimal result. Figure 3.14 (bottom row)
shows an example of these feature functions used and the final saliency mask
obtained from them. Training has to be performed for the CRF in order to obtain

Figure 3.14: Saliency detection with the different methods. Top left: Input image. Top
right: Saliency detection using the Saliency Cuts algorithm. Bottom row:
Saliency detection using the learning-based saliency detection approach
(images from the saliency database publicly available at http://research.

microsoft.com/$\sim$jiansun/). Further details can be found in the text.

the coefficients λk which determine the influence of each feature function. To do
this, the training set is a large database of images (ca. 21,000 images) where the
salient object has been manually labeled. The obtention of λk is posed as a max-

http://research.microsoft.com/$\sim $jiansun/
http://research.microsoft.com/$\sim $jiansun/
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imization problem where the objective function is the sum of the log-likelihood
(details on how to solve the optimization problem can be found in their paper):

λ =

λ1λ2
λ3

 = argmax
λ

∑
n

logP(Aj|Ij;λ), (21)

where Ij, j = 1..N, refer to the images in the training set and Aj to their corre-
sponding saliency binary masks.

saliency cuts . This method, presented by Fu et al. [134] is essentially a
combination of two techniques: the use of graph cuts for object segmentation [55,
380] and the spectral approach to saliency detection of Hou et al. [182].

Interactive graph cuts methods pose object segmentation as a minimal graph
cuts problem. The nodes of the graph are formed by image pixels, and the two
terminal nodes {s, t} correspond to object and background, respectively. These
marking of pixels as object or background by the user constitute the hard con-
straints on the problem, while soft constraints which take into account boundary
and region information are also incorporated. The problem of finding minimal
cuts in the graph is then solved via a max–flow algorithm [56].

As for the saliency detection, following the spectral residual approach to the
problem the saliency map is computed as:

S(x) = g(x) ∗ F−1[exp(R(f) + P(f))]2, (22)

where R(f) is the spectral residual, obtained as L(f) −A(f), L(f) being the log
spectrum of the input image (after downsampling it) and A(f) being the general
shape of log spectra. g(x) is a Gaussian filter used to smooth the final saliency
map, F−1 denotes the Inverse Fourier Transform, and P(f) represents the phase
spectrum of the image (the reader can refer to the original paper for a com-
prehensive description). In the Saliency Cuts implementation this map S(x) is
then binarized to obtain an object saliency map So(x). This binary saliency map,
together with the auto-labeling used for the background and the salient object
when performing the segmentation, can be seen in Figure 3.14 (top right).

The idea behind the Saliency Cuts framework is that even though interactive
graph cuts can yield very accurate segmentations when proper priors are used,
it usually requires a skillful user to select the appropriate regions to feed the
algorithm. However, saliency regions detected by the algorithm by Hou and col-
leagues can serve as seeds to the graph cuts segmentation process, thus obtaining
an automatic and accurate separation between the salient object and the back-
ground. The limitations of the method lie in the fact that they can only detect a
single object and in their assumption that the salient object is at the center of the
image, while the sides are always assumed to belong to the background.

3.7.2.2 Expanding the dynamic range

Once the division in object of interest and background has been performed, dif-
ferent expansion functions can be used for each. These expansion functions can
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Figure 3.15: Complete pipeline using our rTM approach. From left to right: Input LDR im-
age, auto-labeling of salient object (blue) and background (red) and binary
saliency mask, expansion functions for the salient object (blue) and the back-
ground (red), and final HDR image. Original image copyright of National
Geographic.

be of any type. Given that we are focusing on an interactive approach where the
user guides the reverse tone mapping process, we choose again to use piece-wise
linear functions after a separation in luminance zones as explained in Section
3.7.1. Resulting HDR images obtained with this rTM framework and the corre-
sponding saliencies and expansion functions are shown in the Results section.

3.7.3 Results and Discussion

Figure 3.15 shows an example of a complete pipeline using our rTM approach,
combining the two techniques described in the previous sections. The original
image is segmented yielding a binary mask containing the salient object, and
a division in luminance zones of the input image is performed. Next, the user
can adjust the range of luminance in the HDR final image that will be assigned
to each zone, both for the seals and for the background independently. This al-
lows the user to easily manipulate the tonal balance of the image to get the best
depiction. In this case a non-linear curve (shown in blue in the graph) has been
applied to the seals, thus increasing their contrast and making them more salient;
the snow has been just linearly expanded. Segmentation has been performed us-
ing Saliency Cuts (seeds used for the foreground and background are shown in
blue and red, respectively). Even though both of the saliency detection methods
presented produce segmentations accurate enough for our purposes given in-
put images which are not excessively complex, for increasing complexity (either
morphological or related to luminance values) manual segmentation may be nec-
essary. The presence of more than two salient objects in the image also requires a
manual segmentation, as the methods discussed cannot segment more than one
object. In the results presented in Figure 3.16 the object of interest was segmented
manually and, again, different zone-based piece-wise linear expansion functions
were used for the salient object and for the background.

The interactive nature of the approach presented implies that the functions for
reverse tone mapping, which determine how the high dynamic range image will
look, are adjusted and tuned with low dynamic range renditions of the images
as feedback. This is reasonable due to the fact that—as shown in the first part of
the chapter (Section 3.4) and in [302]—the subjective quality of HDR images that
have been generated from LDR images depends more on the presence of absence
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Figure 3.16: Reverse tone mapping using different zone-based expansion functions for
the salient object and the background. From left to right: Input LDR image,
manually obtained saliency mask, expansion functions for the salient ob-
ject (blue) and the background (red) and final HDR image. Original image
courtesy of Leandro Fessia, all rights reserved.

of spatial artifacts than on the exact luminance values, and thus a reasonably
predictive evaluation of an HDR image can be done with an LDR depiction of it.

3.8 conclusions

Previous works on the perception of HDR images and rTM design have assumed
that the input images were, in general, correctly exposed. While these provide
valuable knowledge that could guide the development of both HDR display hard-
ware and reverse tone mapping algorithms, existing LDR legacy content actually
covers a wide range of exposures, including material that suffers from bad ex-
posure. As currently designed, existing rTMOs tend to boost over-exposed areas
more than the rest of the image. The strategy works well for small areas such as
light sources or highlights if the rest of the image is correctly exposed, but no
performance evaluation on generally over-exposed imagery had been performed.

Our experiments confirmed that performance of rTMOs decreases for over-
exposed input images, suggesting that for bright images the consensual ap-
proach of boosting bright areas could be improved.We have shown that a rTMO
based on γ expansion can outperform existing rTMOs in these cases. Further, our
findings indicate seem to indicate that superior rTMOs should take into account
global statistics about the image, and not just individual pixel values. We have
derived a simple strategy for the expansion based on image statistics, but more
sophisticated strategies could also be devised, possibly including high-level se-
mantics.

With the exception of the approach presented in Section 3.7, we do not aim to
create new depictions of LDR material, which would potentially interfere with
the original intentions and artistic vision. Our goal is much like that of an audio
mastering engineer: we wish to increase the illusion of power, presence and fi-
delity in the final display medium, while preserving the author’s original vision
of the content. Our results complement those in the work by Akyüz et al. [12],
where the authors show that, for correctly exposed imagery, a simple linear ex-
pansion works well and suggest that sophisticated treatment of LDR data may
not be necessary. In fact, our work is consistent with that of Akyüz et al. [12] in
the sense that our proposed γ curves approach linear scaling when the image is
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approximately correctly exposed. Together, both studies suggest that potentially
complex operators might not be needed.

In Section 3.7 have presented an interactive approach to reverse tone map-
ping which can be useful for a wide variety of images, especially those contain-
ing large saturated areas. The basis of our method is inspired by photographer
Ansel Adams’ well-known Zone System, which allows us to divide the lumi-
nance range of the image into zones. With the aid of this division in zones, and
in an interactive process, a piece-wise linear function to expand the LDR image
can be provided by the user. Furthermore, our technique includes the possibility
of using higher-level information as a guide for the expansion, segmenting the
image in the object of interest and the background and using different expansion
functions for each. This interactive approach offers a tool to expand the dynamic
range of a scene with significant yet intuitive control over the final result. Besides,
being able to freely adjust the luminance ranges of the zones makes it possible
to obtain very different HDR depictions of the same input image, potentially
providing an artistic tool for photographers and artists in general.

Regarding future work in this interactive part, adding a fitting step of the piece-
wise linear rTM functions proposed to smoother ones would be desirable. In the
same sense, when dealing with content-aware rTM, taking care of the luminance
transitions in the boundary between the objects of interest and the backgrounds
would be necessary, either by somehow smoothing the binary mask or by placing
constraints to the relationship between both -the object’s and the background’s-
expansion functions. It would also be interesting to work in Yxy color space
instead of RGB to automatically keep ratios between color channels constant.
Besides, thorough comparison between the proposed rTM technique and exist-
ing reverse tone mapping operators by means of psychophysical experiments
would certainly be interesting for the field. Finally, salient object detection is an
open field of research, and our approach would definitely benefit from future ad-
vances in this field. Other lines of future research could involve the design of a
contrast-based rTMO, following the findings of the work by Mantiuk et al. [292],
which shows promising results in the field of contrast processing of HDR images,
working in visual response space.

The conclusions drawn aim to be valuable for further development of HDR dis-
play technology, HDR imaging in general and the development of future LDR
expansion algorithms in particular. However, further tests on LDR expansion are
desirable. As the community investigates this issue further, this and similar stud-
ies will surely be extended and updated. Additionally, reverse tone mapping for
video content is a key challenge in this field. In order to develop operators that
gracefully handle changes in exposure over time, it is crucial to first understand
how they fail in the static case.



Part III

C O M P U TAT I O N A L D I S P L AY S

This part begins with a survey on computational displays, where
the different technologies and algorithms are categorized along the
dimensions of the plenoptic function. We then propose a disparity
remapping method to deal with the problem of depth of field in auto-
multiscopic displays. Further extensible to stereoscopic displays, this
method leverages knowledge from computational models of percep-
tion of luminance-contrast and depth. Finally, we focus on comfort
when viewing stereo content in motion, and present a set of com-
prehensive measurements of comfort as a function of a number of
parameters, and a metric to assess the degree of comfort for short
clips of video.





4
A S U RV E Y O N C O M P U TAT I O N A L D I S P L AY S

about this chapter

This chapter is a review of the state of the art in the field of computational dis-
plays, which has undergone great progress over the last few years. One of the
main strengths of this survey, we believe, lies in how it is organized: we ana-
lyze the advances in the field and categorize them along the dimensions of the
plenoptic function. Additionally, the survey pays special attention to the aspects
of human perception which are leveraged, or could potentailly be leveraged, to
enhance display capabilities and improve the viewing experience. The survey,
although led by myself, has been done as a collaboration between Gordon Wet-
zstein, from MIT Media Lab, Piotr Didyk, from MIT CSAIL, and Diego Gutierrez,
with expertise in different areas within the displays field. My focus has been on
sections 4.1, 4.2, 4.3, part of Section 4.7 and part of 4.8. The work has been ac-
cepted for a special issue on Advanced Displays of the journal Computers &
Graphics.

B. Masia, G. Wetzstein, P. Didyk and D. Gutierrez.
A Review on Computational Displays: Pushing the Boundaries of Optics,

Computation, and Perception.
Computers & Graphics 2013, to appear.

4.1 introduction

In 1692, French painter Gaspar Antoine de Bois-Clair introduced a novel tech-
nique that would allow him to paint so-called double portraits. By dividing each
portrait into a series of stripes carefully aligned behind vertical occluding bars,
two different paintings could be seen, depending on the viewer’s position with
respect to the canvas. Figure 4.1 shows the double portrait of King Frederik IV
and Queen Louise of Mecklenburg-Gstow [406]. Later, Frederic Ives patented in
1903 what he called the parallax stereogram, based also on the idea of placing oc-
cluding barriers in front of an image to allow it to change depending on viewer’s
position [198]. Five years later, Gabriel Lippmann proposed using a lenslet array
instead, an approach he called integral photography [265].

Both parallax barriers and lenslet arrays shared a common objective: to pro-
vide different views of the same scene or, more technically, to increase the range
and resolution of the angular dimension(s) of the plenoptic function. The plenop-
tic function [6] represents light observed from every position in every direction,
i.e. a complete representation of the light in a scene. It is a multidimensional
function that includes information about intensity, color (wavelength), time, po-
sition and viewing direction (angle). The previously mentioned techniques, for
instance, allow to increase the angular resolution at the cost of reducing the spa-
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Figure 4.1: Double portrait by Gaspar Antoine de Bois-Clair, as viewed from the left,
center and from the right (images courtesy of Robert Simon [406]).

tial resolution (the same image area needs now to be shared between several
views); an additional cost is reduced intensity, since parallax barriers block a
large amount of light.

Over the past few years we have seen large advances in display technology.
These have motivated surveying papers on related topics such as real-time image
correction techniques for projector-camera systems [50], parallax capabilities of
3D displays [179, 45], or specialized courses focused on emerging compressive
displays in top conferences [477, 483], to name just a few.

In this survey, we provide a holistic view of the field, mainly from a com-
puter graphics perspective, and categorize existing works according to which
particular dimension(s) of the plenoptic function is enhanced. For instance, high
dynamic range displays improve intensity (luminance) contrast, while automul-
tiscopic displays expand angular resolution. We further note that the recent
progress in the field has been spurred by the joint design of hardware and dis-
play optics with computational algorithms and perceptual considerations. Thus,
we identify perceptual aspects of the human visual system (HVS) that are being
used by these technologies to yield an apparent enhancement, beyond the physical
possibilities of the display. Examples of these include wobbling displays, provid-
ing higher spatial resolution by retinal integration of lower resolution images, or
the apparent increased intensity of some pixels caused by the glare illusion.

Therefore, we provide a novel view of the recent advances in the field tak-
ing the plenoptic function as a supporting structure (see Figure 4.2) and putting
an emphasis on human visual perception. For each section, each focusing on
a dimension of the plenoptic function, we first present perceptual foundations
related to that dimension, and then describe display technologies, and software
solutions for the generation of content in which the specific dimension being dis-
cussed is enhanced. Specifically, we first address expansion on dynamic range in
Section 2, followed by color gamut (Section 3), increased spatial resolution (Sec-
tion 4), increased temporal resolution (Section 5) and finally increased angular
resolution, for both stereo (Section 6) and automultiscopic displays (Section 7).

For topics where there is a large body of existing literature, beyond what can
be reasonably covered by this survey, we highlight some of the main techniques
and suggest alternative publications for further reading (such as tone mapping
or superresolution techniques). For other related aspects not covered here, such



4.2 improving contrast and luminance range 77

as detailed descriptions of hardware, electronics or the underlying physics of
the hardware, we refer the interested reader to other excellent sources [272, 155].
Finally, although projection-based display systems are included in this survey
whenever they focus on enhancing the aspects of the plenoptic function, there
are a number of works which fall out of the scope of this survey. These include
works dealing with geometric calibration (briefly discussed in Section 4.3.3), or
extended depth-of-field projection [147, 278]. We refer the interested reader to
existing books focused on projection systems [48, 50, 284].

4.2 improving contrast and luminance range

The dynamic range of a display refers to the ratio between the maximum and
minimum luminance that the display is capable of emitting [366]. The advantages
and improved quality of High Dynamic Range (HDR) images are by now well
established. By not limiting the values of the red, green and blue channels to the
range [0..255], physically-accurate photometric values can be stored instead. This
yields much richer depictions of the scenes, including more detail in dark areas
and avoiding saturated pixels (Figure 4.3).

Many applications can benefit from HDR data, including image-based light-
ing [97], image editing [219] or medical imaging [49]. The field has been exten-
sively investigated, especially in the last decade, and several excellent books exist
offering detailed explanations on related aspects, including image formats and
encodings, capture methods, or quality metrics [366, 37, 174, 325].

4.2.1 Perceptual Considerations

There are two types of photoreceptors in the eye: cones and rods. Each of the
three cone types is sensitive in a wavelength range, the sensitivity of each type
peaking at a different wavelength, roughly belonging to red, green and blue;
combined, they allow us to see color. They are most sensitive to photopic (day
light) luminance conditions, usually above 1 cd/m2, while rods (of which only
one type exists) are most sensitive to scotopic (night light) conditions, approxi-
mately below 10−3 cd/m2. The bridging range where both cones and rods play
an active role at the same time is called the mesopic range (see Figure 4.4).

On the other hand, luminance values in natural scenes (from moonless night
sky to direct sunlight from a clear sky) may span about 12 to 14 orders of mag-
nitude, although simultaneous luminance values usually fall within a more re-
stricted range of about four to six orders of magnitude (for a more exhaustive
discussion on luminance ranges in natural scenes the reader may refer to [493]).
The HVS can perceive only around four orders of magnitude simultaneously, but
it uses a process known as dynamic adaptation, effectively shifting its sensitive
range to the current illumination conditions [366, 462, 309].

Despite this ability to adapt across a wide dynamic range, our ability to dis-
cern local scene contrast boundaries is reduced by veiling caused by light scat-
tering inside the eye (an effect known as veiling glare, or disability glare). Many
other luminance-related factors affect our visibility, including the intensity of the
background (Weber’s law) and the spatial frequency of the stimuli, whose depen-
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Figure 4.3: Low dynamic range depictions of a high dynamic range scene, showing large
saturated (left) or dark areas (right).

Figure 4.4: Scotopic, mesopic and photopic vision, corresponding to different luminance
levels [25].

dency is modeled by the contrast sensitivity function (CSF, see Figure 4.5, right);
the bleaching of photoreceptors when exposed to high levels of luminance, which
translates into a loss of spectral sensitivity [122]; the Craik-O’Brien-Cornsweet il-
lusion, by which adjacent regions of equal luminance are perceived differently
depending on the characteristics of their shared edges [228]; or the effect known
as visual masking, where contrast sensitivity loss is induced due to the presence
of signal in nearby regions [25]. Researchers have also investigated perceptual as-
pects of increased dynamic range, including analyzing the subjective preferences
of users, to improve HDR display technology [503, 390, 12].

4.2.2 Display Architectures

Traditional CRT displays typically show up to two orders of magnitude of dy-
namic range: Analog display signals are typically 8-bit because, even though a
CRT display could reproduce higher bit-depths, it would be including values
at levels too low for humans to perceive [366]. LCD displays, although brighter,
do not significantly improve that range. HDR displays enhance the contrast and
luminance range of the displayed images, thus providing a richer visual expe-
rience. A passive HDR stereoscopic viewer overlaying two transparencies was
presented by Ledda et al. [256]. Seetzen et al. [392, 389] presented the first two
active prototypes, which set the basis for later models that can be now found in
the market (Figure 4.5, left). The two prototypes shared the key idea—illustrated
in Figure 4.5, center—of optically modulating a high spatial resolution (but low
dynamic range) image with an LCD panel showing a grayscale, low spatial reso-
lution (but high intensity) version of the same image. This provides a theoretical
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contrast equal to the multiplication of both dynamic ranges. Alternatively, two
parallel-aligned LCD panels of equal resolution can be used [377]. A detailed
description of the first prototypes and the concept of dual modulation of light can
be found in Seetzen’s PhD. Thesis [391].

Commercially available displays with increased contrast are mostly based on
local dimming. This name refers to the particular case of dual modulation in which
one of the modulators has a significantly lower resolution than the other [366].
This arises from knowledge of visual perception, and in particular of the effect
known as veiling glare. Due to veiling glare, the contrast that can be perceived
at a local level is much lower than at a global level, meaning there is no need
to have very large local contrast, and thus a lower resolution panel can be used
for one of the modulators. The drawback is potentially perceivable halos, whose
visibility depends on the particular arrangement of the LED array.

Projector-based systems exist, also based on the principle of double modulation.
Majumder and Welch showed how by overlapping multiple projectors, the inten-
sity range (difference between highest and lowest intensity levels; note that is
different from contrast, which is defined as the ratio) could be increased [286].
The first contrast expansion technique was proposed by Pavlovych and Stuer-
zlinger [344], where a small projected image is first formed by a set of lenses,
which is subsequently modulated by an LCD panel. A second set of lenses en-
larges the final image. Other similar approaches exist, making use of LCD or
LCoS panels to modulate the illumination [248, 92]. Multi-projector tiled dis-
plays present another problem in addition to limited dynamic range: Brightness
and color discontinuities at the overlapping projected areas [475]. Majumder et
al. [283] rely on the contrast sensitivity function to achieve a seamless integration
with enhanced overall brightness. Recently, secondary modulation of projected
light has also been used to boost contrast of paper images and printed pho-
tographs [49] (see Figure 4.6).

4.2.3 HDR Content Generation and Processing

Contrast and accurate depiction of the dynamic range of real world scenes have
been a key issue in photography for over a century (see for instance the work of
Ansel Adams [3]). The seminal works by Mann and Picard [289], and by Debevec
and Malik [98], brought HDR imaging to the digital realm, allowing to capture
HDR data by adapting the multi-bracketing photographic technique. More so-
phisticated acquisition techniques have continued to appear ever since (see [481]
for a compilation), helping for instance to reduce ghosting artifacts in dynamic
scenes [397, 510, 184] (see [154] for a recent review on deghosting techniques),
using computational photography approaches [381, 330], mobile devices [2, 117]
or directly capturing HDR video [439, 325, 450, 244].

Regarding the visualization of such HDR content, we distinguish three main
categories: Tone-mapping, by which high dynamic range is scaled down to fit the
capabilities of the display; reverse tone mapping, by which low dynamic range
is expanded for correct visualization on more modern higher dynamic range
displays; and apparent brightness enhancement techniques, which leverage how
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our brains interpret some specific luminance cues and translate them into the
perception of brightness (but the actual dynamic range remains unchanged).

Figure 4.6: Superimposing dynamic range for medical applications. Left: a single hard-
copy print. Right: expanded dynamic range by superimposing three different
prints with different exposures [49].

Tone Mapping. Over the past few years, many user studies have been performed
to understand which tone mapping strategies produce the best possible visual
experience [257, 503, 390, 291]. The field has been extremely active over the past
two decades, with a proliferation of many algorithms which can be broadly char-
acterized as global or local operators. While a complete survey of all existing
tone mapping operators is out of the scope of the work, the interested reader
can refer to other sources of information, where many of these algorithms are
discussed, categorized and compared [99, 366, 37, 67].

Figure 4.7: Tone mapping allows for a better visualization of HDR images on displays
with a limited dynamic range. Left, naive visualization with a simple linear
scaling; Right, the result of Reinhard’s photographic tone reproduction tech-
nique [364].

Global operators apply the same mapping function to all the pixels in the
image, and were first introduced to computer graphics by Tumblin and Rush-
meier [445]. They can be very simple, although they may fail to reproduce fine
details in areas where the local contrast cannot be maintained [471, 388]. To
provide results that better simulate how real-world scenes are perceived, usu-
ally some perceptual strategies are adopted, based on different aspects of the
HVS [132, 470, 111, 362]. Usually these perceptually motivated works rely on
techniques like multi-scale representations, transducer functions, color appear-
ance models or retinex-based algorithms [292].
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Local operators, on the other hand, tone-map each pixel taking into account in-
formation from the surrounding pixels, and thus usually allow for better preser-
vation of local contrast [78]. The main drawback is that the local nature of the
algorithms may give rise to unpleasant halos around some edges [366]. Again,
perceptual considerations can be introduced in their design to reduce visible
artifacts [342, 242]. Other strategies include adapting well known analog tone
reproduction techniques from photography [364] (Figure 4.7), while others take
into account the temporal domain, being especially engineered for videos [343].

Other operators work from a different perspective, for instance by working
in the gradient domain [129] or in the frequency domain [115]. The exposure
fusion technique [313] circumvents the need to obtain an HDR image first and
then apply a tone mapping operator. Instead, the final tone-mapped image is
directly assembled from the original multi-bracketed image sequence, based on
simple, pixel-wise quality measures. Last, the work by Mantiuk et al. [293] derive
a tone mapping operator that takes explicitly into account the different displays
and viewing conditions the images can be viewed under.

Reverse Tone Mapping. Somewhat less studied is the problem of reverse tone
mapping, where the goal is to take LDR content and expand its contrast to recre-
ate and HDR viewing experience (Chapter 3 in this thesis is devoted to this topic).
It is gaining importance as more and more HDR displays reach the market, given
the large amount of LDR legacy content. Reverse tone mapping involves deal-
ing with clipped data, which makes it a slightly different problem from tone
mapping (see Figure 3.1). As before, a number of studies have been recently con-
ducted to understand what the best strategy for dynamic range expansion may
be [12, 296, 302, 34, 369].

The first methods were presented by Daly and Feng, and included bit-depth
extension techniques [90] followed by techniques to solve subsequent problems
such as contour artifacts [91]. Subsequent works have appeared over the years,
usually following the approach of identifying the bright areas in the input image
and expanding those the most, leaving the rest moderately (if at all) expanded
to prevent noise amplification [30, 316, 368, 240, 39]. Other methods require di-
rect user input [101, 465, 303]. Banterle and colleagues proposed one of the first
extensions for video [35], while Masia et al. analyzed the problem across vary-
ing exposure conditions [302, 301]. In their work, the authors additionally found
that the perceived quality of the expanded images depends more on the absence
of disturbing spatial artifacts than on the exact contrasts in the image. A more
exhaustive presentation on the topic of reverse tone mapping can be found in
the recent book by Banterle et al. [37].

Apparent brightness enhancement. A strategy to increase the apparent dynamic
range of the displayed images is to directly exploit some of the mechanisms of
the HVS, and how our brains interpret some luminance cues, and translate them
into the perception of brightness. For instance, we have mentioned how some
tone mapping operators introduce unwanted halos, that are perceived as arti-
facts. However, halos have been used for centuries by painters, to create steeper
luminance gradients at the edges of objects and increase local image contrast.
This technique is known as countershading, and it resembles the unsharp masking
operator, which increases local contrast by adding a high-pass-filtered version
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of the image [412, 273, 371, 243]. The potential benefits and drawbacks of this
technique have also been recently investigated in this context [444].

Another example is the bleaching effect, which was first utilized by Gutierrez
and colleagues to both increase apparent brightness of light sources and simu-
late the associated perceived change of color [149, 152]. The temporal domain
was subsequently added, allowing for the simulation of time-varying afterim-
ages [370] (see Figure 4.8). Synthetic glare has also be added around bright light
sources in the images, to simulate scattering (both in the atmosphere and in the
eye) and thus enhance brightness [502, 372]. Last, binocular fusion has been used
by showing two different low dynamic range depictions of the same HDR input
image on a binocular display. The fused image presents more visual richness and
detail than any of the single LDR versions [496] (Figure 4.9).

Figure 4.8: Afterimage simulation of a traffic light, showing variations over time of color,
degree of blur and shape [370].

Figure 4.9: Binocular tone mapping. The fused image presents more detail than any of
the two individual, low dynamic range depictions [496].

4.3 improving color gamut

In 1916 the company Technicolor was granted a patent for “a device for simulta-
neous projection of two or more images" [82] which would allow the projection
of motion pictures in color. Although not the only color film system, it would
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be the system primarily used by Hollywood companies for their movies in the
first half of the 20th century. Color television came later, starting in 1950 in the
United States (although NTSC was not introduced until 1953), and not reaching
Europe until 1967 (PAL/SECAM systems). Several standards are in use today,
among which YCbCr is the ITU-R recommendation for HDTV (high definition
television, with a standard resolution of 720p or 1080p). Until today, the quest to
reproduce the whole color range that our visual system can perceive continues.

4.3.1 Perceptual Considerations

The dual-process theory is the commonly accepted theory that describes the pro-
cessing of color by the HVS [365]. The theory states that color processing is per-
formed in two sequential stages: a trichromatic stage and an opponent-process
stage [189]. The trichromatic stage is based on the theory that any perceivable
color can be generated with a combination of three colors, which correspond
to the three types of color-perceiving photoreceptors of our visual system (see
Section 4.2.1). In the opponent-process stage the three channels of the previous
stage are re-encoded into three new channels: a red-green channel, a yellow-blue
channel, and a non-opponent channel for achromatic responses (from black to
white). These theories, originally developed by psychophysics, are confirmed by
neurophysiological results.

The theories which have been mentioned describe the behavior of the HVS
for isolated patches of color, and do not take into account the influence of sur-
rounding factors, such as environment lighting. Chromatic adaptation (or color
constancy), for instance, is the mechanism by which our visual system adapts
to the dominant colors of illumination. There are many other mechanisms and
effects that play a role in our perception of color, such as simultaneous contrast,
the brightness of colors, image size or the luminance level of the surroundings,
and many experiments have been carried out to try to quantify them [275, 188,
123, 318, 324]. Recently, edge smoothness was also found to have a measurable
impact on our perception of color [225, 61]. Further, color perception has a large
psychological component, making it a challenging task to measure, describe or
reproduce color. So-called “standardized” observers exist [365, 195], based on
measurements of a set of observers, and are used as a reference for display de-
sign, manufacturing or calibration.

4.3.2 Display Architectures

Increasing the color gamut of displays is typically achieved by using more satu-
rated primaries, or by using a larger number of primaries. The former essentially
“pushes further” the corners of the triangle defining the color gamut in a three-
primary system (Figure 4.10, left). An alternative technique consists of using
negative values for the RGB color signals (Figure 4.10, right). Emitting elements
with a broad spectral distribution, as is the case of phosphors in CRTs, severely
limit the achievable gamut. Research has been carried out to improve the color
gamut of these types of displays [222], but for the last two decades liquid crystal
displays have been the most common display technology due to their advantages
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Figure 4.10: Left: Color gamut expanded by raising the saturation of the primary col-
ors. Right: Color gamut expanded by using negative values for the color
signals [418] (images copyright of Sony).

over CRTs [402, 312]. Progressively, the traditional CCFL (cold cathode fluores-
cent lamp) backlights used in these displays are being substituted by LED back-
lights due to the lower power consumption and the wider color gamuts they can
offer because of the use of saturated primaries [413, 213]. LEDs also have some
drawbacks, mainly the instability of their emission curves, which can change
with temperature, ageing or degradation; color non-uniformity correction cir-
cuits are needed for correct color calibration in these displays [425, 430, 426].
Seetzen et al. [393] presented a calibration technique for HDR displays to help
overcome degradation problems of the LEDs that cause undesirable color varia-
tions in the display over time. Their technique can additionally be modified to
extend it to conventional LCD displays. Within this trend of obtaining more
pure primaries, lasers have been proposed as an alternative to LEDs due to
their extremely narrow spectral distribution, yielding displays that can cover
the gamuts of the most common color spaces (ITU-R BT.709, Adobe RGB) [300],
or a display offering a color gamut that is up to 190% the color gamut of ITU-R
BT.709 [417, 428, 429, 234].

Multiple primary displays result in a color gamut that is no longer triangular,
and can cover a larger area of the perceivable horseshoe-shaped gamut. Ultra
wide color gamut displays using four [77], five [447, 75], and up to six color
primaries [497, 427, 431] have been proposed. Multi-primary displays based on
projection also exist [9, 378, 62, 379].

4.3.3 Achieving Faithful Color Reproduction

Tone reproduction operators (see Section 4.2) can benefit from the application of
color appearance models, to ensure that the chromatic appearance of the scene is
preserved for different display environments [11]. Several color appearance mod-
els (CAMs) have been proposed, with the goal of predicting how colors will be
perceived by an observer [320, 123, 246]. In fact, it has been recently argued that
tone reproduction and color appearance, traditionally treated as different prob-
lems, could be treated jointly [363] (Figure 4.12. Usually, simple post-processing
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Figure 4.11: Color appearance of a high dynamic range image, based on predicted light-
ness, colorfulness and hue [224].

steps are performed to correct for color saturation [388, 290]. However, most color
appearance models work under a set of simplified viewing conditions; very few,
for instance, take into account issues associated with dynamic range. A few no-
table exceptions exists, such as iCAM [124, 125] or the subsequent iCAM06 [245].
Recently, Kim et al. developed a model of color perception based on psychophys-
ical data across most of the dynamic range of the HVS [224] (Figure 4.11), while
Reinhard and colleagues proposed a model that adapts images and video for
specific viewing conditions such as environment illumination or display charac-
teristics [367], as shown in Figure 4.13.

From the whole range of colors perceivable by our visual system, only a subset
can be reproduced by existing displays. The sRGB color space, which has been
the standard for multimedia systems, works well with e.g. CRT displays but
falls short for wider gamut displays. In 2003 the scRGB, an extended RGB color
space, was approved by the IEC [191], and the extended color space xvYCC [190]
followed, which can support a gamut which is nearly double that supported by
sRGB.

Faithful color reproduction on devices with different characteristics requires
gamut manipulation, known as gamut mapping. Gamut mapping can refer both
to gamut reduction or expansion, depending on the relationship between the
original and target color gamuts [321]; these can further be given by a device or
by the content. An example of the latter is the case of image-dependent gamut
mapping, where the source gamut is taken from the input image and an opti-
mization is used to compute the appropriate mapping to the target device [139].
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Figure 4.12: Typical processing paths for tone reproduction algorithms and color appear-
ance models (CAMs) [363].

Figure 4.13: Accurate color reproduction, taking into account both display type and
viewing conditions (shown here for cinema screen, iPhone and a desktop
monitor). The plot shows the image histogram in gray, as well as the in-
put/output mapping of the three color channels [367].

Gamut expansion can be done automatically [69, 162], or manually by experi-
enced artists. The work of Anderson et al. [17] combines both approaches: an
expert expands a single image to meet the target display’s gamut and a color
transformation is learned from that expansion and applied to each frame of the
content. The reader may refer to the work by Muijs et al. [323] and by Laird et
al. [250] for a description and evaluation of gamut extension algorithms, or to
the comprehensive work of Morovič for a more general view on gamut mapping
and color management systems [322]. Finally, the concept of display-adaptive
rendering was introduced by Glassner et al. [140], applicable to the inverse case
of needing to compress color gamut of content to that of the display. Instead of
compressing color gamut as a post-process operation on the image [138, 319],
they propose to automatically modify scene colors so that the rendered image
matches the color gamut of the target display.

Accurate reproduction of color is particularly challenging for projection sys-
tems, specially if the projection surface properties are unknown and/or the im-
age is not being displayed on a projection-optimized screen. Radiometric calibra-
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tion is required to faithfully display an image in those cases. Typically, projector-
camera systems are used for this purpose. These compensation is of special im-
portance in screens with spatially varying reflectance [327, 146]. Some authors
have incorporated models of the HVS to radiometrically compensate images in
a perceptual way, i. e.minimizing visible artifacts [463], while others incorporate
knowledge of our visual system by computing the differences in perceptually
uniform color spaces [22]. Conventional methods usually assume a one-to-one
mapping between projector and camera pixels, and ignore global illumination
effects, but in the real world there can be surfaces where these effects have a
significant influence (e. g.presence of transparent objects, or complex surfaces
with interreflections). Wetzstein and Bimber [479] propose a calibration method
which approximates the inverse of the light transport matrix of the scene to per-
form radiometric calibration in real time and being able to account for global
illumination effects. These works on radiometric compensation often also deal
with geometric correction. Geometric calibration compensates, often by warping
the content, for the projection surface being non-planar. An option is to project
patterns of structured light onto the scene, as done by e.g. Zollmann and Bim-
ber [511]; an alternative is to utilize features of the captured distorted projection,
first introduced by Yang and Welch [495]. Geometric calibration for projectors is
out of the scope of this survey, but we refer the interested reader to the book by
Majumder and Brown [284].

4.4 improving spatial resolution

High spatial definition is a key aspect when reproducing a scene. It is currently
the main factor that display manufacturers exploit (with terms such as Full HD,
HDTV, UHD, referring to different, and not always strictly defined, spatial res-
olutions of the display), since it has been very well received among customers.
So-called 4K displays, i.e. those with a horizontal resolution of around 4,000 pix-
els, are already being commercialized, although producing content at such high
resolution has now become an issue due to storage and streaming problems; we
describe existing approaches in terms of content generation in Section 4.4.3.

4.4.1 Perceptual Considerations

Of the two types of photoreceptors in the eye (see Section 4.2.1), cones have a
faster response time than rods, and can perceive finer detail. The highest visual
acuity in our retina is achieved in the fovea centralis, a very small area without
rods and where the density of cones is largest. According to Nyquist’s theorem,
assuming a top density of cones in the fovea of 28 arc seconds [87], this concen-
tration of cones allows an observer to distinguish one-dimensional sine gratings
of a resolution about 60 cycles per degree [102]. Additionally, sophisticated mech-
anisms of the HVS enhance this resolution, achieving visual hyperacuity beyond
what the retinal photoreceptors can resolve [476]. In comparison, the pixel size of
a typical desktop HD display (a 120 Hz Samsung SyncMaster 2233, 22”), when
viewed at a distance of half a meter, covers approximately nine cones [102]. The
peri-foveal region is essentially populated by rods; these are responsible for pe-
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ripheral vision, which is much lower in resolution. As a consequence, our eyes
are only able to resolve with detail the part of a scene which is focused on the
fovea; this is one of the reasons for the saccadic movements our visual system
performs. Microsaccades are fast involuntary shifts in the gazing direction that
our eyes perform during fixation. It is commonly accepted that they are nec-
essary for human vision: if the projection of a stimulus on the retina remains
constant the visual percept will eventually fade out and disappear [350].

On the contrary, if the stimulus changes rapidly, the information will be fused
in the retina by temporal signal integration [214]. Related to this, the smooth
pursuit eye motion (SPEM) mechanism in the HVS allows the eyes to track and
match velocities with a slowly moving feature in an image [241, 298, 249]. This
tracking is almost perfect up to 7 deg/s [249], but becomes inaccurate at 80

deg/s [89]. This process stabilizes the image on the retina and allows to perceive
sharp and crisp images.

Figure 4.14: Spatial resolution enhancement by temporal superposition in a wobbling
display. Top, left: Example image as seen on a conventional (static) display.
Top, right: Higher resolution image perceived on a vibrating display. Bottom:
to vibrate the display, a motor with an offset weight is attached to its back.
Centrifugal forces make the screen vibrate as the motor rotates [47].

4.4.2 Display Architectures

There is a mismatch between the spatial resolution of today’s captured or ren-
dered images, and the resolution that displays that can currently be found in a
typical household can show. This effectively means that captured images need
to be downsampled before being shown, which leads to loss of fine details and
the introduction of new artifacts. Higher resolution can be achieved by tiling pro-
jected images [187, 359, 285, 64, 287]. Another obvious way to increase the spatial
resolution of displays is to have more pixels per inch, in order to make the under-
lying grid invisible to the eye. The Retina display by Appleő, for instance, packs
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about 220 pixels per inch (for a 15” display). Even though this is a very high pixel
density, it is still not enough for a user not to distinguish pixels at the normal
viewing distance of 20”1. Other alternatives to a very high pixel density have
been explored. With the exception of sub-pixel rendering [349] (Section 4.4.3), all
superresolution displays require specialized hardware configurations. These can
be categorized into optical superposition and temporal superposition.

Optical Superposition is a projection principle where low-resolution images from
multiple devices are optically superimposed on the projection screen. The super-
imposed images are all shifted by some amount with respect to each other such
that one super-resolved pixel receives contributions from multiple devices. Exam-
ples of this technique include [93] and [202]. Precise calibration of the projection
system is essential in these techniques. The optimal pixel states to be displayed by
each projector are usually computed by solving a linear inverse problem. Perfor-
mance metrics for these types of superresolution displays are discussed in [449].

Figure 4.15: Spatial resolution enhancement by optical pixel sharing. Top-left: The Op-
tical Pixel Sharing technique decomposes a target high resolution image I
into a high resolution edge image Ie and a low resolution non-edge image
Ine, which are then displayed in a time sequential manner to obtain the
edge-enhanced image Iv. Top-right: Comparison of the target image with a
low resolution and a enhanced resolution version. Bottom: a side view of
the prototype projector, achieving enhanced resolution by cascading two
lower-resolution panels [385].

1 Pixel density and viewing distance calculator at http://isthisretina.com/

http://isthisretina.com/
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Temporal Superposition. Similar to optical superposition techniques, temporal
multiplexing requires multiple low-resolution images to be displayed, each shifted
with respect to each other. Shown faster than the perceivable flickering frequency
of the HVS (which depends on a number of factors, as described in Section 4.5.1),
these images will be fused together by the HVS into a higher resolution one, be-
yond the actual physical limits of the display. This idea can be seen as the dual
of the jittered camera for ensembling a high resolution image from multiple
low-resolution versions [44]. The shift can be achieved in single display/projec-
tor designs using actuated mirrors [14] or mechanical vibrations of the entire
display [47] (Figure 4.14). As an interesting avenue of future work, the authors
of the latter work outline how the physical vibrations of the display could be
avoided, by using a crystal called Potassium Lithium Tantalate Niobate (KLTN),
which can change its refractive index [8].

The disadvantage of most existing superresolution displays is that either mul-
tiple devices are required, increasing size, weight, and cost of the system, or that
mechanically-moving parts are necessary. One approach that does not require
either is Optical Pixel Sharing (OPS) [385, 384], which uses two LCD panels and
a jumbling lens array in projectors to overlay a high-resolution edge image on a
coarse resolution image to adaptively increase resolution (Figure 4.15). OPS is
compressive in the sense that the device does not have the degrees of freedom to
represent any arbitrary target image. Much like image compression techniques,
OPS relies on the target to be compressible.

4.4.3 Generation of Content

We group existing techniques for higher definition content generation into three
categories: super-resolution, sub-pixel rendering and temporal integration.

Super-resolution. Increasing spatial resolution is related to super-resolution tech-
niques (see for instance [193, 44, 29]. The underlying idea is to take a signal pro-
cessing approach to reconstruct a higher-resolution signal from a low-resolution
one (or several). It is less expensive than physically packing more pixels, and
the results can usually be shown on any low-resolution display. Super-resolution
techniques are used in different fields like medical imaging, surveillance or satel-
lite imaging. We refer the reader to recent state of the art reports for a complete
overview [341, 454].

Majumder [282] provides a theoretical analysis investigating the duality be-
tween super-resolution from multiple captured images, and from multiple over-
lapping projectors, and shows that super-resolution is only feasible by changing
the size of the pixels. In their work on display supersampling [93], the authors
present a theoretical analysis to engineer the right aliasing in the low-resolution
images, so that resolution is increased after superposition, even in the presence
of non-uniform grids. The same authors had previously presented a unifying
theory of both approaches, tiled and superimposed projection [94].

Sub-pixel Rendering. Sub-pixel rendering techniques increase the apparent res-
olution by taking advantage of the display sub-pixel architecture. Instead of
assuming that each channel is spatially coincident, they treat each one differ-
ently [46]. This approach has given rise to many different pixel architectures and
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reconstruction techniques [119, 20, 120]. For instance, Hara and Shiramatsu [157]
show that an RGGB pattern can extend the apparent pass band of moving im-
ages, improving the perceived quality with respect to a standard RGB pattern.

One of the key insights to handle sub-pixel sampling artifacts like color fringes
and moire patterns, is to leverage the fact that human luminance and chromi-
nance contrast sensitivity functions differ, and both signal can be treated differ-
ently. Platt [349] and Klompenhouwer and De Haan [230] exploited this in the
context of text rasterization and image scaling, respectively. Platt’s method, used
in the ClearType functionality, is limited to increased resolution in the horizon-
tal dimension; based on this, other different filtering strategies to reduce color
artifacts have been tested [128]. Messing and Daly additionally remove chromi-
nance aliasing using a perceptual model [315], while Messing et al. present a
constrained optimization framework to mask defective sub-pixels for any reg-
ular 2D configuration [314]. These approaches have been recently generalized,
presenting optimal, analytical filters for different one- and two-dimensional sub-
pixel layouts [121].

Predicted perceived imageSubimages

Figure 4.16: Spatial resolution enhancement by temporal superposition in a conventional
display. Left: Low resolution images displayed sequentially in time. Right:
Corresponding high resolution image perceived as a consequence of the
temporal integration performed by the HVS by leveraging SPEM [104].

Temporal integration. An analysis of the properties of the superimposed images
resulting from temporal integration appears in [383]. Berthouzoz and Fattal [47]
present an analysis of the theoretical limits of this technique. Instead of physi-
cally shaking the display, Basu and Baudisch [43] change the strategy and intro-
duce subtle motion to the displayed images, so that higher resolution is perceived
by means of temporal integration. Didyk et al [104] project moving low resolu-
tion images to predictable locations in the fovea, leveraging the SPEM feature
of the HVS (see Section 4.4.1) to achieve perceived high resolution images from
multiplexed low resolution content (Figure 4.16). This work is limited to one-
dimensional, slow panning movements at constant velocity. In subsequent work,
the idea is generalized to arbitrary motions and videos, by analyzing the spa-
tially varying optical flow. The assumption is that between consecutive saccades,
SPEM closely follows the optical flow [436].
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4.5 improving temporal resolution

Although spatial resolution is one of the most important aspects of a displayed
image, temporal resolution cannot be neglected. In this context, it is crucial that
the HVS acts as a time-averaging sensor. This has a huge influence in situations
where the displayed signal is not constant over time, or there is motion present
in the scene. In this section, we will show that the perceived quality can be
significantly affected in such situations and present methods that can improve it.

4.5.1 Perceptual Considerations

The HVS is limited in perceiving high temporal frequencies, i.e. an elevated num-
ber of variations in the image per unit time. This is due to the fact that the
response of receptors on the retina is not instantaneous [453]. Also, high-level
vision processes further lower the sensitivity of the HVS to temporal changes.
As a result, temporal fluctuations of the signal are averaged and perceived as
a constant signal. One of the basic findings in this field is Bloch’s law [142]. It
states that the detectability of a stimuli depends on the product of luminance and
exposure time. In practice, this means that the perceived brightness of a given
stimuli would be the same if the luminance was doubled and the exposure time
halved. Although it is often assumed that the temporal integration of the HVS
follows this law, it only holds for short duration times (around 40 ms) [142].

From the practical point of view it is more interesting to know when the HVS
can perceive temporal fluctuations and when it interprets them as a constant
signal. This is defined by the critical flicker frequency (CFF) [214], which defines a
threshold frequency for a signal to be perceived as constant or as changing over
time. The CFF depends on many factors such as temporal contrast, luminance
adaptation, retinal region or spatial extend of the stimuli. For different luminance
adaptation levels the CFF was measured yielding a temporal contrast sensitivity
function [96]. It is also important that the CFF significantly decreases for smaller
stimuli, and that peripheral regions of retina are more sensitive to flickering [310,
288]. Recently, these different factors where incorporated into a video quality
metric [26].

In the context of display design, in displays that do not reproduce a constant
signal (e.g., CRT displays), low refresh-rate can lead to visible and undesired
flickering. Another problem that can be caused by poor temporal resolution is
jaggy motion. Instead of smooth motion, which is normally observed in the real
world, fast moving objects on the screen appear as they were jumping in a dis-
crete way. Also, when the frame rate of the content does not correspond to the
frame rate of the display some frames need to be repeated or dropped. This, sim-
ilarly to low frame rate, contributes significantly to reduced smoothness of the
motion.

Besides the aforementioned issues, low frame rate may introduce significant
blur in the perceived image. This type of blur, often called hold-type blur, is purely
perceptual and cannot be observed in the content: It arises from the interaction
between the display and the HVS [339]. In the real world objects move continu-
ously, and they are tracked by the human eyes almost perfectly; this is enabled
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Figure 4.17: Simulation of hold-type blur [103]. A user is shown the same animation se-
quence (sample frame on the left) simultaneously at two different refresh
rates. The subject’s task is to adjust the blur in the sequence of the right
(120 Hz) until the level of blur matches that of the sequence on the left
(60 Hz). The average result is shown here: the blurred sequence on the right
displayed at 120 Hz is visually equivalent to the sharp sequence on the left
displayed at 60 Hz.

by the so-called smooth pursuit eye motion (SPEM, please refer to Section 4.4.1 for
details). In the context of current display devices, although the tracking still is
continuous, the image presented on a screen is kept static for an extended period
of time (i. e.the period of one frame). Therefore, due to temporal averaging, the
receptors on the retina average the signal while moving across the image during
the period of one frame. As a result the perceived image is blurred (see also Fig-
ure 4.17). The hold-type blur can be modeled using a box filter [231], its support
dependent on object velocity and frame rate. This blur is not the same blur as
that due to the slow response of the liquid crystals in LCD panels. Pan et al. [339]
demonstrated that only 30% of the perceived blur is a consequence of the slow
response (and they assumed a response of 16 ms, whereas in current displays
this time does not exceed 4 ms). This, together with overdrive techniques, makes
the problem of slow response time of displays negligible compared to the hold-
type blur. The hold-type blur is a big bottleneck for display manufacturers, as it
can destroy the quality of images reproduced using ultra-high resolutions such
as 4K or 8K. Since the strength of the blur depends on angular object velocity,
the problem becomes even more relevant with growing screen sizes, which are
desired in the context of home cinemas or visualization centers.

4.5.2 Temporal Upsampling Techniques

A straightforward solution to all problems mentioned above is higher framerate:
It reduces jaggy motion and solves the problem of framerate conversion. For
higher frame rates the period for which moving objects are kept in the same
location is reduced, therefore, it can also significantly reduce the hold-type blur.
However, high frame rate is not provided in broadcasting applications, and in
the context of computer graphics high temporal resolution is very expensive.
This forced both the graphics community and display manufacturers to devise
techniques to increase the frame rate of the content in an efficient manner.
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Most of the industrial solutions for temporal upsampling that are used in mod-
ern TV-sets are designed to compensate for the hold-type blur. Efficiency is key
in these solutions, as they are often implemented in small computational units.
These techniques usually increase frame rate to e. g.100 or 200 Hz, by introducing
intermediate frames generated from the low frame rate broadcasted signal.

One of the simplest methods in this context is black data insertion, i. e.introducing
black frames interleaved with the original content. This solution can reduce hold-
type blur because it reduces the time during which the objects are shown in the
same position. A similar technique, more efficient hardware solution is to turn on
and off backlight of LCD panel [339, 131]. This is possible because current LCD
panels employing LED backlights can switch at frequencies as high as 500 Hz.
These two techniques, although fast and easy to implement, suffer from bright-
ness and contrast reduction as well as possible temporal flickering. To overcome
these problems, Chen et al.[74] proposed to insert blurred copies of the original
frames. Although this ameliorates the brightness issue, it may produce ghosting,
since the additional frames are not motion compensated.

More common solutions in current TV screens are frame interpolation techniques.
In these techniques, additional frames are obtained by interpolating original
frames along motion trajectories [247]. Such methods can easily expand a 24 Hz
signal, a common standard for movies, to 240 Hz without brightness reduction
or flickering. The biggest limitation of these techniques is related to optical flow
estimation, which is required for good interpolation. For efficiency reasons sim-
ple optical flow techniques are used, which are prone to errors; they usually
perform well for slower motions and tend to fail for faster ones [103]. Addition-
ally, these techniques interpolate in-between frames, which requires knowledge
of future frames. This introduces a lag which is not a problem for broadcasting
applications, but may be unacceptable for interactive applications. In spite of
these problems, motion-based interpolation together with backlight flashing is
the most common technique in current display devices. An extended survey on
these techniques is provided in [131].

An alternative software solution used in TV-sets to reduce hold-type blur is
to apply a filtering step which compensates for the blur later introduced by the
HVS. This technique is called motion compensated inverse filtering [231, 160]. In
practice, it boils down to applying a 1D sharpening filter oriented along motion
trajectories, the blur kernel being estimated from optical flow. The effectiveness
of such solution is limited by the fact that the hold-type blur removes certain
frequencies which cannot be restored using prefiltering. Furthermore, such tech-
niques are prone to clipping problems and oversharpening.

The problem of increasing temporal resolution is also well known in computer
graphics. However, in this area, not all solutions need to provide a real-time
performance, e. g.some of them were designed to improve low performance of
high quality global illumination techniques, where offline processing is not a
problem. This, in contrast to previously mentioned industrial solutions, allows
for more sophisticated and costly techniques. Another advantage of computer
graphics solutions is that they very often rely on additional information that
is produced along with the original frames, e. g.depth or motion flow. All this
significantly improves the quality of new frames.
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One group of methods which can be used for creating additional frames and
increasing frame rate are warping techniques. The idea of these techniques [416] is
to morph texture between two target images, creating a sequence of interpolated
images; an extended survey discussing these techniques was presented by Wol-
berg [487]. Recently Liu et al.[269] presented content-preserving warps for the
purpose of video stabilization. Using their technique they can synthesize images
as if they were taken from nearby viewpoints. This allows them to create video
sequences where the camera path is smooth, i. e.the video is stabilized. Although
warping techniques were not originally designed for the purpose of improving
temporal resolution, they can be successfully used in this context, taking ad-
vantage of the fact that interpolated images are very similar when performing
temporal upsampling. An example of this is a method by Mahajan et al.[280].

Figure 4.18: Temporal upsampling: The three frames shown have been synthesized from
two input images (not shown), by moving gradients along a path [280].

Their technique performs well for single disocclusions, yielding high quality re-
sults for standard content (Figure 4.18). It requires, however, knowledge of the
entire sequence, therefore it is not suitable for real-time applications. Although
the high quality of interpolated frames is desirable independent of the location,
Stich et al.[423] showed that high-quality edges are crucial for the HVS. Based
on this observation, they proposed a technique that takes special care of edges,
making their movement more coherent and smooth.

For interactive applications, where frame computation costs can limit interac-
tivity, often additional information such as depth or motion flow is leveraged
for more efficient and effective frame interpolation. One of the first methods
for temporal upsampling for interactive applications was proposed by Mark et
al.[295]. They used depth information to reproject shaded pixels from one frame
to another. In order to avoid disocclusions they proposed to use two originally
rendered frames to compute in-between frames, which significantly decreases
the problem of missing information. Similar ideas were used later where re-use
of shaded samples was proposed to speed up image generation. In Render Cache,
Walter et al.[461] used forward re-projection to scatter the information from pre-
viously rendered frames into new ones. Later, forward reprojection was replaced
by reversed reprojection [331]. Instead of re-using pixel colors, i. e.the final result
of rendering, also intermediate values can be stored and reused for computa-
tion of next frames [409], speeding up the rendering process. Another efficient
method for temporal upsampling in the context of interactive applications was
proposed by Yang et al. [494]. Their method uses fixed-point iteration to find
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a correct pixel correspondence between originally rendered views and interpo-
lated ones. Later, this technique was combined with mesh-based techniques by
Bowles et al.[54]. The temporal coherence of computer graphics animations was
also explicitly exploited by Herzog et al.[167]: They proposed a spatio-temporal
upsampling where they not only increased the frame rate, but the also spatial
resolution. A more extensive survey on these techniques can be found in [387].

Although techniques developed for computer graphics applications and for
TV-sets have slightly different requirements, it is possible to combine these tech-
niques. Didyk et al.[103] proposed a technique which combines blurred frame
insertion and mesh-based warping. The method can be performed in a few mil-
liseconds, and the quality is assured by exploring temporal integration of the
HVS. The artifacts in generated frames are blurred, and the loss of high fre-
quencies is compensated in the original frames. This solution eliminates artifacts
produced by warping techniques as well as blurred frame insertion. Addition-
ally, the technique performs extrapolation instead of interpolation assuming a
linear motion. This eliminates the problem of lag, but can create artifacts for a
highly nonlinear and very fast motion. The mesh-based temporal upsampling
was further improved in [105].

4.6 improving angular resolution i : stereoscopic displays

Recently, due to the success of big 3D movie productions, stereo 3D (S3D) is
receiving significant attention from consumers as well as manufacturers. This has
spurred rapid development in display technologies, trying to bring high quality
3D viewing experiences into our homes. There is also an increasing amount of 3D
content available to customers, e.g., 3D movies, stereoscopic video games, even
broadcast 3D channels. Despite the fast progress in S3D, there are still many
challenging problems in providing perceptually convincing stereoscopic content
to the viewers.

4.6.1 Perceptual Considerations

When perceiving the world, the HVS relies on a number of different mechanisms
to obtain a good layout perception. These mechanisms, also called depth cues,
can be classified as pictorial (e.g., occlusions, relative size, texture density, per-
spective, shadows), dynamic (motion parallax), ocular (accommodation and ver-
gence) and stereoscopic (binocular disparity) [337]. The sensitivity of the HVS to
different cues varies [88], and it depends mostly on the absolute depth. The HVS
is able to combine different cues [337, Chapter 5.5.10], which usually strengthen
each other; however, in some situations they can also contradict each other. In
such cases, the final 3D scene interpretation represents a compromise between
the conflicting cues according to their strength. Although much is unknown
about cue integration and the relative importance of cues, binocular disparity
and motion parallax (see Section 4.7.1) are argued to be the most relevant depth
cues at typical viewing distances [88]. Figure 4.19 depicts the influence of depth
cues at different distances. A thorough description of all depth cues is outside
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the scope of this survey, but the interested reader may refer to [211, 183] for
detailed explanations.

Figure 4.19: Sensitivity (just-discriminable depth thresholds) of the HVS to nine different
depth cues as a function of distance to the observer. Note that the lower the
threshold (depth contrast), the more sensitive the HVS is to that cue). Depth
contrast is computed as the the ratio of the just-determinable difference in
distance between two objects over their mean distance. Adapted from [88].

Current 3D display devices take advantage of one of the most appealing depth
cues: binocular disparity. On such screens the 3D perception is, however, only
an illusion created on a flat display by showing two different images to both
eyes. In such a case, the conflict between depth cues is impossible to avoid.
The most prominent conflict is the accommodation-vergence mismatch (Figure 4.20).
While vergence—the movement the eyes perform for both to foveate the same
point in space—can easily adapt to different depths presented on the screen,
accommodation—the change in focus of the eyes—tries to maintain the viewed
image in focus. When extensive disparities between left and right eye images
drive the vergence away from the screen, the conflict between fixation and focus
point arises. It can be tolerated up to the certain degree (within the so-called
comfort zone), beyond which it can cause visual discomfort [177]. Based on ex-
tensive user studies, Shibata et al. [401] derived a model to predict the zone of
comfort. Motion is another potential source of discomfort. Recently, Du and col-
leagues [112] presented a metric of comfort taking into account disparity, motion
in depth, motion on the screen plane, and the spatial frequency of luminance
contrast (Figure 4.21).

The fact that the depth presented on the 3D screen fits into the comfort zone
does not yet assure a perfect 3D experience. The retinal images created in the
left and right eyes are misaligned, since they originate from different viewpoints.
In order to create a clear and crisp image they need to be fused. The HVS is
able to perform the fusion only in a region called Panum’s fusional area (Fig-
ure 4.20) where relative disparities are not too big; beyond this area double vision
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Figure 4.20: Accommodation-vergence conflict in stereoscopic displays. While vergence
of the eyes is driven to the 3D position of the object perceived, focus (ac-
commodation) remains on the screen. This mismatch can cause fatigue and
discomfort to the viewer.

(diplopia) is experienced (see e. g. [211, Chapter 5.2]). In fact, binocular fusion is
a much complex phenomenon, and it depends on many factors such as individ-
ual differences, stimulus properties or exposure duration. For example, people
are able to fuse much larger relative disparities for low frequency depth corruga-
tions [446]. The fusion is also easier for stimuli which are well illuminated, have
strong texture contrast, or are static.

Figure 4.21: Example slice of the comfort zone predicted by Du et al, taking into account
disparity, motion in depth, motion on the screen plane, and the spatial fre-
quency of luminance contrast [112].

Assuming that a stereoscopic image is fused by the observer and a single im-
age is perceived, further perception of different disparity patterns depends on
many factors. Interestingly, these factors as well as the mechanisms responsible
for the interpretation of different disparity stimuli are similar to what is known
from luminance perception [63, 274, 58]. One of the most fundamental foundings
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Figure 4.22: Perceived disparity as predicted by a recent metric which incorporates the
influence of luminance-contrast in the perception of depth from binocular
disparity [108]. From left to right, original stereo image, combined response,
and response per frequency band (please refer to the original work for de-
tails).

from this field is the contrast sensitivity function (CSF, Section 4.2.1). Similarly, in
disparity perception a disparity sensitivity function (DSF) exists. Assuming a si-
nusoidal disparity corrugation with a given frequency, the DSF function defines
a reciprocal of the detection threshold, i. e.the smallest amplitude that is visible
to a human observer. Both, CSF and DSF, share the same shape, although the
DSF has a peak at a different spatial frequency [58]. Another example of similar-
ities is the existence of different receptive fields tuned to specific frequencies of
disparity corrugations [183, Chapter 19.6.3]. Also, similar to luminance percep-
tion, apparent depth deduced from the disparity signal is dominated by relative
disparities (disparity contrast) rather than absolute depth. Furthermore, illusions
which are known from brightness perception exist also for disparity. For exam-
ple, it turns out that the Craik-O’Brien-Cornsweet Illusion (Section 4.2.1) holds
for disparity patterns [18, 375]. These similarities suggesting that brightness and
disparity perception undergo similar mechanisms have recently been explored
to build perceptual models for disparity [106, 108] (Figure 4.22).

4.6.2 Display Architectures

Since in 1838 Charles Wheatstone invented the first stereoscope, the basic idea
for displaying 3D images exploiting binocular disparity has not changed signifi-
cantly. In the real world, people see two images (left and right eye images), and
the same has to be reproduced on the screen for the experience to be similar.
Wheatstone proposed to use mirrors which reflect two images located off the
side. The observer looking at the mirrors sees these two images superimposed.
Wheatstone demonstrated that if the setup is correct, the HVS will fuse the two
images and perceive them as if looking at a real 3D scene [484, 485].

Since then, people have come up with many different ways of showing two
different images to both eyes. The most common method is to use dedicated
glasses. A set of solutions employ spatial multiplexing: Two images are shown si-
multaneously on the screen, and glasses are used to separate the signal so that
each eye sees only one of them. There are different methods of constructing such
setup. One possibility is to use different colors for left and right eye (anaglyph
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stereo). The image on the screen is then composed of two differently tinted im-
ages (e. g.red and cyan). The role of the glasses is to filter the signal so a correct
image is visible by each eye, using different color filters. Although different fil-
ters can be used, due to different colors shown to both eyes the image quality
perceived by the observed is degraded. To avoid it, one can use more sophis-
ticated filters which let through all color components (RGB), but the spectrum
of each is slightly shifted and not overlapping to enable easy separation. It is
also possible to use polarization to separate left and right eye images. In such
solutions, the two images are displayed on a screen with different polarization
and the glasses use another set of polarized filters for the separation. Recently,
temporal multiplexing gained great attention, especially in the gaming community.
In this solution, the left and right eye images are interleaved in the temporal do-
main and shown in rapid succession. The glasses consist of two shutters which
can “open and close" very quickly showing the correct image to each eye. A de-
tailed recent review –which also includes head-mounted displays, not covered
here– can be found in [451].

Glasses-based solutions have many problems, e. g.reduced brightness, resolu-
tion or color shift. However, a bigger disadvantage is the need to wear additional
equipment. Whereas this is not a significant problem in movie theaters, people
usually do not feel comfortable wearing 3D glasses at home or in other public
places. A big hope in this context is glasses-free solutions. So-called autostereo-
scopic displays can show two different images simultaneously, the visibility of
which depends on the viewing position. This is usually achieved by placing a
parallax barrier or a lenslet array in front of the display panel. We cover these
technologies in detail in Section 4.7, since the main techniques for autostereo-
scopic displays can be seen as a particular case of those used for automultiscopic
displays.

Figure 4.23: 3D+2D TV [386]. Left: A conventional glasses-based stereoscopic display: It
shows a different view to each eye while wearing glasses, while without
glasses both images are seen superimposed. Right: The 3D+2D TV shows a
different view to each eye with glasses, while viewers without glasses see
one single image, with no ghosting effect.

A stereoscopic version of the content is not always desired by all observers.
This can be due to different reasons, e. g.lack of additional equipment, lack of
tolerance for such content, or comfort. An interesting problem is thus to pro-
vide a solution which enables both 2D and 3D viewing at the same time, the
so-called backward-compatible stereo [106]. An early approach in this direction was
to use color glasses with color filters which minimize ghosting when the content
is observed without them; for example, amber and blue filters can be used (Col-
orCode 3-D). When the 3D content is viewed with the glasses, enough signal is
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provided to both eyes to create a good 3D perception. However, when the content
is viewed without the glasses, the blue channel does not contribute much to the
perceived image, and the ghosting is hardly visible. Recently, another interesting
hardware solution was provided [386] that improves over the shutter-based solu-
tion. Instead of interleaving two images, there is an additional third image which
is a negative of one of the two original ones. The 3D glasses are synchronized so
that the third image is imperceptible for any eye if the glasses are worn. However,
when the observer views the content without the glasses, the third image, due to
the temporal integration performed by the HVS (Section 4.5.1), cancels one of the
images of the stereoscopic pair, and only one of them is visible (see Figure 4.23).

4.6.3 Software Solutions for Improving Depth Reproduction

In the real world, the HVS can easily adapt to objects at different depths. How-
ever, due to the fundamental limitations of stereoscopic displays, it is not possi-
ble to reproduce the same 3D experience on current display devices. Therefore,
a special care has to be taken while preparing content for a stereoscopic screen.
Such content needs to provide a compelling 3D experience, while maintaining
viewing comfort. A number of methods have been proposed to perform this
task efficiently. The main goal of all these techniques is to fit the depth range
spanned by the real scene to the comfort zone of a display device, which highly
depends on the viewing setup [401] (e. g.viewing distance, screen size, etc.). This
can be performed at different stages of content creation, i. e.during capture or in
a post-processing step.

The first group of methods which enable stereoscopic content adjustment are
techniques that are applied during the capturing stage. The adjustments are usu-
ally performed by changing camera parameters, i. e.interaxial distance—the dis-
tance between cameras—and convergence—the angle between the optical axes
of the cameras. Changing the first one affects the disparity range by either ex-
panding it or reducing it (smaller interaxial distances result in smaller disparity
ranges). The convergence, on the other hand, is responsible for the relative posi-
tioning of the scene with respect to the screen plane. Jones et al.[209] proposed
a mathematical framework defining the exact modification to camera parame-
ters that needs to be applied in order to fit the scene into the desired disparity
range. More recently, Oskam et al. [335], proposed a similar approach for real-
time applications in which they formulated the problem of camera parameters
adjustment as an optimization framework. This allowed them not only to fit the
scene into a given disparity range but also to take into account additional artists’
design constraints. Apart from that, they also demonstrated how to deal with
temporal coherence of such manipulations in real-time scenarios. An interesting
system was presented by Heinzle et al. [165]. Their complete camera rig pro-
vides an intuitive and easy-to-use interface for controlling stereoscopic camera
parameters; the interface collects high-level feedback from the artists and adjusts
the parameters automatically. In practice, it is also possible to record the content
with multiple camera setups, e. g.a different one for background and foreground,
and the different video streams combined during the compositing stage. A big
advantage of techniques which directly modify the camera parameters is that
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they can also compensate for object distortions arising from the wrong viewing
position [166].

The above methods are usually a satisfactory solution if the viewing conditions
are known in advance. However, in many scenarios, the content captured with
a specific camera setup, i. e.designed for a particular display, is also viewed on
different screens. To fully exploit the available disparity range, post-processing
techniques are required to re-synthesize the content as if it were captured us-
ing different camera parameters. Such disparity retargeting methods usually work
directly on disparity maps to either compress or expand disparity range. An
example of such techniques was presented by Lang et al. [252]. By analogy to
tone-mapping operators (Section 4.2.3), they proposed to use different mapping
curves to change the disparity values. The mapping can be done according to
differently designed curves (e. g.linear or logarithmic curves). It can be also per-
formed in the gradient domain. In order to improve depth perception of impor-
tant objects, they also proposed to incorporate saliency prediction into the curve
design. The problem of computing adjusted stereo images is formulated as an
optimization process that guides a mesh-based warp according to the edited dis-
parity maps. It is also possible to use more explicit methods which do not involve
optimization [105].

Recently, perceptual models for disparity have been proposed [106, 108]. With
their aid, disparity values can be transformed into a perceptually uniform space,
where they can be mapped to fit a desired disparity range. Essentially, the dis-
parity range is reduced while preserving the disparity signal whenever it is most
relevant for the HVS. Perceptual models of disparity can additionally be used
to build metrics which can evaluate perceived differences in depth between an
original stereo image and its modified version. This allows for defining the dis-
parity remapping problem as an optimization process where the goal is to fit
disparities into a desired range while at the same time minimizing perceived
distortions [108]. As the metrics can also account for different luminance pat-
terns, such methods were shown to perform well for automultiscopic displays
where the content needs to be filtered to avoid inter-view aliasing [512]. More
about adopting content for such screens can be found in Section 4.7.3. Disparity
models also enable depth perception enhancement. For example, when the influ-
ence of luminance patterns on disparity perception is taken into account [108],
it is possible to enhance depth perception in regions where it is weakened due
to insufficient texture. This can be done by introducing additional luminance
information.

One of the most aggressive methods for stereo content manipulation is mi-
crostereopsis. Proposed by Siegel et al.[405], this technique reduces the camera
distance to a minimum so that a stereo image has just enough disparity to create
a 3D impression. This solution can be useful in the context of backward-compatible
stereo because the ghosting artifacts during monoscopic presentation are signifi-
cantly reduced. Didyk et al.[106, 107] proposed another stereo content manipu-
lation technique for backward-compatible stereo. Their method uses the Craik-
O’Brien-Cornsweet Illusion to reproduce disparity discontinuities. As a result,
the technique significantly reduces possible ghosting when the content is viewed
without stereoscopic equipment, but a good 3D perception can be achieved when
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Figure 4.24: Top: Microstereopsis [405] reduces disparity to the minimum value that
would enable 3D perception. Bottom: Backward-compatible stereo [107]
aims at preserving the perception of depth in the scene while reducing dis-
parities to enable “standard 2D viewing" (without glasses) of the scene; the
Craik-O’Brien-Cornsweet illusion for depth is leveraged in this case to en-
hance the impression of depth in certain areas while minimizing disparity
in others.

the content is viewed with the equipment. It is also possible to enhance depth im-
pression by introducing Cornsweet profiles atop of the original disparity signal.
Figure 4.24 shows examples of these techniques.

All aforementioned techniques for stereoscopic content adjustment do not ana-
lyze how much such manipulations affect motion perception. Recently, Kellnhofer
et al.[216] proposed a technique for preventing visible motion distortions due to
disparity manipulations. Besides, previously mentioned techniques are mostly
concerned with the disparity signal introduced by scene geometry. However, ex-
tensive disparities can also be created by secondary light effects such as reflec-
tion. Templin et al. [438] proposed a technique that explicitly accounts for the
problem of glossy reflections in stereoscopic content. Their technique prevents
viewing discomfort due to extensive disparities coming from such reflections,
while maintaining at the same time their realistic look.

4.7 improving angular resolution ii : automultiscopic displays

Automultiscopic displays, capable of showing stereo images from different view-
points without the need to wear glasses or other additional equipment, have been
a subject of much research throughout the last century. A recent state-of-the-art
review on 3D displays including glasses-free techniques can be found in [451].
We briefly outline these technologies and discuss in more detail the most recent
developments on light field displays, both in terms of hardware and of content
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generation. In this survey, we do not discuss holographic imaging techniques
(e.g., [410]), which present all depth cues, but are expensive and primarily re-
stricted to static scenes viewed under controlled illumination [232].

4.7.1 Perceptual Considerations

As discussed in Section 4.6.1, there is a large number of cues the HVS utilizes
to infer the (spatial layout and) depth of a scene (Figure 4.19). Here we focus on
motion parallax, which is the most distinctive cue of automultiscopic displays,
not provided by stereoscopic or conventional 2D displays.

Motion parallax enables us to infer depth from relative movement. Specifically,
it refers to the movement of an image projected in the retina as the object moves
relative to the viewer; this movement is different depending on the depth at
which the object is with respect to the viewer, and the velocity of the relative
motion. Depth perception from motion parallax exhibits a close relationship in
terms of sensitivity with that of binocular disparity, suggesting similar under-
lying processes for both depth cues [376, 178]. Existing studies on sensitivity
to motion parallax are not as exhaustive as those on disparity, although several
experiments have been conducted to establish motion parallax detection thresh-
olds [59]. The integration of both cues, although still largely unknown, has been
shown to be non-linear [57].

Consistent vergence-accommodation cues and motion parallax are required
for a natural comfortable 3D experience [361]. Automultiscopic displays, poten-
tially capable of providing these cues, are emerging as the new generation of
displays, although limitations persist, as discussed in the next subsection. Addi-
tional issues that may hinder the viewing experience in automultiscopic displays
are crosstalk between views, moire patterns, or the cardboard effect [361, 482].

Figure 4.25: Two examples of volumetric displays. Left: Sweeping-based volumetric light
field display supporting occlusions and correct perspective [208]. Right: Vol-
umetric display employing water drops as a projection substrate, here show-
ing an interactive Tetris game [41].

4.7.2 Display Architectures

volumetric displays Blundell and Schwartz [52] define a volumetric dis-
play as permitting “the generation, absorption, or scattering of visible radiation
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from a set of localized and specified regions within a physical volume”. Many
volumetric displays exploit high-speed projection synchronized with mechanically-
rotated screens. Such swept volume displays were proposed as early as 1912 [130]
and have been continuously improved [85]. While requiring similar mechanical
motion, Jones et al. [208] instead achieve a light field display, preserving ac-
curate perspective and occlusion cues, by introducing an anisotropic diffusing
screen and user tracking. Related designs include the Seelinder [501], exploiting
a spinning cylindrical parallax barrier and LED arrays, and the work of Maeda et
al. [279], utilizing a spinning LCD panel with a directional privacy filter. Several
designs have eliminated moving parts using electronic diffusers [432], projector
arrays [7], and beam-splitters [10]. Whereas others consider projection onto trans-
parent substrates, including water drops [41], passive optical scatterers [329], and
dust particles [346].

light field displays Light field displays generally aim to create motion
parallax and stereoscopic disparity so that an observer perceives a scene as 3D
without having to wear encumbering glasses. Invented more than a century ago,
the two fundamental principles underlying most light field displays are paral-
lax barriers [198] and integral imaging with lenslet arrays [266]. The former
technology has evolved into fully dynamic display systems supporting head
tracking and view steering [345, 347], as well as high-speed temporal modula-
tion [255]. Today, lenslet arrays are often used as programmable rear-illumination
in combination with a high-speed LCD to steer different views toward tracked
observers [424].

compressive light field displays Through the co-design of display op-
tics and computational processing, compressive displays strive to transcend lim-
its set by purely optical designs. It was recently shown that tomographic light
field decompositions displayed on stacked films of light-attenuating materials
can create higher resolutions than previously possible [482]; and the same un-
derlying approach later applied to stacks of LCDs for displaying dynamic con-
tent [253]. A compression is achieved in the number of layer pixels, which is
significantly smaller than the number of emitted light rays. Low-rank light field
synthesis was also demonstrated for dual-layer [255] and multi-layer displays
with directional backlighting [478]. In these display designs, an observer per-
ceptually averages over a number of patterns (shown in Figure 4.26 for a tensor
display) that are displayed at refresh rates beyond the critical flicker frequency of
the HVS (see Section 4.5.1). The limited temporal resolution of the HVS is directly
exploited by decomposing a target light field into a set of patterns, by means of
nonnegative matrix or tensor factorization, and presenting them on high-speed
spatial light modulators; this creates a perceived low-rank approximation of the
target light field.

light field displays supporting accommodation Displays support-
ing correct accommodation are able to create a light field with enough angular
resolution to allow subtle, yet crucial, variation over the pupil. Such displays uti-
lize three main approaches. Ultra-high angular resolution displays, such as super
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Figure 4.26: Top row: A prototype tensor display. Middle row: Two different views of a
light field as seen on the tensor display. Bottom row: Layered patterns for
two different frames [478].

multiview displays [433, 434, 338] (Figure 4.28), take a brute-force approach: all
possible views are generated and displayed simultaneously, incurring high hard-
ware costs. In practice, this has limited the size, field of view, and spatial reso-
lution of the devices. Multi-focal displays [10, 175, 400], virtually place conven-
tional monitors at different depths via refractive optics. This approach is effective,
but requires encumbering glasses. Volumetric displays [130, 208, 85] also support
accommodative depth cues, but usually only within the physical device; current
volumetric approaches are not scalable past small volumes. Most recently a com-
pressive accommodation display architecture was proposed [281]. This approach
is capable of generating near correct accommodation cues with high spatial reso-
lution over a wide field of view using multilayer display configurations that are
combined with high angular resolution backlighting and driven by nonnegative
light field tensor factorizations. Finally, Lanman and Luebke recently presented
a near-eye light field display capable of presenting accommodation, convergence,
and binocular disparity depth cues; it is a head-mounted display (HMD) with a
thin form-factor [254].

4.7.3 Image Synthesis for Automultiscopic Displays

Stereoscopic displays pose a challenge in what regards to content generation be-
cause of the need to capture or render two views, the positioning of the cameras,
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or the content post-processing (Section 4.6.3). Multiview content shares these
challenges, augmented by additional issues derived from the size of the input
data, the computation needed for image synthesis, and the intrinsic limitations
that these displays exhibit.

Although targeted only to parallax barriers and lenslet array displays, Zwicker
et al. [512] were one of the first to address the problem of reconstructing a cap-
tured light field to be shown on light field displays, building on previous work
on plenoptic sampling [194, 70]. They proposed a resampling filter to avoid the
aliasing derived from limited angular resolution, and derived optimal camera
parameters for acquisition.

Ranieri et al. [356] propose an efficient rendering algorithm for multi-layer
automultiscopic displays which avoids the need for an optimization process,
common in compressive displays. The algorithm is simple, essentially assigning
each ray to the display layer closest to the origin and then filtering for antialias-
ing; they have to assume, however, depth information of the target light field
to be known. Similar to this algorithm, but generalized to an arbitrary number
of emissive and modulating layers, and with a more sophisticated handling of
occlusions, is the decomposition algorithm for rendering light fields in [357].

Figure 4.27: Progressive reconstruction of a light field by adaptive image synthesis. In
can be seen in the close-ups how the cumulative light field samples used
represent a very sparse set of all plenoptic samples [163].

Compressive displays, described in Section 4.7.2, typically require taking a
target 4D light field as input and solving an optimization problem for image syn-
thesis. This involves a large amount of computation, currently unfeasible in real
time for high angular and spatial resolutions. To overcome the problem, Heide et
al. [163] recently proposed an adaptive optimization framework which combines
the rendering and optimization of the light field into a single framework. The
light field is intelligently sampled leveraging display-specific limitations and the
characteristics of the scene to be displayed, allowing to significantly lower com-
putation time and bandwidth requirements (see Figure 4.27). The method is not
limited to compressive multiview displays, but can also be applied to high dy-
namic range displays or high resolution displays.

In the production of stereo content, a number of techniques exist that generate
a stereo pair from a single image. This idea has been extended to automultiscopic
displays, Singh and colleagues [408] propose a method to generate, from existing
stereo content, the patterns to display in a glasses-free two-layer automultiscopic
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display to create the 3D effect. Their main contribution lies in the stereo matching
process (performed to obtain a disparity map), specially tailored to the charac-
teristics of a multi-layer display to achieve temporal consistency and accuracy
in the disparity map. Depth estimation can, however, be a source of artifacts
with current methods, resulting in artifacts. To overcome this problem, Didyk et
al.[109] proposed a technique that expands a standard stereoscopic content to
a multi-view stream avoiding depth estimation. The technique combines both,
view synthesis and filtering for antialiasing into one filtering step. The method
can be performed very efficiently, reaching a real-time performance.

Content retargeting refers to the algorithms and methods that aim at adapting
content generated for a specific display to another display that may be differ-
ent in one or more dimensions: spatial, angular or temporal resolution, contrast,
color, depth budget, etc. [36, 38]. An example in automultiscopic displays is the
first spatial resolution retargeting algorithm for light fields, proposed by Birkl-
bauer and Bimber [51]; it is based on seam carving and does not require knowing
or computing a depth map of the scene. Disparity retargeting for stereo content
is discussed in Section 4.6.3. Building on this literature on retargeting of stereo
content, a number of approaches have emerged that perform disparity remap-
ping on multiview content (light fields). The need for these algorithms can arise
from viewing comfort issues, artistic decisions in the production pipeline, or
display-specific limitations. Automultiscopic displays exhibit a limited depth-of-
field which is consequence of the need to filter the content to avoid inter-view
aliasing. As a result, the depth range within which images can be shown ap-
pearing sharp is constrained, and depends on the type and characteristics of the
display itself: depth-of-field expressions have been derived for different types of
displays [512, 482, 478].

One of the first to address depth scaling in multiview images were Kim et
al. [223]. Given the multiview images and the target scaled depth, their algorithm
warps the multiview content and performs hole filling whenever disocclusions
are present. More sophisticated is the method by Kim and colleagues for manip-
ulating the disparity of stereo pairs given a 3D light field (horizontal parallax
only) of the scene [220]. They build an EPI (epipolar-plane image) volume, and
compute optimal cuts through it based on different disparity remapping oper-
ators. Cuts correspond to images with multiple centers of projection [394], and
the method can be applied both to stereo pairs and to multiview images, by per-
forming two or more cuts through the volume according to the corresponding
disparity remapping operator. As an alternative, perceptual models for disparity
which have recently been developed [106, 108] can also be applied to disparity
remapping for automultiscopic displays. This is explained in more detail in Sec-
tion 4.6.3, but essentially these models allow to leverage knowledge on the sensi-
tivity to disparity of the HVS to fit disparity into the constraints imposed by the
display. Leveraging Didyk et al.’s model [106], together with a perceptual model
for contrast sensitivity [294], and incorporating display-specific depth-of-field
functions, Masia et al. [306, 307] propose a retargeting scheme for addressing the
trade-off between image sharpness and depth perception of these displays (see
e.g. Figure 5.1, this method is covered in Chapter 5).
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4.7.4 Applications

In this subsection, we discuss additional applications of light field displays: hu-
man computer interaction and vision-correcting image display.

interactive light field displays Over the last few years, interaction
capabilities with displays have become increasingly important. While light field
displays facilitate glasses-free 3D display where virtual objects are perceived as
floating in front of and behind the physical device, most interaction techniques
focus on either on-screen (multi-touch) interaction or mid-range and far-range
gesture-based interaction facilitated by computational photography techniques,
such as depth-sensing cameras, or depth-ranging sensors like KinectTM. Compu-
tational display approaches to facilitating mid-range interaction have been pro-
posed. These integrate depth sensing pixels directly into the screen of a light field
display by splitting the optical path of a conventional lenslet-based light field dis-
play such that a light field is emitted and simultaneously recorded through the
same lenses [441, 171]. Alternatively, light field display and capture mode can be
multiplexed in time using a high-speed liquid crystal panel as a bidirectional 2D
display and a 4D parallax barrier-based light field camera [170].

Figure 4.28: Tailored displays can enhance visual acuity. For each scene, from left to right:
input image, images perceived by a farsighted subject on a regular display,
and on a tailored display [338].

vision-correcting displays Light field displays have recently been in-
troduced for the application of correcting the visual aberrations of an observer
(Figure 4.28). Early approaches attempt to filter a 2D image presented on a con-
ventional screen with the inverse point spread function (PSF) of the observer’s
eye [15, 500, 19]. Although these methods slightly improve image sharpness,
contrast is reduced; fundamentally, the PSF of an eye with refractive errors is a
low-pass filter—high image frequencies are irreversibly canceled out in the op-
tical path from display to the retina. To overcome this limitation, Pamplona et
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al. [338] proposed the use of conventional light field displays with lenslet arrays
or parallax barriers to correct visual aberrations. For this application, these de-
vices must provide a sufficiently high angular resolution so that multiple light
rays emitted by a single lenslet enter the pupil. This resolution requirement is
similar for light field displays supporting accommodation cues. Unfortunately,
conventional light field displays as used by Pamplona et al. [338] are subject to
a spatio-angular resolution tradeoff: an increased angular resolution decreases
the spatial resolution. Hence, the viewer sees a sharp image but at a significantly
lower resolution than that of the screen. To mitigate this effect, Huang et al. [186]
recently proposed to use multilayer display designs together with prefiltering.
While this is a promising, high-resolution approach, combining prefiltering and
these particular optical setups significantly reduces the resulting image contrast.

4.8 conclusion and outreach

We have presented a thorough literature review of recent advances in display
technology, categorizing them along the multiple dimensions of the plenoptic
function. Additionally, we have introduced the key aspects of the HVS that are
relevant and/or leveraged by some of the new technologies. For readers also
seeking an in-depth look into hardware descriptions, domain-specific books ex-
ist covering aspects such as physics or electronics, particular technologies like
organic light-emitting diode (OLED), liquid crystal, LCD backlights or mobile
displays [272, 155], or even how to build prototype compressive light field dis-
plays [480].

Advances in display technologies run somewhat parallel to advances in capture
devices: Exploiting the strong correlations between the dimensions of the plenop-
tic function have allowed researchers and engineers to overcome basic limitations
of standard capture devices. Examples of these include color demosaicing, or
video compression [481]. The fact that both capture and display technologies are
following similar paths makes sense, since both share the problem of the high
dimensionality of the plenoptic function. In this regard, both fields can be seen
as two sides of the same coin. On the other hand, advances in one will foster
further research in the other: For instance, HDR displays have already motivated
the invention of new HDR capture and compression algorithms, which in turn
will create a demand for better HDR displays. Similarly, a requirement for light
field displays to really take off is that light field content becomes more readily
available (with companies like LytroTM and RaytrixTM pushing in that direc-
tion).

Our categorization in this survey with respect to the plenoptic function is a
convenient choice to support our current view of the field, but it should not be
seen as a rigid scheme. We expect this division to become increasingly blurrier
over the next few years, as some of the most novel technologies mature, coupled
with superior computational power and a better knowledge of the HVS. The
most important criteria nowadays for the consumer market seem to be spatial
resolution, contrast, angular resolution (3D) and refresh rates.

High definition (ultra-high spatial resolution) is definitely one of the main cur-
rent trends in the industry. A promising technology is based on IGZO (Indium
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Gallium Zinc Oxide), a transparent amorphous oxide semiconductor (TAOS)
whose TFT (Thin Film Transistor) performance increases electron mobility up
to a factor of 50. This can lead to an improvement in resolution of up to ten
times, plus the ability to fabricate larger displays [181]. Additionally, TAOS can
be flexed, and have a lower consumption of power during manufacturing, be-
cause they can be fabricated at room temperature. The technology has already
been licensed by JST (the Japan Science and Technology Agency) to several dis-
play manufacturing companies.

Other technologies have their specific challenges to meet before they become
the driving force of the industry towards the consumer market. In the case of in-
creased contrast, power consumption is one stumbling block for HDR displays,
also shared by some types of automultiscopic displays. LCD panels transmit
about 3% of light for pixels that are full on, which means that a lot of light is
transduced into heat. For HDR displays, this translates into lots of energy con-
sumed and wasted. OLED technology is a good candidate as a viable, more effi-
cient technology. In the case of automultiscopic displays, parallax barriers entail
very low light throughput as well, whereas LCD-based multilayer approaches
multiply the efficiency problem times the number of LCD panels needed. While
the field is very active, major challenges of automultiscopic displays that remain
and have been discussed in this review include the need for a thin form factor,
a solution to the currently still low spatio-angular resolution, limited depth of
field, or the need for easier generation and transmission of the content.

While we have shown the recent advances and progress lines in each plenoptic
dimension, we believe that real advances in the field need to come from a holis-
tic approach to the problem: instead of focusing on one single dimension of the
plenoptic function, future displays need to and will tackle several dimensions at
the same time. For instance, current state-of-the-art broadcast systems achieve
Ultra High Definition (UHD) with 8K at 120Hz progressive, with a deeper color
gamut (Rec. 2020) than High Definition standards. This represents a significant
advance in terms of spatial resolution, temporal resolution, and color. Similarly,
we have seen how dynamic range and color appearance models, formerly two
separate fields, are now being analyzed in conjunction in recent works, or how
fast changes in the temporal domain can help increase apparent spatial resolu-
tion. Stereo techniques can be seen as just a particular case of auto-multiscopic
displays, and these need to analyze spatial and angular resolution jointly. Joint
stereoscopic high dynamic range displays (SHDR, also known as 3D-HDR) are
also being developed and studied. This is and should be the trend for the future.

As technology advances, some of the inherent limitations of current displays
(such as bandwidth in the case of light field displays) will naturally vanish, or
progressively become less restricting. However, while some advances will rely
purely on novel technology, optics and computation, we believe that perceptual
aspects will continue to play a key role. Understanding the mechanisms of the
HVS will be a crucial factor on which design decisions will be taken. For instance,
SHDR directly involves the luminance contrast and angular dimensions of the
plenoptic function. However, the perception of depth in high dynamic range dis-
plays is still not well known; some works have even hypothesized that HDR
content may hinder stereo acuity [23]. In any case it is believed that the study of
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binocular disparity alone, on which most of the existing research has focused, is
not enough to understand the perception of a 3D structure [16]. Although we are
gaining a more solid knowledge on how to combat the vergence-accommodation
conflict, or what components in a scene may introduce discomfort to the viewer,
key aspects of the HVS such as cue integration, or the interrelation of the dif-
ferent visual signals, remain largely unexplored. As displays become more so-
phisticated and advanced, a deeper understanding of our visual system will be
needed, including hard-to-measure aspects such as viewing comfort.

Last, a different research direction which has seen some first practical imple-
mentations aims at integrating the displayed imagery with the physical world,
blurring out the boundaries imposed by the form factors of more traditional
displays. Examples of this include systems that augment the appearance of ob-
jects by means of superimposed projections [466, 13]; compositing real and syn-
thetic objects in the same scene, taking into account interreflections between
them [83]; adjusting the appearance of the displayed content according to the
incident real illumination [328]; or allowing for gestured-based interaction [170].
Some of these approaches rely on the integration and combined operation of dis-
plays, projectors and cameras, all of them enhanced with computational capabil-
ities. This is another promising avenue of future advances, although integrating
hardware from different manufacturers may impose some additional practical
difficulties. Another exciting, recent technology is printed optics [486, 442], which
enables display, sensing and illumination elements to be directly printed inside
an interactive device. While still in its infancy, this may open up a whole new
field, where every object will in the future act as a display.

To summarize, we believe that future displays will rely on joint advances on
several different dimensions. Additional influencing factors include further ex-
ploration of aspects such as polarization, or multispectral imaging; new materi-
als; the adaptation of mathematical models for high-performance real-time com-
putation; or the co-design of custom optics and electronics. We are convinced
that a deeper understanding of the HVS will play a key role as well, with per-
ceptual effects and limitations being taken into account in future display designs.
Display technology encompasses a very broad field which will benefit from close
collaboration from the different areas of research involved. From hardware spe-
cialists to psychophysicists, including optics experts, material scientists, or signal
processing specialists, multidisciplinary co-operation will be the key.
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about this chapter

The work here presented has been done in collaboration with the Camera Culture
Group at MIT Media Lab. The collaboration, and the work described in this chap-
ter, started with my first internship in the group as a visiting student during my
PhD studies. The group has a renowned expertise in the field of computational
displays, and has, in the last years, developed a new generation of light field dis-
plays termed tensor displays. One of the problems of these tensor displays, shared
also by the most common types of light field displays, is their limited depth-of-
field. This is the problem we explain and address in this chapter. We proposed
a solution, based on an optimization that incorporates computational models of
perception, which we describe here and has been accepted for publication in the
journal Computers & Graphics in a special issue on Advanced Displays.

B. Masia, G. Wetzstein, C. Aliaga, R. Raskar and D. Gutierrez.
Display Adaptive 3D Content Remapping.

In Computers & Graphics 2013, to appear.

5.1 introduction

Within the last years, stereoscopic and automultiscopic displays have started
to enter the consumer market from all angles. These displays can show three-
dimensional objects that appear to be floating in front of or behind the physical
screen, even without the use of additional eyewear. Capable of electronically
switching between a full-resolution 2D and a lower-resolution 3D mode, paral-
lax barrier technology [198] is dominant for hand-held and tablet-sized devices,
while medium-sized displays most often employ arrays of microlenses [266]. Al-
though most cinema screens today are stereoscopic and rely on additional eye-
wear, large-scale automultiscopic projection systems are an emerging technol-
ogy [180]. Each technology has its own particular characteristics, including field
of view, depth of field, contrast, resolution, and screen size. Counterintuitively,
produced content is usually targeted toward a single display configuration, mak-
ing labor-intense, manual post-processing of the recorded or rendered data nec-
essary.

Display-adaptive content retargeting is common practice for attributes such
as image size, dynamic range (tone mapping), color gamut, and spatial resolu-
tion [36]. In order to counteract the accommodation-convergence mismatch of
stereoscopic displays, stereoscopic disparity retargeting methods have recently
been explored [223, 252, 220, 106, 108]. These techniques are successful in modify-
ing the disparities of a stereo image pair so that visual discomfort of the observer
is mitigated while preserving the three-dimensional appearance of the scene as
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Figure 5.1: Our 3D content retargeting for a glasses-free lenticular display. Due to the
limited depth of field of all light field displays, some objects in a 3D scene
will appear blurred. Our remapping approach selectively fits the 3D content
into the depth budget of the display, while preserving the perceived depth
of the original scene. Top: actual photographs of the original and retargeted
scenes, as seen on a Toshiba GL1 lenticular display. Notice the improvement
in the blue bird or the legs of the green bird in the retargeted version. Middle:
close-ups. Bottom: original and retargeted depths yielded by our method.

Figure 5.2: Simulated views of the three-birds scene for three different displays. From left
to right: Holografika HoloVizio C80 movie screen, desktop and cell phone
displays. The last two displays fail to reproduce it properly, due to their intrin-
sic depth-of-field limitations. The insets plot the depth vs. cut-off frequency
charts for each display.
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much as possible. Inspired by these techniques, we tackle the problem of 3D con-
tent retargeting for glasses-free light field (i.e. automultiscopic) displays. These
displays exhibit a device-specific depth of field (DOF) that is governed by their
limited angular resolution [512, 482]. Due to the fact that most light field displays
only provide a low angular resolution, that is the number of viewing zones, the
supported DOF is so shallow that virtual 3D objects extruding from the physical
display enclosure appear blurred out (see Figs. 5.1, left, and 5.2 for a real pho-
tograph and a simulation showing the effect, respectively). We propose here a
framework that remaps the disparities in a 3D scene to fit the DOF constraints of
a target display by means of an optimization scheme that leverages perceptual
models of the human visual system. Our optimization approach runs on the cen-
tral view of an input light field and uses warping to synthesize the rest of the
views.

contributions . Our nonlinear optimization framework for 3D content re-
targeting specifically provides the following contributions:

• We propose a solution to handle the intrinsic trade-off between the spatial
frequency that can be shown and the perceived depth of a given scene. This
is a fundamental limitation of automultiscopic displays (see Section 5.3).

• We combine exact formulations of display-specific depth of field limitations
with models of human perception, to find an optimized solution. In partic-
ular, we consider the frequency-dependent sensitivity to contrast of the
human visual system, and the sensitivity to binocular disparity. Based on
this combination, a first objective term minimizes the perceived luminance
and contrast difference between the original and the displayed scene, effec-
tively minimizing DOF blur, while a second term strives to preserve the
perceived depth.

• We validate our results with existing state-of-the-art, objective metrics for
both image quality and perceived depth.

• We show how our framework can be easily extended to the particular case
of stereoscopic disparity, thus demonstrating its versatility.

• For this extension, we account for a non-dichotomous zone of viewing com-
fort which constitutes a more accurate model of discomfort associated with
the viewing experience.

As a result of our algorithm, the depth of a given 3D scene is modified to fit the
DOF constraints imposed by the target display, while preserving the perceived
3D appearance and the desired 2D image fidelity (Figure 5.1, right).

limitations . We do not aim at providing an accurate model of the behavior
of the human visual system; investigating all the complex interactions between
its individual components remains an open problem as well, largely studied by
both psychologists and physiologists. Instead, we rely on existing computational
models of human perception and apply them to the specific application of 3D
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content retargeting. For this purpose, we currently consider sensitivities to lumi-
nance contrast and depth, but only approximate the complex interaction between
these cues using a heuristic linear blending, which works well in our particular
setting. Using the contrast sensitivity function in our context (Section 5.4) is a
convenient but conservative choice. Finally, depth perception from motion par-
allax exhibits strong similarities in terms of sensitivity with that of binocular
disparity, suggesting a close relationship between both [376]; but existing stud-
ies on sensitivity to motion parallax are not as exhaustive as those on binocular
disparity, and therefore a reliable model cannot be derived yet. Moreover, some
studies have shown that, while both cues are effective, stereopsis is more rele-
vant by an order of magnitude [60]. In any case, our approach is general enough
so that as studies on these and other cues advance and new, more sophisticated
models of human perception become available, they could be incorporated to
our framework.

5.2 related work

Glasses-free 3D displays were invented more than a century ago, but even to-
day, the two dominating technologies are parallax barriers [198] and integral
imaging [266]. Nowadays, the palette of existing 3D display technologies, how-
ever, is much larger and includes holograms, volumetric displays, multilayer dis-
plays and directional backlighting among many others. State of the art reviews of
conventional stereoscopic and automultiscopic displays [451] and computational
displays [477] can be found in the literature. With the widespread use of stereo-
scopic image capture and displays, optimal acquisition parameters and capture
systems [267, 311, 209, 335, 165], editing tools [237, 469], and spatial resolution
retargeting algorithms for light fields [51] have recently emerged. In this work,
we deal with the problem of depth remapping of light field information to the
specific constraints of each display.

Generally speaking, content remapping is a standard approach to adapt spatial
and temporal resolution, contrast, colors, and sizes of images to a display having
limited capabilities in any of these dimensions [36]. For the particular case of dis-
parity remapping, Lang et al. [252] define a set of non-linear disparity remapping
operators, and propose a new stereoscopic warping technique for the generation
of the remapped stereo pairs. A metric to assess the magnitude of perceived
changes in binocular disparity is introduced by Didyk et al. [106], who also in-
vestigate the use of the Cornsweet illusion to enhance perceived depth [107]. Re-
cently, the original disparity metric has been further refined including the effect
of luminance-contrast [108]. Kim and colleagues [220] develop a a novel frame-
work for flexible manipulation of binocular parallax, where a new stereo pair
is created from two non-linear cuts of the EPI volume corresponding to multi-
perspective images [394]. Inspired by Lang and colleagues [252], they explore
linear and non-linear global remapping functions, and also non-linear disparity
gradient compression. Here we focus on a remapping function that incorporates
the specific depth of field limitations of the target display [306]. Section 5.8 pro-
vides direct comparisons with some of these approaches.
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5.3 display-specific depth of field limitations

Automultiscopic displays are successful in creating convincing illusions of three-
dimensional objects floating in front and behind physical display enclosures
without the observer having to wear specialized glasses. Unfortunately, all such
displays have a limited depth of field which, just as in wide-aperture photogra-
phy, significantly blurs out-of-focus objects. The focal plane for 3D displays is
directly on the physical device. Display-specific depth of field expressions have
been derived for parallax barrier and lenslet-based systems [512], multilayer dis-
plays [482], and directional backlit displays [478]. In order to display an aliasing-
free light field with any such device, four-dimensional spatio-angular pre-filters
need to be applied before computing the display-specific patterns necessary to
synthesize a light field, either by means of sampling or optimization. In practice,
these filters model the depth-dependent blur of the individual displays and are
described by a depth of field blur applied to the target light field. Intuitively, this
approach fits the content into the DOF of the displays by blurring it as necessary.
Figure 5.3 illustrates the supported depth of field of various automultiscopic
displays for different display sizes.

Specifically, the depth of field of a display is modeled as the maximum spatial
frequency fξ of a diffuse plane at a distance d0 to the physical display enclosure.
As shown by previous works [512, 482], the DOF of parallax barrier and lenslet-
based displays is given by

|fξ| 6

 f0
Na

, for |d0|+ (h/2) 6 Nah

( h
(h/2)+|d0|

)f0, otherwise
, (23)

where Na is the number of angular views, d0 is the distance to the front plane
of the display (i.e. the parallax barrier or lenslet array plane), h represents the
thickness of the display, f0 = 1/(2p), and p is the size of the view-dependent
subpixels of the back layer of the display, making the maximum resolution of the
display at the front surface fξ = f0/Na = 1/(2pNa). For multilayered displays,
the upper bound on the depth of field for a display of N layers was derived by
Wetzstein et al. [482] to be

|fξ| 6 Nf0

√
(N+ 1)h2

(N+ 1)h2 + 12(N− 1)d20
. (24)

Note that in this case d0 represents the distance to the middle of the display, and
p the pixel size of the layers.

It can be seen how depth of field depends on display parameters such as pixel
size p, number of viewing zones Na, device thickness h, and number of layers
N (for multilayer displays), and thus varies significantly for different displays. It
also depends on the viewing distance vD when expressed in cycles per degree.
The above expressions can then be employed to predict an image displayed on
a particular architecture, including loss of contrast and blur. Figure 5.2 shows
three simulated views of the three-birds scene for three different displays: a Holo-
grafika HoloVizio C80 movie screen (h = 100mm, p = 0.765mm, vD = 6m), a
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Figure 5.3: Depth of field for different display architectures and target displays. From
left to right: cell phone (p = 0.09mm, vD = 0.35m); desktop computer (p =

0.33mm, vD = 0.5m); and widescreen TV (p = 0.53mm, vD = 2.5m). For
comparison purposes all depths of field are modeled for seven angular views.

Toshiba automultiscopic monitor (h = 20, p = 0.33, vD = 1.5) and a cell-phone-
sized display (h = 6, p = 0.09, vD = 0.35). The scene can be represented in the
large movie screen without blurring artifacts (left); however, when displayed on
a desktop display (middle), some areas appear blurred due to the depth-of-field
limitations described above (see the blue bird). When seen on a cell-phone dis-
play (right), where the limitations are more severe, the whole scene appears badly
blurred. In the following, we show how these predictions are used to optimize
the perceived appearance of a presented scene in terms of image sharpness and
contrast, where the particular parameters of the targeted display are an input to
our method.

5.4 optimization framework

In order to mitigate display-specific DOF blur artifacts, we propose to scale the
original scene into the provided depth budget while preserving the perceived
3D appearance as best as possible. As detailed in Section 5.3, this is not trivial,
since there is an intrinsic trade-off between the two goals. We formulate this as
a multi objective optimization problem, with our objective function made up of
two terms. The first one minimizes the perceived luminance and contrast differ-
ence between the original and the displayed scene, for which display-specific ex-
pressions of the displayable frequencies are combined with a perceptual model of
contrast sensitivity. The second term penalizes loss in perceived depth, for which
we leverage disparity sensitivity metrics. Intuitively, the disparity term prevents
the algorithm from yielding the obvious solution where the whole scene is flat-
tened onto the display screen; this would guarantee perfect focus at the cost of
losing any sensation of depth. The input to our algorithm is the depth map and
the luminance image of the central view of the original light field, which we term
dorig and Lorig, respectively. The output is a retargeted depth map d, which is
subsequently used to synthesize the retargeted light field.

optimizing luminance and contrast : We model the display-specific
frequency limitations by introducing spatially-varying, depth-dependent convo-
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lution kernels k(d). They are defined as Gaussian kernels whose standard devia-
tion σ is such that frequencies above the cut-off frequency at a certain depth fξ(d)
are reduced to less than 5% of its original magnitude. Although more accurate
image formation models for defocus blur in scenes with occlusions can be found
in the literature [158], their use is impractical in our optimization scenario, and
we found the Gaussian spatially-varying kernels to give good results in practice.
Kernels are normalized so as not to modify the total energy during convolution.
As such, the kernel for a pixel i is:

k(d) =
exp(−

x2i+y
2
i

2(σ(d))2
)∑K

j

(
exp(−

x2j+y
2
j

2(σ(d))2
)

) (25)

where K is its number of pixels. The standard deviation σ is computed as:

σ(d) =

√
−2log(0.05)
2πpfξ(d)

(26)

with p being the pixel size in mm/pixel.
To take into account how frequency changes are perceived by a human ob-

server, we rely on the fact that the visual system is more sensitive to near-
threshold changes in contrast and less sensitive at high contrast levels [293]. We
adopt a conservative approach and employ sensitivities at near-threshold levels
as defined by the contrast sensitivity function (CSF). We follow the expression
for contrast sensitivities ωCSF proposed by Mantiuk et al. [294], which in turn
builds on the model proposed by Barten [42]:

ωCSF (l, fl) = p4sA(l)
MTF(fl)√

(1+ (p1fl)p2)(1− e−(fl/7)2)−p3
, (27)

where l is the adapting luminance in [cd/m2], fl represents the spatial frequency
of the luminance signal in [cpd] and pi are the fitted parameters provided in
Mantiuk’s paper1. MTF (modulation transfer function) and sA represent the op-
tical and the luminance-based components respectively, and are given by:

MTF(fl) =
∑
k=1..4

ake
−bkfl (28)

sA(l) = p5

((p6
l

)p7
+ 1
)−p8

(29)

where ak and bk can again be found in the original paper. Figure 5.4 (left) shows
contrast sensitivity functions for varying adaptation luminances, as described by
Equations 27-29. In our context we deal with complex images, as opposed to
a uniform field; we thus use the steerable pyramid [407] ρS (·) to decompose a
luminance image into a multi-scale frequency representation. The steerable pyra-
mid is chosen over other commonly used types of decomposition (e.g. Cortex
Transform) since it is mostly free of ringing artifacts that can cause false masking
signals [294].

1 sourceforge.net/apps/mediawiki/hdrvdp/

sourceforge.net/apps/mediawiki/hdrvdp/
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Taking into account both the display-specific frequency limitations and the
HVS response to contrast, we have the following final expression for the first
term of our optimization:∥∥ωCSF (ρS (Lorig)− ρS (φb (Lorig,d

)))∥∥2
2

, (30)

where ωCSF, defined by Equation 27, are frequency-dependent weighting fac-
tors, and the operator φb (L,d) = k(d) ∗ L models the display-specific, depth-
dependent blur (see Section 5.3 and Figure 5.3). Note that we omit the depen-
dency of ωCSF on (l, fl) for clarity. Figure 5.5 (left) shows representative weights
ωCSF for different spatial frequency luminance levels of the pyramid for a sam-
ple scene.

Figure 5.4: Thresholds and sensitivity values from which the weights for our optimiza-
tion are drawn. Left: Contrast sensitivity functions. Right: Binocular disparity
discrimination thresholds (thresholds are the inverse of sensitivities).

preserving perceived depth : This term penalizes the perceived differ-
ence in depth between target and retargeted scene using disparity sensitivity
metrics. As noted by different researchers, the effect of binocular disparity in
the perception of depth works in a manner similar to the effect of contrast in
the perception of luminance [106, 58, 18]. In particular, our ability to detect and
discriminate depth from binocular disparity depends on the frequency and am-
plitude of the disparity signal. Human sensitivity to binocular disparity is given
by the following equation [106] (see also Figure 5.4, right):

ωBD (a, f) = (0.4223+ 0.007576a+ 0.5593log10(f) (31)

+ 0.03742alog10(f) + 0.0005623a2 + 0.7114log210(f))
−1

where frequency f is expressed in [cpd], a is the amplitude in [arcmin], andωBD
is the sensitivity in [arcmin−1]. In a similar way to ωCSF in Equation 30, the
weights ωBD account for our sensitivity to disparity amplitude and frequency.
Given this dependency on frequency, the need for a multi-scale decomposition
of image disparities arises again, for which we use a Laplacian pyramid ρL (·) for
efficiency reasons, following the proposal by Didyk et al. [106]. Figure 5.5 (right),
shows representative weights ωBD.
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The error in perceived depth incorporating these sensitivities is then modeled
with the following term:∥∥ωBD (ρL (φυ (dorig))− ρL (φυ (d)))∥∥22 . (32)

Given the viewing distance vD and interaxial distance e, the operator φυ (·)
converts depth into vergence as follows:

φυ (d) = acos

(
vL · vR

‖vL‖ ‖vR‖

)
, (33)

where vectors vL and vR are illustrated in Figure 5.6. The Laplacian decomposi-
tion transforms this vergence into frequency-dependent disparity levels.

objective function : Our final objective function is a combination of Equa-
tions 30 and 32:

arg min
d

(
µDOF

∥∥ωCSF (ρS (Lorig)− ρS (φb (Lorig,d
)))∥∥2

2

+µD
∥∥ωBD (ρL (φυ (dorig))− ρL (φυ (d)))∥∥22) . (34)

For multilayer displays, we empirically set the values of µDOF = 10 and µD =

0.003, while for conventional displays µD = 0.0003 due to the different depth of
field expressions.

Figure 5.5: Left: Weights ωCSF (contrast sensitivity values) for different luminance spa-
tial frequency levels for a sample scene (birds). Right: Weights ωBD (inverse
of discrimination threshold values) for different disparity spatial frequency
levels for the same scene.

5.5 implementation details

We employ a large-scale trust region method [81] to solve Equation 34. This re-
quires finding the expressions for the analytic gradients of the objective function
used to compute the Jacobian, which can be found in Appendix E. The objective
term in Equation 34 models a single view of the light field, i.e. the central view,
in a display-specific field of view (FOV). Within a moderate FOV, as provided by
commercially-available displays, this is a reasonable approximation; we obtain
the rest of the light field by warping. In the following, we describe this and other
additional implementation details.
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Figure 5.6: Computing vergence values. Vergence νP of a point P depends on its position,
the viewing distance vD and the interaxial e. The corresponding disparity for
P is (νP − νF). vd refers to the viewing distance and dP is the depth of point
P.

sensitivity weights and target values : The weights used in the dif-
ferent terms, ωCSF and ωBD are pre-computed based on the values of the orig-
inal depth and luminance, dorig and Lorig. The transformation from dorig to
vergence, its pyramid decomposition and the decomposition of Lorig are also
pre-computed.

contrast sensitivity function : As reported by Mantiuk et al. [294], no
suitable data exists to separate L- and M-cone sensitivity. Following their ap-
proach, we rely on the achromatic CSF using only luminance values.

depth-of-field simulation : The depth-dependent image blur of auto-
multiscopic displays is modeled as a spatially-varying convolution in each itera-
tion of the optimization procedure. Due to limited computational resources, we
approximate this expensive operation as a blend between multiple shift-invariant
convolutions corresponding to a quantized depth map, making the process much
more efficient. For all scenes shown in this chapter, we use nc = 20 quantized
depth clusters.

warping : View warping is orthogonal to the proposed retargeting approach;
we implement here the method described by Didyk et al. [105], although other
methods could be employed instead (e.g. [220, 276, 334]). To reduce warping
artifacts due to large depth gradients at the limits of the field of view for each
light field, we median-filter the depth and constrain depth values around the
edges.

5.6 retargeting for stereoscopic displays

One of the advantages of our framework is its versatility, which allows to adapt
it for display-specific disparity remapping of stereo pairs. We simply drop the
depth of field term from Equation 34, and incorporate a new term that models
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the comfort zone. This is an area around the screen within which the 3D content
does not create fatigue or discomfort in the viewer in stereoscopic displays, and
is usually considered as a dichotomous subset of the fusional area. Although any
comfort-zone model could be directly plugged into our framework, we incorpo-
rate the more accurate, non-dichotomous model suggested by Shibata et al. [401].
This model provides a more accurate description of its underlying psychologi-
cal and physiological effects. Additionally, this zone of comfort depends on the
viewing distance vD, resulting on different expressions for different displays, as
shown in Figure 5.7. Please refer to Appendix F for details on how to incorporate
the simpler, but less precise, dichotomous model.

Our objective function thus becomes:∥∥ωBD (ρL (φυ (Dorig))− ρL (φυ (d)))∥∥22 + µCZ ‖ϕ (d)‖22 , (35)

where ϕ (·) is a function mapping depth values to visual discomfort:

ϕ(d) =

{
1− sfar

vD−d − Tfar for d < 0

1− snear
vD−d − Tnear for d > 0

(36)

where vD is the distance from the viewer to the central plane of the screen and
sfar, snear, Tfar, and Tnear are values obtained in a user study carried out with
24 subjects.

Figure 5.7: Dichotomous (blue) and non-dichotomous (orange) zones of comfort for dif-
ferent devices. From left to right: cell phone (vD = 0.35m), desktop computer
(vD = 0.5m) and wide-screen TV (vD = 2.5m).

5.7 results

We have implemented the proposed algorithm for different types of automul-
tiscopic displays including a commercial Toshiba GL1 lenticular-based display
providing horizontal-only parallax with nine discrete viewing zones, and custom
multilayer displays. The Toshiba panel has a native resolution of 3840× 2400 pix-
els with a specially engineered subpixel structure that results in a resolution of
1280× 800 pixels for each of the nine views. Note that even a highly-engineered
device such as this suffers from a narrow depth of field due to the limited an-
gular sampling. We consider a viewing distance of 1.5 m for the Toshiba display
and 0.5 m for the multilayer prototypes.
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Figure 5.8: Additional results for commercial lenticular display (actual photographs).
Top row: depth map, perspective from left, and perspective from right for
original scene. Bottom row: depth map and similar perspectives for the retar-
geted scene. The slight double-view of some of the pins in the left view is
due to interview cross-talk in the Toshiba display.

Figures 5.1 and 5.8 show results of our algorithm for the Toshiba display. The
target scenes have been originally rendered as light fields with a resolution of
9× 9, with a field of view of 10

◦. Since the Toshiba display only supports hori-
zontal parallax, we only use the nine horizontal views for these examples. Note
how depth is compressed to fit the display’s constraints in those areas with vis-
ible loss of contrast due to blur (blue bird or far away pins, for instance), while
enhancing details to preserve the perceived depth; areas with no visible blur are
left untouched (eyes of the green bird, for instance). This results into sharper
retargeted scenes that can be shown within the limitations of the display. The
remapping for the teaser image took two hours for a resolution of 1024× 768,
using our unoptimized Matlab code.

We have also fabricated a prototype multilayer display (Figure 5.9). This dis-
play is composed of five inkjet-printed transparency patterns spaced by clear
acrylic sheets. The size of each layer is 60 × 45 mm, while each spacer has a
thickness of 1/8". The transparencies are conventional films for office use and
the printer is an Epson Stylus Photo 2200. This multilayer display supports 7× 7
views within a field of view of 7

◦ for both horizontal and vertical parallax. The
patterns are generated with the computed tomography solver provided by Wet-
zstein et al. [482]. Notice the significant sharpening of the blue bird and, to a
lesser extent, of the red bird. It should be noted that these are lab prototypes:
scattering, inter-reflections between the acrylic sheets, and imperfect color re-
production with the desktop inkjet printer influence the overall quality of the
physical results. In Figure 5.10, we show sharper, simulated results for the dice
scene for a similar multilayer display.

We show additional results using more complex data sets, with varying de-
grees of depth and texture, and different object shapes and surface material prop-
erties. In particular, we use the Heidelberg light field archive2, which includes
ground-truth depth information. The scenes are optimized for a three-layer mul-
tilayer display, similar to the one shown in Figure 5.9. They have been optimized
for a viewing distance of 0.5 m and have resolutions ranging from 768× 768 to
1024× 720. The weights used in the optimization are again µDOF = 10 and µD =

2 http://hci.iwr.uni-heidelberg.de/HCI/Research/LightField/lf_archive.php

http://hci.iwr.uni-heidelberg.de/HCI/Research/LightField/lf_archive.php
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0.003. Figure 5.11 shows the results for the papillon, buddha2 and statue data sets.
Our algorithm recovers most of the high frequency content of the original scenes,
lost by the physical limitations of the display. The anaglyph representations al-
low to compare the perceived depth of the original and the retargeted scenes (the
reader may refer to http://webdiis.unizar.es/~bmasia/downloads/thesis/Displays-DisparityRemapping.

zip for larger versions to ensure proper visualization). Figure 5.12 shows additional
views of the buddha2 and statue light fields.

Figure 5.9: 3D content retargeting for multilayer light field displays (actual photographs).
Even five attenuating layers (top) can only provide a limited depth of field
for a displayed scene (bottom left). Our retargeting algorithm maps the mul-
tiview content into the provided depth budget (bottom right).

As shown in this section, our algorithm works well within a wide range of displays
and data sets of different complexities. However, in areas of very high frequency content,
the warping step may accumulate errors which end up being visible in the extreme views
of the light fields. Figure 5.13 shows this: the horses data set contains a background made
up of a texture containing printed text. Although the details are successfully recovered
by our algorithm, the warping step cannot deal with the extremely high frequency of
the text, and the words appear broken and illegible.

Finally, Figure 5.14 shows the result of applying our adapted model to the particular
case of stereo retargeting, as described in Section 5.6.

5.8 comparison to other methods

Our method is the first to specifically deal with the particular limitations of automul-
tiscopic displays (depth vs. blur trade-off), and thus it is difficult to directly compare
with others. However, we can make use of two recently published objective computa-
tional metrics, to measure distortions both in the observed 2D image fidelity, and in the
perception of depth. This also provides an objective background to compare against ex-
isting approaches for stereoscopic disparity retargeting, for which alternative methods
do exist.

http://webdiis.unizar.es/~bmasia/downloads/thesis/Displays-DisparityRemapping.zip
http://webdiis.unizar.es/~bmasia/downloads/thesis/Displays-DisparityRemapping.zip
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Figure 5.10: Results of simulations for a multilayer display (five layers). Top row: initial
and retargeted depth. Middle row: initial and retargeted luminance. Bottom
row: close-ups.
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Figure 5.11: Results for the papillon (top), buddha2 (middle) and statue (bottom) data sets
from the Heidelberg light field archive. For each data set, the top row shows
the original scene, while the bottom row shows our retargeted result. From
left to right: depth map, anaglyph representation, central view image, and
selected zoomed-in regions. Notice how our method recovers most of the
high frequency details of the scenes, while preserving the sensation of depth
(larger versions of the anaglyphs can be seen in http://webdiis.unizar.

es/~bmasia/downloads/thesis/Displays-DisparityRemapping.zip). Note:
please wear anaglyph glasses with cyan filter on left and red filter on right
eye; for an optimal viewing experience please resize the anaglyph to about
10 cm wide in screen space and view it at a distance of 0.5 m.

http://webdiis.unizar.es/~bmasia/downloads/thesis/Displays-DisparityRemapping.zip
http://webdiis.unizar.es/~bmasia/downloads/thesis/Displays-DisparityRemapping.zip
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Figure 5.12: Additional non-central views of the retargeted buddha2 and statue light
fields, with corresponding close-ups.

Figure 5.13: Results for the horses data set from the Heidelberg light field archive. Very
high frequencies that have been initially cut off by the display (green box)
are successfully recovered by our algorithm (pink). However, subsequent
warping can introduce visible artifacts in those cases, which progressively
increase as we depart from the central view of the light field. This progres-
sion is shown in the bottom row (yellow boxes).



5.8 comparison to other methods 131

Figure 5.14: Retargeting for stereo content. Left column: Anaglyph and corresponding
pixel disparity map of the original scene. For a common (around 0.5m) view-
ing distance on a desktop display, left and right images cannot be fused.
Right column: Anaglyph and corresponding pixel disparity map of the retar-
geted scene. Images can now be fused without discomfort, and perception
of depth is still present despite the aggressive depth compression. Note that
the scales of the disparity maps are different for visualization purposes; the
small inset shows the retargeted disparity map for the same scale as the orig-
inal. Note: please wear anaglyph glasses with cyan filter on left and red filter
on right eye; for an optimal viewing experience please resize the anaglyph
to about 10 cm wide in screen space and view it at a distance of 0.5 m.
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metrics : We need to measure both observed 2D image quality and resulting degrada-
tions in perceived depth. For image quality, numerous metrics exist. We rely on the HDR-
VDP 2 calibration reports provided by Mantiuk and colleagues [294] in their website3 ,
where the authors compare quality predictions from six different metrics and two image
databases: LIVE [399] and TID2008 [352]. According to the prediction errors, reported
as Spearman’s correlation coefficient, multi-scale SSIM (MS-SSIM, [509]) performs best
across both databases for the blurred image distortions observed in our application. The
mapping function we use, log(1−MS-SSIM), yields the highest correlation for Gaussian
blur distortions.

Fewer metrics exist to evaluate distortions in depth. We use the metric recently pro-
posed by Didyk and colleagues to estimate the magnitude of the perceived disparity
change between two stereo images [106]. The metric outputs a heat map of the differ-
ences between the original and the retargeted disparity maps in Just Noticeable Differ-
ence (JND) units.

alternative methods : There is a large space of linear and non-linear global
remapping operators, as well as of local approaches. Also, these operators can be made
more sophisticated, for instance by incorporating information from saliency maps, or
adding the temporal domain [252]. To provide some context to the results of the ob-
jective metrics, we compare our method with a representative subset of alternatives,
including global operators, local operators, and a recent operator based on a perceptual
model for disparity. In particular, we compare against six other results using different ap-
proaches for stereo retargeting: a linear scaling of pixel disparity (linear), a linear scaling
followed by the addition of bounded Cornsweet profiles at depth discontinuities (Corn-
sweet [107])4, a logarithmic remapping (log, see e.g. [252]), and the recently proposed
remapping of disparity in a perceptually linear space (perc. linear [106]). For the last two,
we present two results using different parameters. This selection of methods covers a
wide range from very simple to more sophisticated.

The linear scaling is straightforward to implement. For the bounded Cornsweet pro-
files method, where profiles are carefully controlled so that they do not exceed the given
disparity bounds and create disturbing artifacts, we choose n = 5 levels as suggested by
the authors. For the logarithmic remapping, we use the following expression, inspired
by Lang et al. [252]:

δo = K · log(1+ s · δi), (37)

where δi and δo are the input and output pixel disparities, s is a parameter that controls
the scaling and K is chosen so that the output pixel disparities fit inside the allowed
range. We include results for s = 0.5 and s = 5. Finally, for the perceptually linear
method, disparity values are mapped via transducers into a perceptually linear space,
and then linearly scaled by a factor k. The choice of k implies a trade-off between the
improvement in contrast enhancement and how faithful to the original disparities we
want to remain. We choose k = 0.75 and k = 0.95 as good representative values for both
options respectively.

comparisons : Some of the methods we compare against (linear, Cornsweet and log)
require to explicitly define a minimum spatial cut-off frequency, which will in turn fix a
certain target depth range. We run comparisons on different data sets and for a varied
range of cut-off frequencies: For the birds scene, where the viewing distance is vD = 1.5
m, we test two cut-off frequencies: fcpmm = 0.12 cycles per mm (fcpd = 3.14 cycles per
degree), and fcpmm = 0.19 (fcpd = 5.03), the latter of which corresponds to remapping

3 http://hdrvdp.sourceforge.net/reports/2.1/quality_live/ http://hdrvdp.sourceforge.net/reports/2.

1/quality_tid2008/

4 In our tests, this consistently yielded better results than a naive application of unbounded Corn-
sweet profiles, as originally reported by Didyk and colleagues [107]

http://hdrvdp.sourceforge.net/reports/2.1/quality_live/
http://hdrvdp.sourceforge.net/reports/2.1/quality_tid2008/
http://hdrvdp.sourceforge.net/reports/2.1/quality_tid2008/
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to the depth range which offers the maximum spatial resolution of the display (see
DOF plots in Figure 5.16b). For the statue, papillon and buddha2 scenes, optimized for a
multilayer display with vD = 0.5 m, we set the frequencies to fcpmm = 0.4, 0.5 and 1.1,
respectively (corresponding fcpd = 3.49, 4.36 and 9.60). The frequencies are chosen so
that they yield a fair compromise between image quality and perceived depth, given the
trade-off between these magnitudes; they vary across scenes due to the different spatial
frequencies of the image content in the different data sets.

Figure 5.15 shows a comparison to the results obtained with the other methods both
in terms of image quality and of perceived depth for three different scenes from the Hei-
delberg data set (papillon, buddha2, and statue). Heat maps depict the error in perceived
depth (in JNDs) given by Didyk et al.’s metric. Visual inspection shows that our method
consistently leads to less error in perceived depth (white areas mean error below the 1

JND threshold). Close-ups correspond to zoomed-in regions from the resulting images
obtained with each of the methods, where the amount of DOF blur can be observed
(the complete images can be found in http://webdiis.unizar.es/~bmasia/downloads/

thesis/Displays-DisparityRemapping.zip). Our method systematically yields sharper
images, even if it also preserves depth perception better. Only in one case, in the statue
scene, perceptually linear remapping yields sharper results, but at the cost of a signifi-
cantly higher error in depth perception, as the corresponding heat maps show.

To better assess the quality of the deblurring of the retargeted images, Figure 5.16a
shows the MS-SSIM metric for the different methods averaged over the scenes tested,
together with the associated standard error (we plot the absolute value of log(1− MS-
SSIM)). We have added the result of the original image, without any retargeting method
applied (N for none in the chart). Our method yields the best perceived image quality
(highest MS-SSIM value), and as shown in Figure5.15, the lowest error in depth per-
ception as well. This can be intuitively explained by the fact that our proposed multi-
objective optimization (Eq. 34) explicitly optimizes both luminance and depth, whereas
existing algorithms are either heuristic or take into account only one of the two aspects.

To further explore this image quality vs. depth perception trade-off, we have run the
comparisons for the birds scene for two different cut-off spatial frequencies. Figure 5.16b
shows comparisons of all tested algorithms for the birds scene retargeted for a lenslet-
based display. For two of the methods, ours and the perceptually linear remapping (with
k = 0.75 and k = 0.95), defining this minimum spatial frequency is not necessary. Error
in depth for these is shown in the top row. For the other four methods (linear, Cornsweet,
log s = 0.5, log s = 5), the cut-off frequency needs to be explicitly defined: we set it
to two different values of fcpmm = 0.12 and fcpmm = 0.19, which correspond to an
intermediate value and to remapping the content to the maximum spatial frequency of
the display, respectively. The resulting error in depth is shown in the middle and bottom
rows of Figure 5.16b. Error in perceived depth clearly increases as the cut-off frequency
is increased. The bar graph at the top left of Figure 5.16b shows image quality results
for fcpmm = 0.12. Note that for fcpmm = 0.19, the methods linear, Cornsweet and log
yield perfectly sharp images (since we explicitly chose that frequency to remap to the
maximum resolution of the display), but at the cost of large errors in perceived depth.

5.9 conclusions and future work

Automultiscopic displays are an emerging technology with form factors ranging from
hand-held devices to movie theater screens. Commercially successful implementations,
however, face major technological challenges, including limited depth of field, resolution,
and contrast. We argue that compelling multiview content will soon be widely available
and tackle a crucial part of the multiview production pipeline: display-adaptive 3D con-
tent retargeting. Our computational depth retargeting algorithm extends the capabilities

http://webdiis.unizar.es/~bmasia/downloads/thesis/Displays-DisparityRemapping.zip
http://webdiis.unizar.es/~bmasia/downloads/thesis/Displays-DisparityRemapping.zip
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of existing glasses-free 3D displays, and deals with a part of the content production
pipeline that will become commonplace in the future.

As shown in this work, there is an inherent trade-off in automultiscopic displays
between depth budget and displayed spatial frequencies (blur): depth has to be altered
if spatial frequencies in luminance are to be recovered. This is not a limitation of our
algorithm, but of the targeted hardware (Figure 3). Our algorithm aims at finding the
best possible trade-off, so that the inevitable depth distortions introduced to improve
image quality have a minimal perceptual impact. Therefore, the amount of blur (the cut-
off frequency) in the retargeted scene depends on the actual visibility of the blur in a
particular area, according to the CSF. Should the user need to further control the amount
of defocus deblurring, it could be added to the optimization in the form of constraints
over the depth values according to the corresponding DOF function.

We have demonstrated significant improvements in sharpness and contrast of dis-
played images without compromising the perceived three-dimensional appearance of
the scene, as our results and validation with objective metrics show. For the special
case of disparity retargeting in stereoscopic image pairs, our method is the first to
handle display-specific non-dichotomous zones of comfort: these model the underly-
ing physical and physiological aspects of perception better than binary zones used in
previous work. The video at http://webdiis.unizar.es/~bmasia/downloads/thesis/

DisplayAdaptive3DContentRemapping_CAG.mov shows an animated sequence for retar-
geted content. It is shown as an anaglyph, so it can be seen in 3D on a regular display.
Although the frames of this video clip have been processed separately, our algorithm
provides temporally stable retargeting results.

A complete model of depth perception remains an open problem. One of the main
challenges is the large number of cues that our brain uses when processing visual infor-
mation, along with their complex interactions [88, 169]. A possible avenue of future work
would be to extend the proposed optimization framework by including perceptual terms
modeling human sensitivity to accommodation, temporal changes in displayed images,
sensitivity of depth perception due to motion parallax or the interplay between differ-
ent perceptual cues. However, this is not trivial and will require significant advances in
related fields. Another interesting avenue of future work would be to extend our opti-
mization framework to deal with all the views in the light field, as opposed to working
on the central view, thus exploiting angular resolution and avoiding artifacts for large
parallax.

We hope that our work will provide a foundation for the emerging multiview content
production pipeline and inspire others to explore the close relationship between light
field acquisition, processing, and display limitations in novel yet unforeseen ways.

http://webdiis.unizar.es/~bmasia/downloads/thesis/DisplayAdaptive3DContentRemapping_CAG.mov
http://webdiis.unizar.es/~bmasia/downloads/thesis/DisplayAdaptive3DContentRemapping_CAG.mov
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V I S U A L C O M F O RT I N S T E R E O S C O P I C M O T I O N

about this chapter

This chapter compiles the work done in measuring the degree of comfort when viewing
stereoscopic content in motion. The analysis and measurements are done in a multidi-
mensional space including velocity in depth or disparity, among others. To our knowl-
edge, this work is the most comprehensive study of the influence of stereo motion in
viewing comfort up to date. The work has been done in collaboration with Song-Pei Du
and Shi-Min Hu, from the Graphics and Geometric Computing Group in Tsinghua Univer-
sity (Beijing, China), and began as a result of our visit to their lab in November 2012.
In this project, my contribution has been in the design of the experiment, methodology
and analysis, and also in the design of the validation stage. The work has recently been
accepted to SIGGRAPH Asia 2013.

S. Du, B. Masia, S. Hu and D. Gutierrez.
A Metric of Visual Comfort for Stereoscopic Motion.

ACM Transactions on Graphics, 32(6) (Proceedings of SIGGRAPH Asia 2013).

6.1 introduction

Over the last few years, there has been a renewed interest in stereoscopic displays. Stereo-
scopic content is generated for movies, games and visualizations for industrial, medical,
cultural or educational applications. This has in turn spurred research on aspects of the
human visual system that relate to stereo vision [351]. Recent studies analyze the com-
fort zone for the vergence-accommodation conflict, the influence of luminance on stereo
perception, or the depiction of glossy materials, to name just a few [401, 108, 438]. The
goal is to understand different aspects of our visual system in order to produce stereo
content that guarantees a comfortable viewing experience.

As opposed to natural viewing of the real 3D world, stereoscopic viewing implies
conflicting vergence and accommodation cues, which is widely accepted to be a main
cause of visual discomfort (see also Section 4.6.1 in Chapter 4). However, despite re-
cent advances and the extensive existing literature [183, 211, 108, 106], some aspects
of binocular vision remain largely unexplored. One of the main reasons is the large
number of different factors involved, as well as their complex interaction [88]. As a con-
sequence, generating stereo content that guarantees a comfortable viewing experience
remains a challenging task, often reserved to technicians with a large experience in the
field [252, 311].

Thus, one of the goals of stereography is to minimize the discomfort that stereoscopic
viewing can cause, and numerous works have been devoted to explaining and character-
izing the causes [236, 251, 401]. However, fewer have explored how object motion affects
this discomfort in stereoscopic viewing. Object motion in stereoscopic movies can in fact
be a source of discomfort: Researches and experiments have revealed that visual com-
fort has a close relationship with some oculomotor functions, including eye movements
induced by motion in the scene [28, 336]. In this work we analyze visual discomfort due
to motion in short stereoscopic movies by means of a comprehensive statistical study.
Unlike previous work [499, 212], we take into account the interplay of motion velocity
both on the screen plane and on the depth axis, as well as signed disparity and lumi-
nance spatial frequency. Our goal is not only to help understand the phenomena that
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may lead to visual discomfort; we provide a practical metric to assess existing 3D con-
tent as well. This can be used as a guideline for the generation of new stereo content, or
to keep navigation parameters in virtual reality environments within comfortable limits,
for instance.

contributions : Specifically, we make the following contributions:

• We show that all the factors included in our study, as well as their interaction, do
affect viewing comfort, and should be considered in the design of stereo content.

• We derive a statistical measurement that models the influence of motion, lumi-
nance spatial frequency, and signed disparity in visual discomfort.

• We propose a metric to predict potential comfort in short stereoscopic videos, and
validate it by means of a user study.

• We propose several direct applications that could benefit from our measurements
and metric, including a novel visual comfort zone for stereoscopic production,
visualization techniques and stereoscopic retargeting.

limitations : Although our measurements and metric are the most complete and
exhaustive up to date, we do not aim at providing here the ultimate solution to this prob-
lem. Our methodology and results represent a solid step towards fully characterizing
discomfort due to motion, and we hope that they will help others build more sophisti-
cated models. However, there are a number of limitations that should be addressed by
follow-up work. First, a comfortable stereo viewing experience may be related to many
other factors not considered here, such as luminance contrast, disparity spatial frequency,
viewing time, flicker, or imperfect content, to name a few [236, 294, 106, 176, 79]. Taking
all these factors and their interactions into account would make the problem intractable.
Additionally, we limit our study to supra-threshold stimuli. Last, our metric is devised
for short video sequences (up to 30 seconds in our results). This is convenient, since the
average shot in modern TV and movies is only a few seconds. It would be interesting,
however, to analyze how to extend our approach to longer sequences (even entire films)
to take into account cumulative discomfort effects.

6.2 related work

Many previous works have investigated various aspects of stereoscopic perception (see
for instance [183, 337], and Section 4.6.1 in Chapter 4 for a brief overview). Recently,
researchers have begun to explore the problem from the perspective of computer graph-
ics and its applications. For instance, Templin et al. [438] introduce a novel technique
for stereoscopic depiction of glossy materials. Closer to our approach, Didyk et al. [106]
propose a model of disparity based on perceptual experiments, which is later extended
to take into account the influence of luminance contrast [108]. We also propose a mea-
surement based on perception-driven studies, although we tackle a different problem,
focusing on visual discomfort in the presence of stereoscopic motion.

Existing works have shown that visual discomfort in stereoscopy has a close relation-
ship with oculomotor functions. It is widely accepted that the vergence-accommodation
conflict is a key factor of visual discomfort, and that there exists a comfortable zone
within which little discomfort occurs [336, 177, 435]. In general, eye movement can be
a source of discomfort when viewing stereoscopic content [28], which means that the
motion component needs to be explicitly considered when measuring visual discomfort.

Kooi and Toet [236] investigate various factors that may affect the visual comfort of
viewing stereo images, including optical errors, imperfect filters and disparity. Hoffman
et al. [176] investigate the influence on the stereo viewing experience caused by flicker,
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motion and depth artifacts for various temporal presentation methods. Other works offer
a quantitative measurement of visual comfort: Jin et al. [204] evaluate the stereoscopic
fusion disparity range based on the viewing distance and field of view of the display.
Vertical misalignment has also been shown to affect visual comfort, and the maximum
tolerable vertical misalignment has been measured as a unified metric based on different
kinds of geometric misalignment [205]. Shibata et al. [401] design a series of experiments
to evaluate the zone of comfort for different vergence-accommodation combinations,
while Yang et al. [496] introduce a binocular viewing comfort predictor. None of them,
however, consider motion. Lambooij et al. [251] present a review of causes of visual
discomfort, and conclude that visual discomfort might still occur within the so-called
comfortable zone because of fast motion, insufficient depth information and unnatural
blur.

Existing experiments have also confirmed the correlation between the velocity of mov-
ing objects and visual comfort [498, 499, 448]. Speranza et al. [419] investigate the rela-
tionship between visual discomfort and object size, motion-in-depth and disparity. Jung
et al. [212] introduce a novel visual comfort metric for stereoscopic video based on salient
object motion, by computing three different discomfort functions for motion in horizon-
tal, vertical and depth, respectively. The authors then use the mean or min operations
to assess the global visual comfort, which is an ad-hoc solution for the co-occurrence
of different motion components. Cho and Kang [79] measure the visual discomfort as a
function of disparity and viewing time for three levels of motion-in-depth (slow, medium
and fast). Last, Li et al. employ pair-comparison experiments and propose a visual dis-
comfort model based on the disparity and motion on the screen plane; they use both
experts-only subjects using the Thurstone-Mosteller model [263], and non-experts sub-
jects using the Bradley-Terry model [262].

All previous works on visual discomfort of stereoscopic motion either consider a sin-
gle component of the motion vector, or simply combine conclusions obtained through
separate experiments. In contrast, we offer a comprehensive study and systematically
explore a larger parameter space, including the influence of the luminance spatial fre-
quency, which is known to play an important role in depth perception. From our studies,
we build a reliable measurement of visual comfort for stereoscopic motion, which we use
to derive a predictive metric.

6.3 methodology

In this section we describe the subjective experiments performed to measure the subjects’
level of comfort when watching stereoscopic motion.

6.3.1 Parameter Space

As explained in Section 6.2, two key factors related to visual comfort in stereoscopic
images and videos are the disparity value d and the velocity of motion v = (vx, vy, vz),
where subindices x,y refer to the screen plane and z indicates the direction perpendicu-
lar to the screen, i.e. depth. Recent studies have found that vx and vy have a similar effect
on visual comfort [212]; we thus reduce the dimensionality of our problem by focusing
on planar motion (vxy) plus motion in depth (vz). We measure d in terms of angular
disparity α (in deg) while vz and vxy are the derivatives of the angular disparity and
viewing direction β, respectively (in deg/sec). These parameters are shown in Figure 6.2.
Intuitively, vxy corresponds to a change in the gaze direction, while vz corresponds to a
variation of eye vergence.

The influence of luminance spatial frequency fl on disparity perception is well known
[258, 168], and it was recently used to develop a perceptual disparity model [108]. How-
ever, its influence on visual comfort for stereo motion remains largely unexplored; to
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Figure 6.2: Disparity and motion defined as functions of angular disparity α and viewing
direction β. The viewing direction is defined from the middle interocular
point.

overcome this, we add a parameter for luminance spatial frequency fl in our experi-
ments. Our parameter space is then four-dimensional: d, vxy, vz, fl. Similar to other
works, in order to reduce dimensionality, we fix the values of other parameters in our
experiments.

6.3.2 Stimuli

Each stimulus consists of two-second animations, defined by a sinusoidal depth corruga-
tion textured with a luminance image of noise of spatial frequency fl. Each corrugation
moves at a speed (vxy, vz). The mean disparity of the corrugation is d, and the ampli-
tude of the sinusoid is fixed for all stimuli at 0.1◦ (6 arcmin), defined as the difference
between mean and peak. In the case in which vz 6= 0, and thus the mean disparity
of the corrugation changes over time, d is defined as the mean disparity of the whole
two-second stimulus. Previous work by Shibata et al. [401] used 4 arcmin, but did not
consider motion nor the influence of luminance spatial frequencies. We thus choose a
slightly larger value which allows to clearly distinguish the corrugation. The corruga-
tion’s disparity spatial frequency is set to 0.3 cpd, which has been reported to be near
the peak sensitivity of the human visual system [106]. We sample each dimension of our
parameter space as follows:

• d = {−2, 0, 2} [◦]

• vxy = {0, 8, 16} [◦/sec]

• vz = {0, 1, 2} [◦/sec]

• fl = {1, 4, 16} [cpd]

This makes a total of 81 different stimuli. Additionally, for each stimulus we explore
four different corrugation orientations ψ = {0, 45, 90, 135} [◦], defined as degrees over
the horizontal (see Section 6.3.3). The stimuli are shown on a fixed window at the cen-
ter of the screen (the viewing angle of the window’s diagonal is 22◦), surrounded by a
50% gray background. To obtain the stereo pair, we use image warping for the left and
right views [106]. This is done to avoid the “keystone” distortion in the toed-in cam-
era configuration, and the perspective effect which would make the depth corrugations
look non-uniform. We pre-compute the stimuli by warping offline, which works well in
practice; no artifacts were reported by the subjects.
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We explore vxy by moving the depth corrugation along the 45
◦ diagonal. To avoid

potential discomfort from nonlinear motion gradients [212], we only consider positive
values of vz, that is, motion towards the subject. Additionally, as noted by Speranza et
al. [419], zero-crossings in the disparity signal will affect the visual comfort: We thus
limit depth corrugation motion in the z axis from d − |vz| to d + |vz| during the two-
second span. Example stimuli are shown in Figure 6.3 while different combinations of d
and vz are illustrated in Figure 6.4.

Figure 6.3: Sample stimuli for the case of corrugation orientations ψ = 0◦. Three succes-
sive frames are shown as anaglyphs. Under our viewing configuration, a 0.1◦

amplitude corresponds to about 7mm in depth.

2d = − 0d = 2d =

1zv =

2zv =

Screenthe mean depth  of corrugation

Figure 6.4: Different combinations of d and vz. There are no non-linear motion compo-
nents and no sign conversions of d at non-zero disparity. In each case, the
upper and lower dashed lines represent d = −2◦ and d = 2◦ respectively.

6.3.3 Procedure

We use a 23-inch interleaved 3D display (1920× 1080 pixels, 400 cd/m2 brightness) with
passive polarized glasses. The viewing distance is 50 cm and we assume the interpupil-
lary distance to be 65 mm. Twenty subjects participated in our experiments, all with nor-
mal or corrected-to-normal vision, and with no difficulty in stereoscopic fusion. Their
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ages range from 20 to 30 years. Horizontal stripes are visible at this viewing distance
and this should be universal for all such polarization displays. Subjects were aware of
this and did not report complaints in the experiments.

The experiment is divided into 81 sub-sessions, which correspond to all possible com-
binations of our stimuli with fixed corrugation orientation ψ. In each sub-session, the
subject is asked to rate their comfort level after doing a series of visual oddity tasks (three-
interval, forced choice) [401]. Specifically, for a given sample (d, vxy, vz, fl), three stimuli
are presented sequentially, with a 0.5 second break between stimuli during which a 50%
gray image is shown. Two of the three stimuli have the same corrugation orientation ψ,
while the other has a 45◦ difference. For example, the three sequentially presented ori-
entations may be (0◦, 0◦, 45◦), (90◦, 135◦, 90◦), (45◦, 0◦, 45◦), etc. The order and choice of
orientations are random. After presenting the three stimuli (2× 3+ 0.5× 2 = 7 seconds),
the subject is forced to select which stimulus had the odd orientation. Each sub-session
contains ten such oddity tasks; after completing each sub-session, the subject is asked to
rate their comfort level on a 5-point Likert scale, based on the following two questions:

• How do your eyes feel? (From 1 to 5: severe strain, moderate strain, mild strain,
normal, very fresh).

• How comfortable was the viewing experience? (From 1 to 5: very uncomfortable,
uncomfortable, mildly comfortable, comfortable, very comfortable).

Each sub-session takes about 80 seconds. We split the experiment into three parts and
each part contains 27 sub-sessions with the same fl value (1, 4, or 16 cpd); the three
parts are done on three consecutive days. In each part the order of the 27 sub-sessions is
random across subjects. To avoid accumulation effects [79], subjects have to take a two-
minute rest between sub-sessions, plus a longer, ten-minute break after 13 sub-sessions.
They are nevertheless encouraged to take a longer rest if they want. For one subject,
the whole experiment takes between 1.5 and 2 hours each day. Our choices are based
on pilot tests performed before the regular experiments, which show that after an 80-
second sub-session, subjects do perceive discomfort and that they can recover well after
a two-minute break between sub-sessions.

6.4 analysis

We first compute each subject’s comfort score for every sub-session by averaging the two
scores from the Likert scale, thus obtaining a total of 20× 81 = 1620 scores. Then the
comfort score for each session is computed as the average across the 20 subjects. To verify
that these averages are statistically reliable, we perform a one-way repeated measures
analysis of variance (ANOVA) of our data. This yields an F-value F(80, 1520) = 24.01,
which is much larger that the F-test critical value for p = 0.01. This means the inter
stimuli (intra subjects) variances are much larger than intra stimuli (inter subjects) vari-
ances, and thus our average scores are statistically reliable. Average ratings per stimuli,
together with the standard error of the mean, can be found in Appendix G.

Our data are then used to determine our statistical measurement C of visual comfort
for stereoscopic motion. We measure C as C = Cv,d +Cfl , that is, a function of both the
combination of velocity and depth, and luminance frequency. Previous works analyzing
only velocity and disparity separately suggest that comfort seems to be approximately
linear with those parameters [263, 212]. Although Jung et al. [212] fitted their model
using logarithmic functions, the non-linear components are relatively small. Thus, we
begin by using the following polynomial to fit Cv,d:

Cv,d = p1vxy + p2vz + p3vxyvz + p4dvxy + p5dvz + p6d+ p7 (38)

Didyk et al. [108] model a discrimination-threshold function s as: s ≈ 0.257 log2(fl) −
0.3325 log(fl) + s(fd,md) where fd and md represent the frequency and magnitude of



144 visual comfort in stereoscopic motion

disparity respectively. To measure the influence of luminance spatial frequency fl in
visual discomfort, we therefore define Cfl as a quadratic component of C:

Cfl = p8 log2(fl) + p9 log(fl) (39)

Additionally, we want to explore how the sign of d affects the comfort score. We
expand Equation 38 and include (p+4 ,p+5 ,p+6 ) and (p−4 ,p−5 ,p−6 ) for d > 0 and d < 0,
respectively. The resulting eleven-dimensional coefficient vector P=[p1, p2, p3, p+4 , p+5 ,
p+6 , p−4 , p−5 , p−6 , p7, p8, p9] is computed by solving the following quadratic optimization
using linear least squares:

arg min
P∈R10

80∑
i=0

(C(xi) −Ci)2 (40)

where xi|80i=0 are the 81 samples described in Section 6.3 and Ci|80i=0 corresponds to the 81

average scores across subjects. This yields a vector P = [−0.0556, −0.6042, 0.0191, 0.0022,
0.1833, −0.6932, −0.0043, −0.1001, 0.2303, 4.6567, 0.9925, −1.1599]. The R2 measure of
goodness of fit is R2 = 0.9306.

6.4.1 Discussion

Several slices of our visual comfort function C are visualized in Figures 6.5 and 6.6.
Our measurement agrees with previous observations from existing works: Increasing
disparity values (Figure 6.6(a)), motion on the screen plane (Figure 6.6(b)) or motion in
depth (Figure 6.6(c)) introduce larger discomfort. Additionally, our measurement allows
us to infer other important conclusions:

• The sign of the disparity also affects visual comfort (see Figure 6.6(a)). This effect
was previously reported for the case of static stimuli [401]; our experiments show
that this behavior applies to stereoscopic motions as well. Additionally, we provide
a quantitative measurement of this difference (|p+6 | = 0.6932 and |p−6 | = 0.2303).

• The combination of different values of vxy and vz has a strong influence in comfort
(p3 = 0.0191), as shown in Figure 6.6(b). Comfort decreases differently as vxy and
vz increase (p1 = −0.0556, p2 = −0.6042). In particular, the influence of vxy in
viewing discomfort diminishes as vz increases.

• Last, luminance spatial frequency fl is a non-linear factor in viewing comfort. For
fl ∈ [1 cpd, 16 cpd] in our experiments, the comfort score has a minimum near
4 cpd (p8 = 0.9925, p9 = −1.1599), as shown in Figure 6.6(d). Didyk et al. [108]
computed the influence of fl on perceived depth, and found a similar minimum.
This could mean that, when taking motion into account, smaller perceived depths
may produce a more comfortable 3D viewing experience.

6.5 metric of visual comfort

Our measurement can be used to predict the level of comfort when viewing short stereo-
scopic videos. In particular, we derive a metric to compute both a pixel-wise comfort
map of each frame in the video Mp(i, j), which allows to identify the particular areas or
objects in each frame that are potential sources of discomfort, and a global comfort score
Mg for the whole video.

Given an input stereoscopic video consisting of two corresponding left-right image se-
quences (IL(t), IR(t))|t=0,1,..., we first compute the motion v = (vx, vy, vz) and disparity
value d at each pixel (i, j) in each frame IL(t). Since the binocular views have similar
content, we assume they share the same comfort map and we will use the left view for
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Figure 6.5: Slices of our measurement function C. For d = 0◦, three slices are shown cor-
responding to three different luminance frequencies: 1, 4 and 16 cpd. Higher
comfort score refers to better visual comfort level predicted by our measure-
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computing velocities and fl, and both views when computing the disparities. For real-
world videos where this information is not usually available, we rely on optical flow
(for motion), or motion and depth estimation [212]. We define the motion on the screen

plane as vxy =
√
v2x + v

2
y.

pixel-wise metric Our pixel-wise metric leverages our measurement of comfort
C presented in the previous section. To take into account luminance spatial frequency, we
construct a Laplacian pyramid of the luminance of IL(t), from a starting base frequency
fl0 . Multi-scale decompositions are frequently used to model the varying sensitivity of
the human visual system (HVS) to different spatial frequencies. In the case of luminance-
contrast frequencies, Laplacian pyramids are an efficient approximation that works well
in practice [292, 108]. Similarly, our local contrast term is an efficient and convenient
approximation to assess the influence of each luminance spatial frequency channel on
comfort. For each frame, we then compute the comfort score at each (i, j) using our
measurement function C as:

Mp(i, j) =
n∑
k=0

C(vxy, vz,d,
fl0
2k

)× Lk(i, j)∑
k Lk(i, j)

(41)

where Lk(i, j) is defined as the contrast value of the (2k+1 + 1)- neighborhood at (i, j) at
the k-th Laplacian level, and n is the number of Laplacian levels. In practice we select
n such that fl0/2

n < 1 cpd. From the resulting Mp(i, j) we obtain a two-dimensional
comfort map per frame, which can be used to visualize the spatial location and distri-
bution of the uncomfortable viewing regions. By stacking maps over time, we obtain
a three-dimensional Mp(i, j, t) map for the whole video, which allows to visualize the
temporal evolution of the discomfort regions. Figure 6.7 shows Mp for two time instants
of two different video sequences.

global metric To compute a global comfort score MG for the whole video we
pool partial metrics both in the spatial and temporal domains. For the spatial, per-frame
pooling, existing research suggests that the overall perception of any single frame is
dominated by its “worst” area [215]. We thus take a conservative approach and assume
that the most uncomfortable region in a frame dictates the discomfort of the whole frame.
We further modulate such per-frame discomfort by taking saliency into account. Saliency
maps have been employed before in related scenarios, like comfort assessment [212], edit-
ing of stereo content [271], or image and video retargeting [382]. We use saliency maps
under the reasonable hypothesis that human subjects pay more attention to visually
salient regions, and therefore those will have a greater influence in comfort. In our im-
plementation, we obtain a saliency-based segmentation using the method by Cheng et
al. [76], which also yields a per-region saliency value between zero and one. We reduce
the discomfort in non-salient regions based on the saliency value, and the comfort Mg
for frame tk is then given by:

Mg(tk) = min
r

(5− Sr(tk) · (5−Mr(tk))) (42)

where Sr represents the saliency values of a given region r andMr = 1
|r|

∑
(i,j)∈rMp(i, j)

is the average per-pixel comfort in r.
For temporal pooling, various approaches have been proposed for video quality as-

sessment [333, 40]. To obtain our final global metric MG, we simply pool the results
over the whole video by computing the median of the comfort scores over all frames, as
validated in previous work [212].

Figure 6.1 (right) shows how the different stages of the metric perform for several sam-
ple frames of a stereo movie. For each frame (first row), first a per-pixel map Mp(i, j) is
computed (second row), which is then averaged to obtain a per-region comfort measure
Mr (third row).
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Figure 6.7: Representative frames with their computed pixel-wise comfort map Mp for
bus (top row, © Fraunhofer HHI) and car (bottom row, © KUK Filmproduk-
tion GmbH) scenes.

6.6 validation

Our metric is based on the comfort measure as derived in Section 6.5. In this section we
conduct a set of experiments to validate our assumptions regarding the dependence on
luminance contrast and the influence of saliency. Please refer to http://webdiis.unizar.

es/~bmasia/downloads/thesis/Displays-Comfort-ValidationVideos.zip for videos of
the stimuli employed.

controlled scenes We first test our metric on four simple, controlled scenes,
shown in Figure 6.8. They all consist of a static background (vxy,BG = 0) and some
moving objects in the foreground. The spatial frequency of luminance contrast fl varies
across stimuli, both for foreground and background. Textures and velocities also vary
across stimuli, as detailed in Figure 6.8. We fix vz = 0 in all cases, as well as the disparity
d of both foreground and background to dFG = 0 and dBG = −2, respectively. We
explore four combinations of different frequencies for both foreground and background;
additionally, the screen plane velocity of the foreground can take two distinct values,
vxy,FG = {2, 16}.

vxy = 16
vz = 0

dFG = 0
dBG = -2
fl,FG=low
fl,BG=low

vxy = 16
vz = 0

dFG = 0
dBG = -2

fl,FG=high
fl,BG=low

vxy = 2
vz = 0

dFG = 0
dBG = -2

fl,FG=high
fl,BG=low

vxy = 2
vz = 0

dFG = 0
dBG = -2
fl,FG=low

fl,BG=high

Figure 6.8: Representative frames of the stimuli used to test the validity of the approach
used to incorporate the influence of luminance contrast spatial frequency. In
reading order, stimulus A, B, C and D.

http://webdiis.unizar.es/~bmasia/downloads/thesis/Displays-Comfort-ValidationVideos.zip
http://webdiis.unizar.es/~bmasia/downloads/thesis/Displays-Comfort-ValidationVideos.zip
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A user study is run with ten subjects, in which they are asked to rate their comfort
when viewing the different clips. Each clip lasts 30 seconds, with a minimum resting
period of 60 seconds between videos, and the order of presentation is randomized across
subjects. We then compare the comfort values yielded by our metric with assessments
given by subjects. Figure 6.11 (left) summarizes the score predicted by our metric and the
average score given by the users. It can be seen how our metric follows very closely such
user scores. Since our ranking data does not necessarily follow a normal distribution,
we compute Spearman’s correlation coefficient, which yields ρS = 1, with p = 0.0833.
Pearson’s linear correlation coefficient is ρP = 0.9916 with p = 0.0084, indicating that
the variables are correlated. This test shows that, even in conflicting scenarios such as
stimulus B (high frequency foreground with no disparity but high screen plane velocity)
and D (high frequency background with high disparity but no screen plane velocity),
our metric is able to capture the relative discomfort elicited by the stimuli.

Additionally, we want to test the influence of saliency on viewing comfort. A second
experiment was conducted as a separate session with the same users (resting time be-
tween sessions was a minimum of 20 minutes), with a procedure analogous to the one
described in the previous paragraph. In this case we use two stimuli, shown in Figure 6.9,
consisting of a series of objects in the foreground, with disparities dFG, on a constant
static mid-gray background with disparity dBG. The objects move erratically with slow
screen plane velocity (vxy = 4 and vz = 0). In the second clip, we increase the saliency
of one of the objects by making it clearly stand out in red. As Figure 6.11 (center) shows,
making the object more salient made the user scores drop, since the discomfort caused
by the moving (foreground) teapot now becomes more relevant; this behavior was also
predicted by our metric.

vxy = 4
vz = 0

dFG = 0
dBG = -1

vxy = 4
vz = 0

dFG = 0
dBG = -1

Figure 6.9: Representative frames of the stimuli used to test the validity of the saliency
scheme integrated in the global metric.

We also compare our metric with Jung et al.’s [212]. Since they do not consider the
influence of luminance, their metric will yield the same values for cases A and B (and C
and D) in Figure 6.11 (left), and again for the two cases in Figure 6.11 (center). For the
first experiment, Spearman’s correlation coefficient is ρS = 0.8944 (p = 0.3333), while
Pearson’s coefficient is ρP = 0.9045 (p = 0.0955). Recall that our metric, in contrast,
yields higher correlations with the measured data: ρS = 1 and ρP = 0.9916.

real scenes We use four different scenes –bus, bunny, horse and car– to further
validate our metric. They exhibit a variety of motion combinations as well as different
luminance frequencies and disparity ranges. Figure 6.10 shows representative frames
of each one. Ten subjects were asked to rate their comfort level after viewing the clip,
and a two-minute rest is forced between two clips. Again, we compute the comfort
score according to the presented metric and compare it against the score given by the
subjects; results are shown in Figure 6.11 (right). Again, there is a strong correlation
between predicted and user scores, with Spearman’s rank correlation coefficient yielding
a value of ρS = 1 (p = 0.0833), while Pearson’s correlation coefficient is ρP = 0.9514
(p = 0.0486). Although our metric tends to slightly overestimate comfort, the predicted
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value is generally inside the 95% confidence interval for the mean. The difference for
the car scene is significantly larger, which is due to its complex vz velocity field: Objects
move in opposite directions, with nonlinear motion in depth and changes in the sign
of vz with respect to the camera. Given the high linear correlation in the data, we can
compensate the overestimation by fitting a linear function to the metric, to obtain the
final global expected score: Mexp = 3.45MG − 10.20 (R2 = 0.91).

Figure 6.10: Representative anaglyph frames of the stimuli used to test the validity of
our metric in real scenarios. From left to right, top to bottom: bus, horse (©
KUK Filmproduktion GmbH), bunny and car.

6.7 applications

Our work is a contribution towards a comfortable viewing experience. In this section,
we describe various applications of our experiments and metric, including: Stereoscopic
production, scientific visualization and retargeting.

stereoscopic production Various rules and guidelines have been proposed
for practical use in stereoscopic content production in order to provide a comfortable
viewing experience [311, 415, 414]. Often, these guidelines are based on years of ex-
perience in the production industry. Our quantitative measurements can complement
that know-how. The challenge is the multidimensional nature of the measurements: the
function presented in Figure 6.5 may be too elaborate for practical use in a production
scenario. However, comfort zones can be derived from the measurements, which can in
turn be used as a guide for content design. We can define the comfort zone Zl,h as:

Zl,h = {(d, vxy, vz, fl)|l 6 C(d, vxy, vz, fl) 6 h}

where l and h are the given lower and upper bounds. Slices for the sample case of l = 3
and h = 4, Z3,4, are shown in Figure 6.1 (left). Considering, for instance, a moving ob-
ject with a given vxy, the illustrated comfort zone defines a safe range of disparities on
which such object can lie as a function of its velocity in z. Additionally, automatic compu-
tation of camera placement [335, 165, 209], could potentially benefit from incorporating
information from our measurements.

stereoscopic retargeting The adaptation of stereoscopic content to a dispar-
ity range that provides a comfortable viewing experience has motivated a number of
recent works that focus on disparity retargeting [252, 220, 307, 216].
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Our work can be applied to this area in two ways. First, as shown in the previous
paragraph and in Figure 6.1 (left), our measurements can be used to define zones of
comfort which could be incorporated as constraints when defining a retargeting oper-
ator φ(d). Second, our metric can provide information about the change of predicted
comfort caused by the retargeting operation, taking into account the motion in the scene;
this can in turn be used to evaluate or select a given operator. Figure 6.12 shows our
predicted distribution of discomfort for the horse video, for two different disparity retar-
geting operators. This provides users with a more insightful view of potential sources of
discomfort, both in the temporal and disparity domains.

visualization Visualization of complex, three dimensional data is extensively
used in various fields, including engineering, geoscience, medicine, biology, architecture
or education. In some cases, this visualization can be improved by employing stereo-
scopic techniques [116, 206]. In such systems, uncontrolled user navigation may lead to
visual discomfort; our measurement can be used to provide constraints on the navigation
(motion), which would guarantee a comfortable viewing experience.

Given a desired lower bound of the visual comfort level, our measurement could be
used to dynamically map the user’s input from the navigation device into a comfort-
able range of camera motions and velocities. In a simple implementation, a sampling of
the scene would be performed: At sampled positions, the disparity d would be queried
for the current frame(s), as well as an estimation of the dominant luminance spatial fre-
quency fl. This would be used to set boundaries on the maximum vxy and vz allowed for
navigating the scene. A simple, conservative approach would take the minimum values
from all the sampled data; more sophisticated approaches can incorporate importance
sampling strategies, either task-oriented or based on visual saliency. This can be made
more practical by processing batches of frames.

assessment metric A number of tools have recently appeared that focus on the
editing of stereoscopic content, such as copy-and-pasting [271, 276], drawing [226], con-
verting 2D images to stereo pairs [235, 110], or warping [334]. While the initial content
may be assumed to have been carefully generated, it is still hard to predict how any
of these editing operations would affect the resulting viewing experience. The metric
we propose in this work can be used to evaluate the discomfort that may arise from
post-processing operations such as the ones mentioned above.

6.8 conclusion and future work

We have introduced a novel measurement for the visual discomfort caused by motion
in stereoscopic content. A four-dimensional space is explored which includes disparity,
planar and depth velocities, as well as the spatial frequency of luminance contrast. Based
on these measurements, a metric is proposed to evaluate the level of comfort associated
to viewing short stereoscopic videos.

There is ample opportunity for exciting future work. Given the complexity of the HVS,
other factors not taken into account here may affect visual comfort, such as the spatial
frequency of the disparity, or the temporal frequency of luminance contrast. Similarly,
investigating the effect of higher order components of motion (acceleration) can help
analyze more complex scenes. Additionally, our saliency estimation does not consider
motion or disparity; this is a possible cause of the current overshooting of our metric,
which we fix with a fitting function, but deserves further investigation. Our measure-
ments have been tested for a near viewing distance (50 cm in our experiments): Different
viewing conditions could be studied using our methodology. Moreover, more sophisti-
cated metrics and models should probably use qualitative information gathered from
industry experts. We hope that our work fosters future research in this area, including
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both stereo applications and a deeper understanding of the mechanisms of our visual
system.



Part V

F E M T O - P H O T O G R A P H Y A N D T R A N S I E N T I M A G I N G

Femto-photography is the term used to refer to a new imaging tech-
nique capable of capturing a scene with a temporal resolution of less
than two picoseconds. As a consequence, in each captured frame,
light travels less than a millimeter; this implies that with this tech-
nique we can actually see light propagating through a macroscopic
scene. We first describe the acquisition system, and the data process-
ing required for adequate visualization, and then present the rela-
tivistic effects we need to deal with to visualize the data in the case in
which the camera is moved through the scene. This transient imaging
technique has opened up a whole new field of possibilities.





8
F E M T O - P H O T O G R A P H Y: A C Q U I S I T I O N A N D V I S U A L I Z AT I O N

about this chapter

This chapter describes the system used to capture time-resolved data, and the subse-
quent processing that this data has to undergo for correct and comprehensible visualiza-
tion, and the work here presented was accepted to SIGGRAPH 2013 and consequently
published on the journal Transactions on Graphics. I started working in this topic during
my first stay at the Camera Culture Group at MIT Media Lab, which is the group that led
this project. My participation has been on devising visualization methods for the data
with Di Wu at MIT Media Lab (Section 8.5), and I also collaborated on the time warp-
ing part (Section 8.6), which was carried out in Zaragoza led by Adrián Jarabo. In this
chapter, the whole work on acquisition of time-resolved data using femto-photography
is described for completeness and context.

I then worked on several projects which further spawned from this work. One of them
is described in Chapter 9. The other is a minor collaboration on a project which deals
with analysis of light transport using time-resolved data, taking advantage of the high
temporal resolution: A model of light transport is presented, together with techniques
for the separation of light components, and then a number of applications are demon-
strated. My contribution was in the depth recovery in the presence of interreflections, an
unsolved problem in Computer Vision which can benefit from this time-resolved data.
Since my contribution was minor, and the work is already accepted for publication, this
part is not included in this manuscript; instead, we refer the interested reader to the
paper [490] (Sections 4 and 6).

A. Velten, D. Wu, A. Jarabo, B. Masia, C. Barsi, C. Joshi, E. Lawson, M. Bawendi, D. Gutierrez
and R. Raskar

Femto-Photography: Capturing and Visualizing the Propagation of Light.
ACM Transactions on Graphics 32(4). (Proc. of SIGGRAPH 2013).

8.1 introduction

Forward and inverse analysis of light transport plays an important role in diverse fields,
such as computer graphics, computer vision, and scientific imaging. Because conven-
tional imaging hardware is slow compared to the speed of light, traditional computer
graphics and computer vision algorithms typically analyze transport using low time-
resolution photos. Consequently, any information that is encoded in the time delays of
light propagation is lost. Whereas the joint design of novel optical hardware and smart
computation, i.e, computational photography, has expanded the way we capture, an-
alyze, and understand visual information, speed-of-light propagation has been largely
unexplored. In this paper, we present a novel ultrafast imaging technique, which we term
femto-photography, consisting of femtosecond laser illumination, picosecond-accurate de-
tectors, and mathematical reconstruction techniques, to allow us to visualize movies
of light in motion as it travels through a scene, with an effective framerate of about one
half trillion frames per second. This allows us to see, for instance, a light pulse scattering
inside a plastic bottle, or image formation in a mirror, as a function of time.

challenges Developing such time-resolved system is a challenging problem for
several reasons that are under-appreciated in conventional methods: (a) brute-force time

175
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exposures under 2 ps yield an impractical signal-to-noise (SNR) ratio; (b) suitable cam-
eras to record 2D image sequences at this time resolution do not exist due to sensor
bandwidth limitations; (c) comprehensible visualization of the captured time-resolved
data is non-trivial; and (d) direct measurements of events appear warped in space-time,
because the finite speed of light implies that the recorded light propagation delay de-
pends on camera position relative to the scene.

contributions Our main contribution is in addressing these challenges and cre-
ating a first prototype as follows:

• We exploit the statistical similarity of periodic light transport events to record
multiple, ultrashort exposure times of one-dimensional views (Section 8.3).

• We introduce a novel hardware implementation to sweep the exposures across a
vertical field of view, to build 3D space-time data volumes (Section 8.4).

• We create techniques for comprehensible visualization, including movies show-
ing the dynamics of real-world light transport phenomena (including reflections,
scattering, diffuse inter-reflections, or beam diffraction) and the notion of peak-time,
which partially overcomes the low-frequency appearance of integrated global light
transport (Section 8.5).

• We introduce a time-unwarping technique to correct the distortions in captured
time-resolved information due to the finite speed of light (Section 8.6).

limitations Although not conceptual, our setup has several practical limitations,
primarily due to the limited SNR of scattered light. Since the hardware elements in our
system were originally designed for different purposes, it is not optimized for efficiency
and suffers from low optical throughput (e.g., the detector is optimized for 500 nm
visible light, while the infrared laser wavelength we use is 795 nm), and from dynamic
range limitations. This lengthens the total recording time to approximately one hour.
Furthermore, the scanning mirror, rotating continuously, introduces some blurring in
the data along the scanned (vertical) dimension. Future optimized systems can overcome
these limitations.

8.2 related work

ultrafast devices The fastest 2D continuous, real-time monochromatic camera
operates at hundreds of nanoseconds per frame [141] (about 6· 106 frames per second),
with a spatial resolution of 200×200 pixels, less than one third of what we achieve.
Avalanche photodetector (APD) arrays can reach temporal resolutions of several tens
of picoseconds if they are used in a photon starved regime where only a single photon
hits a detector within a time window of tens of nanoseconds [72]. Repetitive illumina-
tion techniques used in incoherent LiDAR [443, 137] use cameras with typical exposure
times on the order of hundreds of picoseconds [66, 80], two orders of magnitude slower
than our system. Liquid nonlinear shutters actuated with powerful laser pulses have
been used to capture single analog frames imaging light pulses at picosecond time res-
olution [113]. Other sensors that use a coherent phase relation between the illumination
and the detected light, such as optical coherence tomography (OCT) [185], coherent Li-
DAR [492], light-in-flight holography [1], or white light interferometry [491], achieve
femtosecond resolutions; however, they require light to maintain coherence (i.e., wave
interference effects) during light transport, and are therefore unsuitable for indirect il-
lumination, in which diffuse reflections remove coherence from the light. Simple streak
sensors capture incoherent light at picosecond to nanosecond speeds, but are limited to
a line or low resolution (20 × 20) square field of view [68, 196, 403, 137, 233, 355]. They
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Figure 8.3: Left: Photograph of our ultrafast imaging system setup. The DSLR camera
takes a conventional photo for comparison. Right: Time sequence illustrating
the arrival of the pulse striking a diffuser, its transformation into a spheri-
cal energy front, and its propagation through the scene. The corresponding
captured scene is shown in Figure 8.10 (top row).

have also been used as line scanning devices for image transmission through highly
scattering turbid media, by recording the ballistic photons, which travel a straight path
through the scatterer and thus arrive first on the sensor [161]. The principles that we
develop in this paper for the purpose of transient imaging were first demonstrated by
Velten et al. [458]. Recently, photonic mixer devices, along with nonlinear optimization,
have also been used in this context [164].

Our system can record and reconstruct space-time world information of incoherent
light propagation in free-space, table-top scenes, at a resolution of up to 672× 1000 pix-
els and under 2 picoseconds per frame. The varied range and complexity of the scenes we
capture allow us to visualize the dynamics of global illumination effects, such as scatter-
ing, specular reflections, interreflections, subsurface scattering, caustics, and diffraction.

time-resolved imaging Recent advances in time-resolved imaging have been
exploited to recover geometry and motion around corners [358, 229, 457, 456, 148, 340]
and albedo of from single view point [326]. But, none of them explored the idea of cap-
turing videos of light in motion in direct view and have some fundamental limitations
(such as capturing only third-bounce light) that make them unsuitable for the present
purpose. Wu et al. [488] separate direct and global illumination components from time-
resolved data captured with the system we describe in this paper, by analyzing the time
profile of each pixel. In a recent publication [489], the authors present an analysis on tran-
sient light transport in frequency space, and show how it can be applied to bare-sensor
imaging.

8.3 capturing space-time planes

We capture time scales orders of magnitude faster than the exposure times of conven-
tional cameras, in which photons reaching the sensor at different times are integrated
into a single value, making it impossible to observe ultrafast optical phenomena. The
system described in this paper has an effective exposure time down to 1.85 ps; since
light travels at 0.3 mm/ps, light travels approximately 0.5 mm between frames in our
reconstructed movies.

system : An ultrafast setup must overcome several difficulties in order to accurately
measure a high-resolution (both in space and time) image. First, for an unamplified laser
pulse, a single exposure time of less than 2 ps would not collect enough light, so the SNR
would be unworkably low. As an example, for a table-top scene illuminated by a 100 W
bulb, only about 1 photon on average would reach the sensor during a 2 ps open-shutter
period. Second, because of the time scales involved, synchronization of the sensor and
the illumination must be executed within picosecond precision. Third, standalone streak
sensors sacrifice the vertical spatial dimension in order to code the time dimension,
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thus producing x-t images. As a consequence, their field of view is reduced to a single
horizontal line of view of the scene.

We solve these problems with our ultrafast imaging system, outlined in Figure 8.2.
(A photograph of the actual setup is shown in Figure 8.3 (left)). The light source is
a femtosecond (fs) Kerr lens mode-locked Ti:Sapphire laser, which emits 50-fs with a
center wavelength of 795 nm, at a repetition rate of 75 MHz and average power of 500

mW. In order to see ultrafast events in a scene with macro-scaled objects, we focus the
light with a lens onto a Lambertian diffuser, which then acts as a point light source
and illuminates the entire scene with a spherically-shaped pulse (see Figure 8.3 (right)).
Alternatively, if we want to observe pulse propagation itself, rather than the interactions
with large objects, we direct the laser beam across the field of view of the camera through
a scattering medium (see the bottle scene in Figure 8.1).

Because all the pulses are statistically identical, we can record the scattered light from
many of them and integrate the measurements to average out any noise. The result
is a signal with a high SNR. To synchronize this illumination with the streak sensor
(Hamamatsu C5680 [156]), we split off a portion of the beam with a glass slide and
direct it onto a fast photodetector connected to the sensor, so that, now, both detector
and illumination operate synchronously (see Figure 8.2 (a)).

capturing space-time planes : The streak sensor then captures an x-t image
of a certain scanline (i.e. a line of pixels in the horizontal dimension) of the scene with a
space-time resolution of 672× 512. The exact time resolution depends on the amplifica-
tion of an internal sweep voltage signal applied to the streak sensor. With our hardware,
it can be adjusted from 0.30 ps to 5.07 ps. Practically, we choose the fastest resolution
that still allows for capture of the entire duration of the event. In the streak sensor, a pho-
tocathode converts incoming photons, arriving from each spatial location in the scanline,
into electrons. The streak sensor generates the x-t image by deflecting these electrons,
according to the time of their arrival, to different positions along the t-dimension of
the sensor (see Figure 8.2(b) and 8.2(c)). This is achieved by means of rapidly changing
the sweep voltage between the electrodes in the sensor. For each horizontal scanline,
the camera records a scene illuminated by the pulse and averages the light scattered by
4.5× 108 pulses (see Figure 8.2(d) and 8.2(e)).

performance validation To characterize the streak sensor, we compare sensor
measurements with known geometry and verify the linearity, reproducibility, and cali-
bration of the time measurements. To do this, we first capture a streak image of a scanline
of a simple scene: a plane being illuminated by the laser after hitting the diffuser (see
Figure 8.4 (left)). Then, by using a Faro digitizer arm [127], we obtain the ground truth
geometry of the points along that plane and of the point of the diffuser hit by the laser;
this allows us to compute the total travel time per path (diffuser-plane-streak sensor) for
each pixel in the scanline. We then compare the travel time captured by our streak sensor
with the real travel time computed from the known geometry. The graph in Figure 8.4
(right) shows agreement between the measurement and calculation.

8.4 capturing space-time volumes

Although the synchronized, pulsed measurements overcome SNR issues, the streak sen-
sor still provides only a one-dimensional movie. Extension to two dimensions requires
unfeasible bandwidths: a typical dimension is roughly 103 pixels, so a three-dimensional
data cube has 109 elements. Recording such a large quantity in a 10−9 second (1 ns) time
widow requires a bandwidth of 1018 byte/s, far beyond typical available bandwidths.

We solve this acquisition problem by again utilizing the synchronized repeatability of
the hardware: A mirror-scanning system (two 9 cm × 13 cm mirrors, see Figure 8.3 (left))
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rotates the camera’s center of projection, so that it records horizontal slices of a scene
sequentially. We use a computer-controlled, one-rpm servo motor to rotate one of the
mirrors and consequently scan the field of view vertically. The scenes are about 25 cm
wide and placed about 1 meter from the camera. With high gear ratios (up to 1:1000), the
continuous rotation of the mirror is slow enough to allow the camera to record each line
for about six seconds, requiring about one hour for 600 lines (our video resolution). We
generally capture extra lines, above and below the scene (up to 1000 lines), and then crop
them to match the aspect ratio of the physical scenes before the movie was reconstructed.

These resulting images are combined into one matrix, Mijk, where i = 1...672 and
k = 1...512 are the dimensions of the individual x-t streak images, and j = 1...1000
addresses the second spatial dimension y. For a given time instant k, the submatrix Nij
contains a two-dimensional image of the scene with a resolution of 672 × 1000 pixels,
exposed for as short to 1.85 ps. Combining the x-t slices of the scene for each scanline
yields a 3D x-y-t data volume, as shown in Figure 8.5 (left). An x-y slice represents one
frame of the final movie, as shown in Figure 8.5 (right).

Laser

Figure 8.4: Performance validation of our system. Left: Measurement setup used to val-
idate the data. We use a single streak image representing a line of the scene
and consider the centers of the white patches because they are easily identi-
fied in the data. Right: Graph showing pixel position vs. total path travel time
captured by the streak sensor (red) and calculated from measurements of the
checkerboard plane position with a Faro digitizer arm (blue). Inset: PSF, and
its Fourier transform, of our system.

Figure 8.5: Left: Reconstructed x-y-t data volume by stacking individual x-t images (cap-
tured with the scanning mirrors). Right: An x-y slice of the data cube repre-
sents one frame of the final movie.

8.5 depicting ultrafast videos in 2d

We have explored several ways to visualize the information contained in the captured
x-y-t data cube in an intuitive way. First, contiguous Nij slices can be played as the
frames of a movie. Figure 8.1 (bottom row) shows a captured scene (bottle) along with
several representative Nij frames. (Effects are described for various scenes in Section 7.)
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However, understanding all the phenomena shown in a video is not a trivial task, and
movies composed of x-y frames such as the ones shown in Figure 8.10 may be hard
to interpret. Merging a static photograph of the scene from approximately the same
point of view with the Nij slices aids in the understanding of light transport in the
scenes (see movies within the video at http://webdiis.unizar.es/~bmasia/downloads/
thesis/Femto-Main_Video.mp4). Although straightforward to implement, the high dy-
namic range of the streak data requires a nonlinear intensity transformation to extract
subtle optical effects in the presence of high intensity reflections. We employ a logarith-
mic transformation to this end.

We have also explored single-image methods for intuitive visualization of full space-
time propagation, such as the color-coding in Figure 8.1 (right), which we describe in
the following paragraphs.

integral photo fusion By integrating all the frames in novel ways, we can
visualize and highlight different aspects of the light flow in one photo. Our photo fusion
results are calculated as Nij =

∑
wkMijk, {k = 1..512}, where wk is a weighting factor

determined by the particular fusion method. We have tested several different methods,
of which two were found to yield the most intuitive results: the first one is full fusion,
wherewk = 1 for all k. Summing all frames of the movie provides something resembling
a black and white photograph of the scene illuminated by the laser, while showing time-
resolved light transport effects. An example is shown in Figure 8.6 (left) for the alien
scene. (More information about the scene is given in Section 8.7.) A second technique,
rainbow fusion, takes the fusion result and assigns a different RGB color to each frame,
effectively color-coding the temporal dimension. An example is shown in Figure 8.6
(middle).

peak time images The inherent integration in fusion methods, though often use-
ful, can fail to reveal the most complex or subtle behavior of light. As an alternative, we
propose peak time images, which illustrate the time evolution of the maximum intensity
in each frame. For each spatial position (i, j) in the x-y-t volume, we find the peak inten-
sity along the time dimension, and keep information within two time units to each side
of the peak. All other values in the streak image are set to zero, yielding a more sparse
space-time volume. We then color-code time and sum up the x-y frames in this new
sparse volume, in the same manner as in the rainbow fusion case but use only every 20th
frame in the sum to create black lines between the equi-time paths, or isochrones. This
results in a map of the propagation of maximum intensity contours, which we term peak
time image. These color-coded isochronous lines can be thought of intuitively as propa-
gating energy fronts. Figure 8.6 (right) shows the peak time image for the alien scene,
and Figure 8.1 (top, middle) shows the captured data for the bottle scene depicted using
this visualization method. As explained in the next section, this visualization of the bot-
tle scene reveals significant light transport phenomena that could not be seen with the
rainbow fusion visualization.

8.6 time unwarping

Visualization of the captured movies (Sections 8.5 and 8.7) reveals results that are counter-
intuitive to theoretical and established knowledge of light transport. Figure 8.1 (top,
middle) shows a peak time visualization of the bottle scene, where several abnormal
light transport effects can be observed: (1) the caustics on the floor, which propagate
towards the bottle, instead of away from it; (2) the curved spherical energy fronts in the
label area, which should be rectilinear as seen from the camera; and (3) the pulse itself
being located behind these energy fronts, when it would need to precede them. These
are due to the fact that usually light propagation is assumed to be infinitely fast, so that

http://webdiis.unizar.es/~bmasia/downloads/thesis/Femto-Main_Video.mp4
http://webdiis.unizar.es/~bmasia/downloads/thesis/Femto-Main_Video.mp4
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Figure 8.6: Three visualization methods for the alien scene. From left to right, more
sophisticated methods provide more information and an easier interpretation
of light transport in the scene.

events in world space are assumed to be detected simultaneously in camera space. In our
ultrafast photography setup, however, this assumption no longer holds, and the finite
speed of light becomes a factor: we must now take into account the time delay between
the occurrence of an event and its detection by the camera sensor.

We therefore need to consider two different time frames, namely world time (when
events happen) and camera time (when events are detected). This duality of time frames
is explained in Figure 8.7: light from a source hits a surface first at point P1 = (i1, j1)
(with (i, j) being the x-y pixel coordinates of a scene point in the x-y-t data cube), then at
the farther point P2 = (i2, j2), but the reflected light is captured in the reverse order by
the sensor, due to different total path lengths (z1 + d1 > z2 + d2). Generally, this is due
to the fact that, for light to arrive at a given time instant t0, all the rays from the source,
to the wall, to the camera, must satisfy zi + di = ct0, so that isochrones are elliptical.
Therefore, although objects closer to the source receive light earlier, they can still lie on
a higher-valued (later-time) isochrone than farther ones.

Figure 8.7: Understanding reversal of events in captured videos. Left: Pulsed light scat-
ters from a source, strikes a surface (e.g., at P1 and P2), and is then recorded
by a sensor. Time taken by light to travel distances z1 + d1 and z2 + d2 is
responsible for the existence of two different time frames and the need of
computational correction to visualize the captured data in the world time
frame. Right: Light appears to be propagating from P2 to P1 in camera time
(before unwarping), and from P1 to P2 in world time, once time-unwarped.
Extended, planar surfaces will intersect constant-time paths to produce either
elliptical or circular fronts.

In order to visualize all light transport events as they have occurred (not as the camera
captured them), we transform the captured data from camera time to world time, a
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Figure 8.8: Time unwarping in 1D for a streak image (x-t slice). Left: captured streak
image; shifting the time profile down in the temporal dimension by ∆t allows
for the correction of path length delay to transform between time frames.
Center: the graph shows, for each spatial location xi of the streak image, the
amount ∆ti that point has to be shifted in the time dimension of the streak
image. Right: resulting time-unwarped streak image.

transformation which we term time unwarping. Mathematically, for a scene point P =

(i, j), we apply the following transformation:

t ′ij = tij +
zij

c/η
(43)

where t ′ij and tij represent camera and world times respectively, c is the speed of light
in vacuum, η the index of refraction of the medium, and zij is the distance from point P
to the camera. For our table-top scenes, we measure this distance with a Faro digitizer
arm, although it could be obtained from the data and the known position of the diffuser,
as the problem is analogous to that of bi-static LiDAR. We can thus define light travel
time from each point (i, j) in the scene to the camera as ∆tij = t ′ij− tij = zij/(c/η). Then,
time unwarping effectively corresponds to offsetting data in the x-y-t volume along the
time dimension, according to the value of ∆tij for each of the (i, j) points, as shown in
Figure 8.8.

In most of the scenes, we only have propagation of light through air, for which we take
η ≈ 1. For the bottle scene, we assume that the laser pulse travels along its longitudinal
axis at the speed of light, and that only a single scattering event occurs in the liquid
inside. We take η = 1.33 as the index of refraction of the liquid and ignore refraction
at the bottle’s surface. A step-by-step unwarping process is shown in Figure 8.9 for a
frame (i.e. x-y image) of the bottle scene. Our unoptimized Matlab code runs at about 0.1
seconds per frame. A time-unwarped peak-time visualization of the whole of this scene
is shown in Figure 8.1 (right). Notice how now the caustics originate from the bottle and
propagate outward, energy fronts along the label are correctly depicted as straight lines,
and the pulse precedes related phenomena, as expected.

8.7 captured scenes

We have used our ultrafast photography setup to capture interesting light transport ef-
fects in different scenes. Figure 8.10 summarizes them, showing representative frames
and peak time visualizations. The exposure time for our scenes is between 1.85 ps
for the crystal scene, and 5.07 ps for the bottle and tank scenes, which required imag-
ing a longer time span for better visualization. Please refer to the video at http://

http://webdiis.unizar.es/~bmasia/downloads/thesis/Femto-Main_Video.mp4
http://webdiis.unizar.es/~bmasia/downloads/thesis/Femto-Main_Video.mp4
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Figure 8.9: Time unwarping for the bottle scene, containing a scattering medium. From
left to right: a frame of the video without correction, where the energy front
appears curved; the same frame after time-unwarping with respect to dis-
tance to the camera zij; the shape of the energy front is now correct, but it
still appears before the pulse; the same frame, time-unwarped taking also
scattering into account.

Figure 8.10: More scenes captured with our setup (refer to Figure 8.1 for the bot-
tle scene). For each scene, from left to right: photograph of the scene
(taken with a DSLR camera), a series of representative frames of the re-
constructed movie, and peak time visualization of the data. Please re-
fer to the video at http://webdiis.unizar.es/~bmasia/downloads/thesis/
Femto-Main_Video.mp4 for the full movies. Note that the viewpoint varies
slightly between the DSLR and the streak sensor.

http://webdiis.unizar.es/~bmasia/downloads/thesis/Femto-Main_Video.mp4
http://webdiis.unizar.es/~bmasia/downloads/thesis/Femto-Main_Video.mp4
http://webdiis.unizar.es/~bmasia/downloads/thesis/Femto-Main_Video.mp4
http://webdiis.unizar.es/~bmasia/downloads/thesis/Femto-Main_Video.mp4
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webdiis.unizar.es/~bmasia/downloads/thesis/Femto-Main_Video.mp4 to watch the re-
constructed movies. Overall, observing light in such slow motion reveals both subtle and
key aspects of light transport. We provide here brief descriptions of the light transport
effects captured in the different scenes.

bottle This scene is shown in Figure 8.1 (bottom row), and has been used to intro-
duce time-unwarping. A plastic bottle, filled with water diluted with milk, is directly
illuminated by the laser pulse, entering through the bottom of the bottle along its lon-
gitudinal axis. The pulse scatters inside the liquid; we can see the propagation of the
wavefronts. The geometry of the bottle neck creates some interesting lens effects, mak-
ing light look almost like a fluid. Most of the light is reflected back from the cap, while
some is transmitted or trapped in subsurface scattering phenomena. Caustics are gener-
ated on the table.

tomato-tape This scene shows a tomato and a tape roll, with a wall behind them.
The propagation of the spherical wavefront, after the laser pulse hits the diffuser, can
be seen clearly as it intersects the floor and the back wall (A, B). The inside of the tape
roll is out of the line of sight of the light source and is not directly illuminated. It is
illuminated later, as indirect light scattered from the first wave reaches it (C). Shadows
become visible only after the object has been illuminated. The more opaque tape darkens
quickly after the light front has passed, while the tomato continues glowing for a longer
time, indicative of stronger subsurface scattering (D).

alien A toy alien is positioned in front of a mirror and wall. Light interactions in
this scene are extremely rich, due to the mirror, the multiple interreflections, and the
subsurface scattering in the toy. The video shows how the reflection in the mirror is
actually formed: direct light first reaches the toy, but the mirror is still completely dark
(E); eventually light leaving the toy reaches the mirror, and the reflection is dynamically
formed (F). Subsurface scattering is clearly present in the toy (G), while multiple direct
and indirect interactions between the wall and the mirror can also be seen (H).

crystal A group of sugar crystals is directly illuminated by the laser from the left,
acting as multiple lenses and creating caustics on the table (I). Part of the light refracted
on the table is reflected back to the candy, creating secondary caustics on the table (J).
Additionally, scattering events are visible within the crystals (K).

tank A reflective grating is placed at the right side of a tank filled with milk di-
luted in water. The grating is taken from a commercial spectrometer, and consists of
an array of small, equally spaced rectangular mirrors. The grating is blazed: mirrors
are tilted to concentrate maximum optical power in the first order diffraction for one
wavelength. The pulse enters the scene from the left, travels through the tank (L), and
strikes the grating. The grating reflects and diffracts the beam pulse (M). The different
orders of the diffraction are visible traveling back through the tank (N). As the figure
(and the video in http://webdiis.unizar.es/~bmasia/downloads/thesis/Femto-Main_

Video.mp4) shows, most of the light reflected from the grating propagates at the blaze
angle.

cube A very simple scene composed of a cube in front of a wall with a checkerboard
pattern. The simple geometry allows for a clear visualization and understanding of the
propagation of wavefronts.

http://webdiis.unizar.es/~bmasia/downloads/thesis/Femto-Main_Video.mp4
http://webdiis.unizar.es/~bmasia/downloads/thesis/Femto-Main_Video.mp4
http://webdiis.unizar.es/~bmasia/downloads/thesis/Femto-Main_Video.mp4
http://webdiis.unizar.es/~bmasia/downloads/thesis/Femto-Main_Video.mp4
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8.8 conclusions and future work

Our research fosters new computational imaging and image processing opportunities
by providing incoherent time-resolved information at ultrafast temporal resolutions.
We hope our work will inspire new research in computer graphics and computational
photography, by enabling forward and inverse analysis of light transport, allowing for
full scene capture of hidden geometry and materials, or for relighting photographs. To
this end, captured movies and data of the scenes shown in this paper are available at
femtocamera.info. This exploitation, in turn, may influence the rapidly emerging field
of ultrafast imaging hardware.

The system could be extended to image in color by adding additional pulsed laser
sources at different colors or by using one continuously tunable optical parametric oscil-
lator (OPO). A second color of about 400 nm could easily be added to the existing system
by doubling the laser frequency with a nonlinear crystal (about $1000). The streak tube
is sensitive across the entire visible spectrum, with a peak sensitivity at about 450 nm
(about five times the sensitivity at 800 nm). Scaling to bigger scenes would require less
time resolution and could therefore simplify the imaging setup. Scaling should be pos-
sible without signal degradation, as long as the camera aperture and lens are scaled
with the rest of the setup. If the aperture stays the same, the light intensity needs to be
increased quadratically to obtain similar results.

Beyond the ability of the commercially available streak sensor, advances in optics,
material science, and compressive sensing may bring further optimization of the system,
which could yield increased resolution of the captured x-t streak images. Nonlinear
shutters may provide an alternate path to femto-photography capture systems. However,
nonlinear optical methods require exotic materials and strong light intensities that can
damage the objects of interest (and must be provided by laser light). Further, they often
suffer from physical instabilities.

We believe that mass production of streak sensors can lead to affordable systems. Also,
future designs may overcome the current limitations of our prototype regarding optical
efficiency. Future research can investigate other ultrafast phenomena such as propaga-
tion of light in anisotropic media and photonic crystals, or may be used in applications
such as scientific visualization (to understand ultra-fast processes), medicine (to recon-
struct subsurface elements), material engineering (to analyze material properties), or
quality control (to detect faults in structures). This could provide radically new chal-
lenges in the realm of computer graphics. Graphics research can enable new insights via
comprehensible simulations and new data structures to render light in motion. For in-
stance, relativistic rendering techniques have been developed using our data, where the
common assumption of constant irradiance over the surfaces does no longer hold [201].
It may also allow a better understanding of scattering, and may lead to new physically
valid models, as well as spawn new art forms.

femtocamera.info
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R E L AT I V I S T I C R E N D E R I N G F O R T R A N S I E N T I M A G I N G

about this chapter

In this chapter we present a method for accurate visualization of time-resolved data.
This project originated from the work described in Chapter 8, since we wanted to cor-
rectly visualize the data as the camera or observer moved throughout the scene. The
core rendering part of this project has been carried out by Adrián Jarabo, whereas my
contribution has been on assisting on the research of relativity equations (transforma-
tions undergone by observed radiance when moving at relativistic speeds), relativistic
rotation, and the adaptation of these to our particular scenario with time-resolved data.
This work was presented at the Spanish Conference in Computer Graphics (CEIG) 2013,
selected as Best Paper (one of the two papers which were selected as such) and invited
to submit an extended version to Computer Graphics Forum, on which we are working
at the date of publication of this thesis.

A. Jarabo, B. Masia, A. Velten, C. Barsi, R. Raskar and D. Gutierrez
Rendering Relativistic Effects in Transient Imaging.

In Proc. of CEIG 2013. Selected as Best Paper (1 in 2).

9.1 introduction

Analyzing and synthesizing light transport is a core research topic in computer graphics,
computing vision and scientific imaging [150]. One of the most common simplifications,
rarely challenged, is the assumption that the speed of light is infinite. While this is a
valid assumption in most cases, it is certainly not true: light travels extremely fast, but
with finite speed. In this part (Part V) of the thesis, we have lifted this assumption and
explored the consequences of dealing with time-resolved data (finite speed of light), in
this chapter focusing on the relativistic effects that occur when the camera moves at
speeds comparable with the speed of light.

Relativistic rendering is not new [71, 474]. However, our time-resolved framework
implies by definition that surface irradiance is not constant in the temporal domain,
so existing models must be revised and redefined. We describe here our technique to
render and inspect scenes where relativistic effects take place: in particular, we address
time dilation, light aberration, the Doppler effect and the searchlight effect. Moreover, no
existing model of relativistic rotation exists in the literature, which hinders free explo-
ration of scenes; we additionally introduce the first model of relativistic sensor rotation
in computer graphics.

To obtain input data, we rely on two sources of information. One the one hand, real-
world captured data from femto-photography (Chapter 8 and [459]), which we leverage
using image-based rendering techniques. Since the camera cannot be moved in the setup,
our technique allows to visualize novel view points, synthesizing light transport in a
physically accurate manner. On the other hand, we also employ the transient renderer
by Jarabo et al. [201], which allows us to create novel scenes and render simulations of
time-resolved light transport. Both approaches can help gain a deeper understanding of
light transport at picosecond scale.

In summary, we have developed a rendering and visualization tool for transient light
transport, capable of simulating generalized relativistic effects, freed from the restric-
tions of previous works. Our contributions can be summarized as follows:

189
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• We revise and correct well-established concepts about relativistic rendering, to
take into account that irradiance can no longer be assumed to be constant over
time

• Previous techniques were also limited by linear velocities of the (virtual) cameras.
We propose the first approximate solution for the case of a rotating sensor, so the
camera can be freely moved in 3D space

• We implement a fully working prototype, which allows interactive visualization
and exploration of both real and simulated data

9.2 related work

A modified rendering equation can account for the finite speed of light and handle
transient effects [21, 411]. However, in previous works no practical rendering framework
is derived from the proposed transient rendering framework. A fully functional time-
resolved rendering system was recently presented by Jarabo and colleagues [201]; part
of the data employed in this chapter (in particular the bunny scene) has been generated
by that renderer. In addition to the related work described here, we refer the reader to
Section 8.2, where the work on time-resolved light transport is compiled.

With regard to relativistic rendering, here we discuss the most relevant work on the
field. For a wider survey, we refer to [474], where the different proposed techniques for
both general and special relativistic rendering are discussed, including their application
as educational tools. Chang et al. [71] introduced the theory of Special Relativity in the
field of computer graphics. Their work accounts for geometric and radiance transfor-
mations due to fast moving objects or camera. However, their formulation modeled the
searchlight and Doppler effects incorrectly; these were later corrected by Weiskopf et
al. [472]. Following work [473] simulates relativistic effects in real captured scenes mod-
eled with image-based techniques, by applying the relativistic transformations directly
on the light field. However, the authors assume light incoming from infinitely far away
light sources with constant radiance, so both the effects of distance and time-varying
irradiance are ignored. This allows them to make some simplifying assumptions about
the radiance in the scene, which no longer hold in the context of time-resolved data we
deal with. Finally, visualization approaches and games have been created with a didactic
goal, aiming at helping students in the understanding of relativity. The game A Slower
Speed of Light, notable among these, uses the open-source toolkit OpenRelativity which
works with the Unity engine and can simulate special relativity effects [239]. However,
to our knowledge, they do not deal with time-varying irradiance either.

9.3 relativistic rendering

Time-resolved data, like that captured with the setup described in Chapter 8, allows us to
explore light transport like never before, no longer being constrained by the assumption
that light speed is infinite. While this is indeed a valid assumption in most cases, the
possibilities that open up analyzing the dynamics of light at pico-second resolution are
fascinating.

9.3.1 Frames of Reference

Assuming that the geometry in the scene is known (which can be easily acquired with
a digitizer arm or from time-of-flight data), we can synthesize new viewpoints and an-
imations of the scene by taking an image-based rendering approach, using x-y textures
from the x-y-t data cube and projecting them onto the geometry. This allows us to visual-
ize real-world events from new, interesting angles. However, visualizing light transport
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events at this time scale yields counter-intuitive results: Events are not captured in the
sensor as they occur, which leads to unexpected apparent distortions in the propagation
of light. This effect, which has been explained in Section 8.6 of this thesis, is termed time
warping. Due to it, two different temporal frames of reference must be employed: one for
the world (when the events occur) and one for the camera (when the events are actually
captured).

As a consequence, sensor data acquired by the femto-photography technique appears
warped in the temporal domain, and must be time-unwarped to take into account the finite
speed of light. So for each frame in the synthesized animations, we access the original
warped data and apply the following transformation shown in Equation 43, that we
reproduce here again for clarity [459]:

t ′ij = tij +
zij

c/η

where t ′ij and tij are camera and world times respectively, zij is the depth from each
point (i, j) to the new camera position, and η the index of refraction of the medium. Note
how a naive approach based on simply sticking the textures from the first frame to the
geometry through the animation would produce wrong results; the distance from each
geometry point to the center of projection of the camera varies for each frame, and thus
a different transformation must be applied each time to the original, warped x-y-t data
(see Figure 9.1). We assume a pinhole model for the camera.

Figure 9.1: Time unwarping between camera time and world time for synthesized new
views of a cube scene. Top row, left: Scene rendered from a novel view keep-
ing the unwarped camera time from the first frame (the small inset shows
the original viewpoint). Right: The same view, warping data according to the
new camera position. Notice the large changes in light propagation, in par-
ticular the wavefronts on the floor not visible in the previous image. Bottom
row: Isochrones visualization of the cube-scene for a given virtual camera
(color encodes time); from left to right: original x-y-t volume in the time-
frame of the capturing camera, unwarped x-y-t data in world time frame,
and re-warped data for the new virtual camera. Note the striking differences
between corresponding isochrones.
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9.3.2 Relativistic Effects

Apart from the time-warping of data, macroscopic camera movement at pico-second
time scales, like the one synthesized in Figure 9.1 would give rise to relativistic effects.
This requires a relativistic framework to correctly represent and visualize light traveling
through the 3D scene. Although simulations of relativistic effects have existed for a
while [71, 474], visualizing our particular time-resolved datasets requires departing from
the common simplifying assumption of constant irradiance on surfaces. As we will see
in the following paragraphs, this has direct implications on how radiance gets imaged
onto the sensor.

According to special relativity, light aberration, the Doppler effect, and the searchlight
effect need to be taken into account when simulating motion at fast speeds. Light aberra-
tion accounts for the apparent geometry deformation caused by two space-time events
measured in two reference frames moving at relativistic speeds with respect to each
other. The Doppler effect produces a wavelength shift given by the Doppler factor. Last,
the searchlight effect increases or decreases radiance, according to whether the observer
is approaching or moving away from a scene. We modify existing models for the three
effects to support time-resolved irradiance, and approximate the yet-unsolved solution
for camera rotation.

We build our relativistic visualization framework on the derivations by Weiskopf et
al. [472]. We consider two inertial frames, O and O ′, where O ′ (the sensor) is moving
with velocity v = βcwith respect toO, with β ∈ [0..± 1). L represents radiance measured
in O, defined by direction (θ,φ) (defined with respect to the motion direction) and
wavelength λ. The corresponding primed variables (θ ′,φ ′) and λ ′ define radiance L ′

measured in O ′. To obtain the modified radiance L ′ given L and the speed of the sensor,
we need to apply the following equation:

L ′(θ ′,φ ′, λ ′) = D−5L

(
arccos

cosθ ′ +β

1+βcosθ ′
,φ ′,

λ ′

D

)
(44)

where D = γ(1+ βcosθ ′) and γ = 1/
√
1−β2. This equation accounts for all three fac-

tors: light aberration, the Doppler effect, and the searchlight effect. However, it cannot
model explicitly the effect of special relativity on time-resolved irradiance. In the follow-
ing paragraphs we explain each effect separately, and discuss the modifications needed
to handle time-resolved irradiance.

Time dilation: Breaking the assumption of constant irradiance means that we cannot
ignore the effect of time dilation [118]. Time dilation relates directly with Lorentz con-
traction, and is defined as the difference in elapsed time ∆t between two events observed
in different inertial frames; for our world and camera frames of reference, this translates
into ∆t ′ = γ∆t. This means that time in these two frames advances at different speeds,
making time in the stationary frame (the world) advance faster than in the moving frame
(the camera). Thus, we need to keep track of both world t and camera time t ′, since they
differ depending on the motion speed.

Light aberration: An easy example to understand light aberration is to visualize how
we see rain drops when traveling on a speeding train. When the train is not moving,
raindrops fall vertically; but as the train picks up speed, raindrop trajectories become
increasingly diagonal as a function of the train’s speed. This is because the speed of the
train is comparable with the speed of raindrops. A similar phenomenon occurs with light
if moving at relativistic speeds. However, as opposed to rain drops, relativistic light aber-
ration cannot be modeled with classical physics aberration; the Lorentz transformation
needs to be applied instead.
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Light aberration is computed by transforming θ ′ and φ ′ with the following equations,
which provide the geometric transformation between two space-time events measured
in two reference frames which move at relativistic speeds with respect to each other:

cosθ ′ =
cosθ−β

1−βcosθ
(45)

φ ′ = φ (46)

The end result is that light rays appear curved, with more curvature as velocity increases.
Given this curvature, light rays reaching the sensor from behind the camera become visi-
ble. Finally, as β approaches 1, and thus v ≈ c, most incoming light rays are compressed
towards the motion direction; this makes the scene collapse into a single point as the
camera moves towards it (note that this produces the wrong impression that the camera
is moving away from the scene). The first two rows in Figure 9.2 show the effects of light
aberration with increasing velocity as the sensor moves at relativistic speeds, towards
and away from the scene respectively.

Doppler effect: The Doppler effect is better known for sound, and it is not a phe-
nomenon restricted to relativistic velocities. In our case, the Doppler effect alters the
observed frequency of the captured events in the world when seen by a fast-moving
camera, which produces a wavelength shift, as defined by the Doppler factor D:

λ ′ = Dλ (47)

The overall result is a color shift as a function of the velocity of the sensor relative to the
scene. Somewhat less known, the Doppler effect also creates a perceived speed-up (or
down, depending on the direction of camera motion) of the captured events. This means
that the frame rate of the time-varying irradiance f in world frame is Doppler shifted,
making the perceived frame rate f ′ in camera frame become f ′ = f/D. Figure 9.2 (third
row) shows an example of the Doppler effect.

Searchlight effect: Due to the searchlight effect, photons from several instants are cap-
tured at the same time differential, in part as a cause of the Doppler shift on the camera’s
perceived frame rate. This results in increased (if the observer is approaching the scene)
or decreased (if the observer is moving away) brightness (see Figure 9.2, bottom row):

L ′(θ ′,φ ′, λ ′) = D−5L(θ,φ, λ) (48)

Intuitively, continuing with our previous rain analogy, it is similar to what occurs in
a vehicle driving in the rain: the front windshield will accumulate more water than
the rear windshield. For our time-varying streak-data, this means that irradiance from
several frames in world time interval dt is integrated over the same camera differential
time dt ′, such that dt = dt ′/D. Note that the D−5 factor only is valid for the case in
which the directions of the velocity vector v and the normal to the detector are parallel.
We later show how to approximate a rotation of the sensor.

Finally, Figures 9.3 and 9.4 show the result of combining all these relativistic effects,
both for the cube scene (data captured with femto-photography techniques) and the
bunny scene (simulated data by rendering) respectively. The laser wavelength is set at
670 nm for visualization purposes. We refer the reader to the video at http://webdiis.
unizar.es/~bmasia/downloads/thesis/Relativistic_Cube.mov for a full animation of
the cube scene.

9.3.3 Relativistic Rotation

Providing free navigation of a scene depicting time-resolved light transport implies that
the viewers should be allowed to rotate the camera. However, there is no universally
accepted theory of relativistic rotation [374]. We propose a suitable approximation based

http://webdiis.unizar.es/~bmasia/downloads/thesis/Relativistic_Cube.mov
http://webdiis.unizar.es/~bmasia/downloads/thesis/Relativistic_Cube.mov
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Figure 9.2: Relativistic effects shown separately for the cube scene. First row: Distortion
due to light aberration as the camera moves towards the scene at different
velocities, with β = {0, 0.3, 0.6, 0.9, 0.99}. We assume a laser wavelength of
670 nm for visualization purposes. Second row: The same effect as the sensor
moves away from the scene, with the opposite velocity from the previous row.
Notice how in both cases light aberration produces counter-intuitive results
as the camera appears to be moving in the opposite direction. Third row:
Doppler effect, showing the shift in color as a consequence of the frequency
shift of light reaching the sensor, with β = {0, 0.15, 0.25, 0.35, 0.50, 0.55}. Fourth
row: Searchlight effect, resulting in an apparent increase in brightness as the
speed of the approaching camera increases, with β = {0, 0.2, 0.3, 0.4, 0.5} (sim-
ulated laser at 508 nm). All images have been tone-mapped to avoid satura-
tion.
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Figure 9.3: Relativistic phenomena for the cube scene (real data) including light aberra-
tion, Doppler effect and the searchlight effect, as the camera approaches the
scene at increasing relativistic velocities v = βc (with β increasing from 0 to
0.77).

Figure 9.4: Relativistic phenomena for the bunny scene (simulated data) including
light aberration, Doppler effect and the searchlight effect, as the camera ap-
proaches the scene at increasing relativistic velocities v = βc (with β increas-
ing from 0.2 to 0.9). Note that we transform the RGB computed radiance into
luminance.

Figure 9.5: Relativistic rotation. Left: assuming that the rotation angle θ can be neglected
between frames, we model the rotation as a continuous linear velocity field
on the sensor Ψ, so each differential area is assigned a different velocity ψs.
This causes that depending on the position on the sensor, different relativistic
transformations are applied on the scene. The rest of the frames show the ef-
fects of a clockwise rotation of the sensor, with β = {0, 0.4, 0.8, 0.99} (measured
at the edge of the sensor). The small inset shows the original scene.
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on limiting the rotation to very small angles per frame, so the differential rotation of
the camera’s viewing direction between frames can be neglected. However, for non-
infinitesimal sensors this small rotation causes that the sensor’s differential surfaces to
move at different speeds: it creates a continuous linear velocity field Ψ on the sensor,
with a zero-crossing at the axis of rotation.

To simulate the rotation of the camera we therefore first divide the sensor S in dif-
ferent areas s ∈ S. Our approximation effectively turns each of them into a different
translational frame, with linear velocity ψs. Then, for each s we render the scene apply-
ing the novel relativistic transformations introduced in this section, with a different βs
for each s (trivially obtained from an input β measured at the edge of the sensor). This
makes the incoming radiance be deformed differently depending on the position of the
sensor where it is imaged. Figure 9.5 shows an example, where the sensor is rotating
clockwise.

9.4 implementation

Our implementation allows for real-time visualization of relativistic effects, both from
real and simulated data. It is implemented in OpenGL as an stand-alone application,
taking as input the reconstructed geometry of the scene, as well as the time-resolved
data. The system is based on classic image-based rendering (IBR) techniques, where the
shading of the surface is modeled by the images projected over the surface.

In our case, we use x-y images from the x-y-t data cube to shade the geometry. The
cube is stored as a 3D texture on the GPU in world time coordinates. This allows us
to apply time-warping to adapt it to the new viewpoint in rendering time, by simply
applying the transformation defined in Equation 43 (see Section 9.3.2).

Due to light aberration the geometry viewed from the camera is distorted. This dis-
tortion causes straight lines to become curved, so the geometry has to be re-tessellated.
Image-space warping, which has been used in many scenarios [73, 438, 307] and may
appear as an alternative, is not viable in this scenario because of the large extent of the
deformations, that make well-known problems of warping such as disocclusions clearly
apparent. Our implementation performs the re-tessellation off-line on the CPU, but it is
straightforward to tessellate it on the GPU on the fly. Then, in render time, each vertex
should be transformed according to Equation 44.

Doppler effect is introduced by modifying the wavelength of the outgoing illumina-
tion from the surfaces. To avoid the complexity of a full-fledged spectral renderer, we
assume light with energy in only one wavelength of the spectrum. To display radiance
we use a simple wavelenght-to-RGB conversion encoded as a 1D texture. Wavelengths out
of the visible spectrum are displayed as gray-scale values.

Finally, when modeling the searchlight effect, we avoid the straightforward approach
to access all frames in the streak data cube, bounded by dt, and integrate them. This
would require several accesses to the 3D texture, which would hinder interactivity. In-
stead, we pre-integrate irradiance values in the temporal domain, and use anisotropic
mipmapping to access the pre-integrated irradiance values, using dt to select the mipmap
level in the time dimension.

9.5 conclusions and future work

In this chapter we visualize light transport effects from an entirely new perspective, no
longer constrained by the assumption of infinite speed of light. We hope this will spur
future research and help to better understand the complex behavior of time-resolved
interactions between light and matter. We have used real data from the recent femto-
photography technique [459] (Chapter 8), as well simulation data produced by a physically-
based ray tracing engine especially designed to support transient rendering [201].
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To visualize this data, we have developed an interactive image-based rendering ap-
plication, that allows free navigation through the reconstruction of the captured scenes,
including physically-based relativistic effects due to fast camera motion. We have in-
troduced, for the first time in computer graphics, the modified equations necessary to
render surfaces when irradiance is not constant over time, as well as an approximate so-
lution for the case of rotation, for which a definite solution does not exist in the physics
literature.

Of course there is plenty of exciting future work ahead. Our current implementation
assumes Lambertian surfaces, so the viewing angle with respect to the normal has no
influence in the result. This assumption can be relaxed by using more sophisticated IBR
techniques e.g. [53]. Additionally, right now we only use radiance as captured by the
sensor. When camera movement reveals surfaces which were originally occluded, we
simply render them black. However, the use of time-resolved photographic techniques
has already demonstrated promising results at recovering hidden information, including
both geometry [457] and a parametric model of reflectance [326]. A promising avenue
of research we are already working on involves generalizing these seminal works to be
able to obtain both geometry and reflectance at the same time for hidden objects.
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C O N C L U S I O N S A N D F U T U R E W O R K

In this thesis we have presented a number of contributions providing solutions to exist-
ing problems in the different stages of the imaging pipeline. Due to this variety, we will
show here conclusions for the different parts separately.

Let aside specific conclusions, our overall conclusion is that the future of imaging,
including capture and displays, relies on joint advances on several different dimensions.
We are convinced that knowledge of perception should play a key role in future ad-
vances, with perceptual effects and limitations of the human visual system (HVS) being
taken into account in the design of future algorithms and hardware. We have presented
in this thesis a series of examples in which perceptual knowledge was leveraged to
improve the viewing experience, by using e.g. existing perceptual metrics (Chapter 2),
computational models of perception (Chapter 5), or by making our own measurements
(Chapter 6).

However, the challenges in this are not negligible. Despite the vast amount of research
devoted to the understanding of how we perceive, the HVS is an extremely complex
system based on a combination of physiological and psychological factors. Consequently,
presenting computational models of perception which are comprehensive enough has
been a challenge, and there is still a lot of work to be done in this realm. At the same
time, if the models are too complex, being able to incorporate them into algorithms,
some of which need to run in real time (e.g. on the display end), is another challenge.
There is thus a trade-off in this process, which requires deep knowledge of both the
perceptual side, to know where simplifications can come in, and of the algorithmic and
mathematical side; plus knowledge of the hardware and optics. Multidisciplinary co-
operation is key.

As for the specific conclusions, we separate them in parts. We compile here a summary
of the conclusions which can be found in each part, but also some more general insights
and work for the future.

In Part II we presented first our work on coded apertures. We realized that coded
apertures for defocus deblurring were based on optimizations where the error was mea-
sured using pixel-wise difference metrics; instead, we incorporated perceptual metrics
for the measurement of the error, and obtained apertures that performed better than the
previous state of the art. However, our exploration of the objective function, which met-
rics should be incorporated and, if more than one, how should they be weighted, is not
definite. We have explored a number of possibilities, but a more thorough exploration
would be advisable. We can even see our work as a proof of concept, a demonstration
that better results can be obtained by incorporating perceptual metrics, but we by no
means claim that our objective function is the definite and optimal objective function.
There is also work to do in terms of reconstruction, recovery of the image. We use here a
simple prior, but we believe more elaborated priors, either based on perceptual aspects
or data-driven, or a combination of both, can yield better results.

The second half of Part II is devoted to reverse tone mapping. We have shown in it how
existing reverse tone mapping operators (rTMOs) do not perform well on over-exposed
content, or images with large bright areas. For that case, we have proposed a range
expansion method based on a gamma curve, where the value of the gamma is computed
based on a series of image statistics. Our expansion is very simple, and can thus be
done in real time in the display firmware. We show that the method performs better
than state-of-the-art algorithms. One aspect that remains unexplored in the work here
presented is temporal consistency, how well the method extends to video; this remains

201
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as future work. Additionally, we explored the introduction of an artistic component in
the expansion process, presenting a semi-automatic method for range expansion based
on the Zone System devised by photographer Ansel Adams. While this approach is not
practical for expansion of a large amount of legacy material, this is not the intention
either, what we offer is a way to expand the luminance range of the content based on
tuning the expansion curve using a division more suited for artistic purposes than e.g. a
straightforward uniform division or other manipulations of the curve.

Part III begins with a survey, a state-of-the-art report of the field of computational
displays. We believe that categorizing the displays according to the plenoptic dimen-
sion they aim to improve offers a new view of the field, and a more practical one. It
shows that joint approaches which attend to how the content is generated, and how it
will be perceived, allow for improvements which would otherwise not be possible just
with advances in hardware. The survey also points out what we believe to be the main
challenges for the future, and shows that the future lies in joint advances on different di-
mensions, as well as additional influencing factors such as new materials, the adaptation
of mathematical models for high-performance real-time computation, or the co-design
of custom optics and electronics, to name a few.

We have—also in Part III—presented an algorithm for disparity remapping for auto-
multiscopic and stereoscopic displays. Content retargeting, understood widely, is a one
of the main problems in imaging, both in industry and in research. It can be, for in-
stance, spatial retargeting, for adaptation of content to different aspect ratios; disparity
retargeting, for proper depiction of a 3D scene on different devices; or color retargeting
(gamut mapping), for an accurate color appearance. The existing variety of devices, the
easy distribution of content, and the large number of players involved makes standard-
ization a huge challenge and makes necessary the development of robust techniques
that address these problems. In this case we have focused on automultiscopic displays,
which exhibit depth of field, allowing depiction of sharp, in-focus content only in a lim-
ited depth range around the screen. This depth of field varies across displays, thus the
need for retargeting. Our method incorporates knowledge from luminance-contrast and
depth perception, and has been validated with state-of-the-art perceptual metrics. We
currently work on the central view of the light field, and in the future approaches which
take into account the whole structure of the light field are desirable. On the plus side,
we also show retargeting of stereo content; and for the first time take into account a
non-dichotomous zone of comfort: The zone of comfort has always been used as a safe
dichotomous area, but it is believed to be a continuous area instead. We can incorporate
non-dichotomous zones of comfort in our framework.

The end of Part III is devoted to comfort when viewing content in motion in stereo
displays. This area had been largely unexplored, and we have proposed here the, to
our knowledge, most comprehensive study measuring comfort in stereoscopic motion.
We have seen that the interplay of the factors studied has a significant influence in
comfort. Seeking for the applicability of such measurements, we have devised a metric
of comfort, which correlates well with subjective scores. The challenge in this realm is
double, first, performing comprehensive measurements and which involve the relevant
factors; second, translating those measurements of comfort to a model which can be used
in a practical scenario. To this end we derived zones of comfort from our measurements,
and proposed the metric, but what we have done here is only a first step towards the
final objective.

In Part IV we have dealt again with light fields, but in a new context: Interaction.
We explored interaction paradigms for this new multi-dimensional structure that is a
light field. From our first study we have concluded that a paradigm based on parallax
alone is insufficient, that focus, and especially the feeling of control it provides, is highly
favored by users, that occlusions require more complex handling tools. For the future,
we depart from the assumption that depth information –although maybe imperfect– will
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be available, given the progress of algorithms for reconstruction from light fields; thus
the challenge of handling imperfect depth arises. Also, more sophisticated tools such as
a depth picker to select depth ranges, will be incorporated. How to interact with light
fields, how to specify what to edit, is what we aim at here; there is also, however, a
lot of work to be done in light field editing per se, features such as copy and pasting,
or morphing, which have received some attention but are still somehow in its infancy
compared to the things that could be done.

In the last part, femto-photography (Part V), the main conclusion is that transient
imaging has opened a vast, untrodden field with an incredible potential. Not only it can
help us better understand how light propagates, being able to sample (as opposed to in-
tegrate over) the time dimension can provide solutions to long-standing problems such
as depth recovery in the presence of multiple paths, or separation of light transport com-
ponents. Besides, it enables new applications such as detecting movement or recovering
shape around corners. The applications of transient imaging span a wide range of fields,
including medicine, surveillance, or material science. A number of works have appeared
since the presentation of the femto-photography technique, which are also capable of
capturing at very high frame rate at a lower cost; the drawback is that their resolution
is in the nanosecond range, and not in the picosecond range, but it does reflect the in-
terest in the field, and we hope these lower-cost techniques will help foster research in
time-resolved imaging.

On a personal, or non-technical, level, this thesis has allowed me to gain matureness
as a researcher, and as a professional. There is a significant evolution, hard to see while
it happens, but clear when you are at the end of these four years and you look back.
You improve your analysis skills, you learn the importance of being not only effective,
but also efficient in your work. I have additionally had the chance to work with a quite
large number of people during my PhD, either remotely or sharing location; sometimes
in projects led by myself. This not only teaches you how to work on a team, how to
deal with differences in working habits, speeds, level of demand, and even cultural dif-
ferences, but you also learn how to plan for a project and how to organize a group of
people. Of course, this collaborations build up strong teams with expertise in a num-
ber of areas, as opposed to working alone with my supervisor, and this enriches and
greatly benefits the research being carried out. Supervising students is another oppor-
tunity to learn: You have to achieve a combination of desired characteristics: You have
to engage the student, motivate him or her, adequate the path to their characteristics
if necessary, plan accordingly, and find this compromise between how much you teach
him, how much you help him out, and how much you let him find out by himself,
even if it costs more. Being at a highly demanding institution like MIT has also been an
enriching experience and has had a tremendous impact in my growth as a researcher.
Work in a competitive, yet collaborative environment, access to resources beyond what
I could expect, constant exposure to world experts in their areas, cooperation with re-
searchers from other fields, and a constant common desire to change the world, and to
come up with groundbreaking ideas, inevitably and fortunately shaped my growth as
a researcher during those months. Also, having the opportunity to work on a project of
the highest impact like that of femto-photography imposes a great challenge, paired up
with excitement and satisfaction. All in all, these years have been a tough yet extremely
enriching experience.
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B
F - T E S T S F O R A S S E S S I N G T H E A P P R O P R I AT E N E S S O F A D D I N G
N E W P R E D I C T O R S T O A M O D E L

An F-test is typically performed to decide whether or not a certain null hypothesis can
be rejected. To do this, a test statistic (the F-statistic) is needed which under the null
hypothesis follows an F-distribution. In our case (Section 3.5.1), the null hypothesis is
that, given two models, A and B, with a number of predictors pA and pB (pA > pB), the
two models fit equally well the data. The F-statistic is then given by:

FpA−pB,n−pA =
(SSB − SSA)/(pA − pB)

SSA/(n− pA)
, (49)

where SSi, i = {A,B}, is the sum of squared residuals of model i, and n is the number of
data values [422]. It must be noted that in Equation 49, and throughout this thesis, pi as
a measure of the number of terms in the regression includes the constant term (i.e. the
intercept).

For the particular case of creating model A by adding one variable to a model B that
has p terms, and expressing the formula in terms of R2, the F-statistic becomes:

F1,n−p−1 =
R2A − R2B

(1− R2A)/(n− p− 1)
(50)

As it is well known, given a value for F in an F-test, the p-value is the probability of
obtaining a value as extreme as the F obtained, assuming that the null hypothesis is true.
As a consequence, the null hypothesis is typically rejected if the p-value is lower than
the significance level alpha (which, in this work, will have the usual value of α = 0.05).
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C
G O O D N E S S O F F I T I N M U LT I L I N E A R R E G R E S S I O N S

This appendix includes the description of a series of metrics which are typically used in
regression analysis to measure the accuracy of the fitting of a certain model.

rmse . For a multilinear regression, RMSE is computed as shown in Equation 51,
where Yi are the observed data (i.e. the given γ values) and Ŷi the data predicted by the
model.

RMSE =

√√√√ n∑
i=1

(Yi − Ŷi)2/(n− p), (51)

where, n is the data size and p the number of terms in the regression. Please recall that
in this formulation the intercept is included in p. This metric provides an intuition on
the error we would incur in when using a certain regression to estimate the value of a
variable.

overall f-statistic . The overall F-statistic is simply an F-test in which the null
hypothesis is that the data can be explained by a constant (which would be the mean of
the observed data), versus the hypothesis that the data can be explained by the selected
model. Therefore, a high F-statistic and, specially, a low associated p-value indicate that
the hypothesis that our model explains the data (vs. the hypothesis that a constant ex-
plains them) is clearly correct.

R2
and adjusted R2 . Typically used to assess how well the values predicted by

a model will adjust to the real values, in the case of linear regressions R2 is simply the
square of the correlation coefficient between the observed and the predicted data.

However, in the case of multilinear regression, the R2 value will always increase as
new variables are added to the model. For this reason sometimes the adjusted R2 is
used, which corrects for the number of explanatory variables in the model. As a result,
the adjusted R2 value will only increase if the new term improves the regression more
than would be expected by chance. The adjusted R2 value is usually denoted by R̃2 and
computed as follows:

R̃2 = 1− (1− R2)
n− 1

n− p
(52)

where, again, n is the data size and p the number of terms in the regression. Please
recall that in this formulation the intercept is included in p. It is well-known that the
higher the R2 and the adjusted R2 values, the higher the correlation between the values
predicted by the model and the values actually observed.
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D
R E V E R S E T O N E M A P P I N G : R E S U LT S O F T H E O B J E C T I V E
E VA L U AT I O N

Results of the objective image quality metric developed by Aydin et al. [24] comparing
the original LDR images (reference images) with the corresponding outputs after reverse
tone mapping them with the different operators. Each row shows the results of the linear
expansion, ldr2hdr, Banterle’s operator and our gamma expansion respectively. Green,
blue and red identify loss of visible contrast, amplification of invisible contrast and
contrast reversal, respectively. Please refer to Chapter 3 for details.
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E
D I S P L AY A D A P T I V E 3 D C O N T E N T R E M A P P I N G : O B J E C T I V E
F U N C T I O N A N D A N A LY T I C A L D E R I VAT I V E S I N T H E
O P T I M I Z AT I O N

In this appendix we go through the mathematical expressions of the two terms of the ob-
jective function described in Section 5.4 and shown in Equation 34. We also include their
derivatives, necessary for computing the analytical Jacobian used in the optimization
process.

e.1 term 1 : optimizing luminance and contrast

This term, as shown in Equation 30 in Section 5.4, has the following form:

T1 = ωCSF
(
ρS
(
Lorig

)
− ρS

(
φb
(
Lorig,d

)))
(53)

Note that this expression yields a vector of length Npyr (Npyr being the number of
pixels in the pyramid ρS

(
Lorig

)
or

ρS
(
φb
(
Lorig,d

))
), which is a vector of differences with respect to the target luminance

Lorig, weighted by contrast sensitivity values. This vector of errors thus contains the
residuals that lsqnonlin optimizes for the depth of field term. The weighting factor
µDOF is left out of this derivation for the sake of simplicity, since it is just a product by
a constant both in the objective function term and in its derivatives. This is valid also for
the second term of the objective function.

Since the multi-scale decomposition is a linear operation, we can write:

T1 = ωCSF
(
MS · Lorig −MS ·φb

(
Lorig,d

))
(54)

where MS is a matrix of size Npyr ×Nim, Nim being the number of pixels in the lumi-
nance image Lorig. Substituting the blurring function φb (·, ·) by its actual expression

∂T1,i

∂d
= ωCSF,i

(
−MS,i · (Lorig ∗

∂k(d)

∂d
)

)
, (55)

where MS,i is the i− th row of MS.
The derivative of the kernels k(d) is:

∂k(d)

∂d
=

(
exp(−

x2i+y
2
i

2(σ(d))2
)

)(
(x2i+y

2
i )4σ(d)

∂σ(d)
∂d

(2(σ(d))2)2

)∑K
j

[
exp(−

x2j+y
2
j

2(σ(d))2
)

]
(∑K

j

[
exp(−

x2j+y
2
j

2(σ(d))2
)

])2 − (56)

∑K
j

[(
exp(−

x2j+y
2
j

2(σ(d))2
)

)(
(x2j+y

2
j )4σ(d)

∂σ(d)
∂d

(2(σ(d))2)2

)](
exp(−

x2i+y
2
i

2(σ(d))2
)

)
(∑K

j

[
exp(−

x2j+y
2
j

2(σ(d))2
)

])2 .

The derivative of the standard deviation σ is straightforward, knowing ∂(fξ(d))/∂d. As
described in the main text, the expression for fξ(d) depends on the type of automulti-
scopic display. For a conventional display [512]:

fξ(d) =


f0
Na

, for |d|+ (h/2) 6 Nah

( h
(h/2)+|d|

)f0, otherwise
, (57)
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220 objective function and analytical derivatives

where Na is the number of angular views, h represents the thickness of the display and
fo = 1/(2p) is the spatial cut-off frequency of a mask layer with a pixel of size p. For
multilayered displays, the upper bound on the depth of field for a display of N layers
is [482]:

fξ(d) = Nf0

√
(N+ 1)h2

(N+ 1)h2 + 12(N− 1)d2
. (58)

The derivatives are as follows:

∂fξ(d)

∂d
=

 0, for |d|+ (h/2) 6 Nah

(
−hd/|d|

((h/2)+|d|)2
)f0, otherwise

(59)

for a conventional display and

∂fξ(d)

∂d
= Nf0

12
√
N+ 1(N− 1)hd

((N+ 1)h2 + 12(N− 1)d2)3/2
. (60)

for a multilayered display.

e.2 term 2 : preserving perceived depth

This term, introduced in Equation 32 in Section 5.4, is modeled as follows:

T2 = ωBD
(
ρL
(
φυ
(
Dorig

))
− ρL (φυ (d))

)
(61)

Again, since the multi-scale decomposition is a linear operation, we write:

T2 = ωBD
(
ML ·φυ

(
Dorig

)
−ML ·φυ (d)

)
, (62)

where ML is a matrix of size Ndpyr ×Nd, Nd being the number of pixels in the depth
map Dorig. Taking the derivative with respect to d yields the following expression for
each element T2,i of the residuals vector for this term:

∂T2,i

∂d
= ωBD,i

(
−ML,i ·

∂φυ (d)

∂d

)
, (63)

whereML,i is the i− th row ofML. As explained in the main text, φυ (d) converts depth
dP of a point P into vergence νP. This, given the viewing distance vD and the interaxial
distance e, is done using function φυ (·):

φυ (d) = acos

(
vL · vR

‖vL‖ ‖vR‖

)
, (64)

where vectors vL and vR have their origins in P and end in the eyes (please also see
Figure 5.6 in Section 5.4). Placing the coordinate origin in the center of the screen (z-
axis normal to the screen, x-axis in the horizontal direction) we can rewrite the previous
equation for a point P = (xi,yi,di) as:

νd = φυ (d) = acos

(
κ

√
η
√
ζ

)
, (65)

where:

κ = (xL − xi)(xR − xi) + (vD − di)
2,

η = (xL − xi)
2 + (vD − di)

2, and
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ζ = (xR − xi)
2 + (vD − di)

2.

Finally, differentiating Equation 65 with respect to depth:

∂φυ (d)

∂d
= −

(
1−

(
κ

√
η
√
ζ

)2)−1/2(
−2(vD − di)

√
η
√
ζ− κΨ(di)

ηζ

)
where Ψ(di) is as follows:

Ψ(di) = −di(vD − di)η
−1/2ζ1/2 − di(vD − di)ζ

−1/2η1/2.





F
D I S P L AY A D A P T I V E 3 D C O N T E N T R E M A P P I N G : A
D I C H O T O M O U S Z O N E O F C O M F O RT

As explained in Chapter 5 (Section 5.6), Equation 66 describes our objective function for
the simplified case of stereo remapping:∥∥ωBD (ρL (φυ (Dorig))− ρL (φυ (d)))∥∥22 + µCZ ‖ϕ (d)‖22 , (66)

where ϕ (·) is a function mapping depth values to visual discomfort. We describe here a
means to incorporate a dichotomous model of the zone of comfort, such as those shown
in cyan in Figure 5.7 for different devices and viewing distances vD (we reproduce the
figure here again as Figure F.1 for completeness). Instead of the non-dichotomous model
described in Section 5.6 (shown in orange in the same figure), we can define a binary
indicator function, such as

ϕdc (d) =

{
0 for dmincomfort 6 d 6 dmaxcomfort∞ otherwise

(67)

For a practical, numerically-robust implementation, a smooth function that approxi-
mates Equation 67 is preferable, ensuring C1 continuity. Our choice for such a func-
tion is the Butterworth function which is commonly used as a low-pass filter in signal
processing:

ϕbf (d) = 1−

√
1

1+ (γd)2s
(68)

where γ controls the position of the cut-off locations and s the slope of such cut-offs.

Figure F.1: Dichotomous (blue) and non-dichotomous (orange) zones of comfort for dif-
ferent devices. From left to right: cell phone (vD = 0.35m), desktop computer
(vD = 0.5m) and wide-screen TV (vD = 2.5m). This figure is a reproduction
of Figure 5.7, reproduced here for completeness.
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g.1 slices of the comfort function

0
5

10
15

20

0
0.5

1
1.5

2

2.8

3.2

3.6

4

4.4

Co
m

fo
rt

 S
co

re

vz  [deg/sec]vxy  [deg/sec]

1cpd

4cpd
16cpd

0
5

10
15

20

0
0.5

1
1.5

2

2.5

3

3.5

4

4.5

5
Co

m
fo

rt
 S

co
re

vz  [deg/sec]vxy  [deg/sec]

1cpd

4cpd
16cpd

0
5

10
15

20

0
0.5

1
1.5

2

2

2.5

3

3.5

Co
m

fo
rt

 S
co

re

vz  [deg/sec]vxy  [deg/sec]

1cpd

4cpd
16cpd

d=0 degd=-2 deg d=2 deg

Figure G.1: Slices of our comfort function, from left to right: d = −2◦, 0◦, 2◦.
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I have my mind. . . And a mind needs books as a sword
needs a whetstone, if it is to keep its edge.

— Tyrion Lannister to Jon Snow.
A Game of Thrones, by George R. R. Martin.
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