Zero-Phase Phasor Fields for Non-Line-of-Sight Imaging

Pablo Luesia-Lahoz, Talha Sultan, Forrest B. Peterson, Andreas Velten, Diego Gutierrez, Adolfo Muñoz

NLOS Imaging applications

Driving safety

Rescue operations

Medical imaging

Figures adapted from previous work [7]

[7] Maeda, T., Satat, G., Swedish, T., Sinha, L., & Raskar, R. (2019). Recent advances in imaging around corners. arXiv preprint arXiv:1910.05613.

Introduction

Dataset from Lindell et al. 2019

Introduction

Dataset from Lindell et al. 2019

NLOS methods

Filtered Back Projection [1]

ight Cone Transform [2]

migration [3]

mat Paths [4]

asor Fields formulation [5]

c. Etc

Previous method struggle finding small depth variations in meter scale scenes

[2] Dirabit Philippolicite the production of the continuous section of

NLOS methods

- Filtered Back Projection [1]
- Light Cone Transform [2]
- F-K migration [3]
- Fermat Paths [4]
- Phasor Fields formulation [5]
- Etc. Etc.

Efficient Phasor Fields implementations exist to propagate plane to plane [6]

[6] Liu, X., Bauer, S., & Velten, A. (2020). Phasor field diffraction based reconstruction for fast non-line-of-sight imaging systems. Nature communications, 11(1), 1645.

Finding geometry with Phasor Fields

Finding geometry with Phasor Fields

Our Zero-Phase Phasor Fields

Our Zero-Phase Phasor Fields

The imaged phase crosses to zero at the true surface positions

Our Zero-Phase Phasor Fields

Summarizing methods

Phasor Fields (PF)

Image planes, then select maximum in depth

Dense PF

Increase depth precision by increasing imaged planes

Our Zero-Phase Phasor Fields

Phase correction

Image planes, selects maximum, and corrects depth

Results

Results – simulated plane at 1 m

Results – simulated plane at 1 m

Results – simulated plane at 1 m

Results - Depth recovery of real dataset

Results – decreasing signal to noise ratio

Conclusions

Phasor Fields (PF)

- Efficient in time
- Efficient memory consumption
- Low depth precision

Dense PF

- Inefficient in time
- Inefficient memory consumption
- High depth precision

Our Zero-Phase Phasor Fields

- Efficient in time
- Efficient memory consumption
- High depth precision

Conclusions

- We develop a method that efficiently estimates depth.
- Depth recovery using phase is robust to noise.

- Future work and limitations:
 - Derive for non-confocal.
 - Phase correction works when the imaged plane is close enough.
 - Small mismatches occur, possibly due to near-field diffraction.

Zero-Phase Phasor Fields for Non-Line-of-Sight Imaging

Pablo Luesia-Lahoz, Talha Sultan, Forrest B. Peterson, Andreas Velten, Diego Gutierrez, Adolfo Muñoz

International Conference on Computational Photography 2025 Toronto, Canada, July 21-23

