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The supplemental material of this paper contains additional re-
sults and details not included in the main manuscript for concise-
ness. It is distributed as follows:

(S1) Implementation Details of the Trained Models

(S2) Training Dataset: Additional Details

(S3) Additional Results of our Appearance Encoder

(S4) Additional Ablation Studies of our Appearance Encoder
(S5) Additional Details of our Diffusion Pipeline Evaluation
(S6) Additional Results and Ablations of our Diffusion Pipeline

S1. Implementation Details of the Trained Models

In this section we provide further details on the configurations used
to train the models discussed in the main text.

S1.1. Appearance Encoder

The network implementation builds on the work by Dubois et
al. [DKLLM19], which contains the definition of different VAE-
based models. The system is developed using the Pytorch li-
brary [PGM*19], and trained on a NVIDIA GeForce RTX 3090.
We use the Adam optimizer to optimize both the autoencoder and
the discriminator in charge of computing the TC term, with learning
rates of le > and 7e75, respectively. We use a batch size of 150,
and exclude the normal map information from the first two decon-
volution layers. The model is trained during 2,400 epochs, with a
total training time of 106 hours. The y parameter is fixed to a con-
stant value of 6, and we perform an annealing of the § parameter,
which grows linearly from 0 to 2 during the first 1,000 epochs. For
the regularization term, we use n=3.

S1.2. Diffusion-based Pipeline

We use RealisticVisionXL4.0 (https://huggingface.co/
SG161222/RealVisXL_V4.0) as the base model for our dif-
fusion pipeline. It is a fine-tuning of Stable Diffusion XL, espe-
cially aimed at photorealism. Following community recommenda-
tions, we train the default architecture of IP-Adapter [YZL*23] for
reconstruction on our training dataset. To ensure accurate appear-
ance embeddings during training, we use the same inputs used to
train our appearance encoder, at 512x512 resolution. Using object-
centered images with the background masked out, we encourage
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the learned weights of the adapter to store information aligned
with the FactorVAE’s latent space. Additionally, we effectively re-
move the influence of the text embeddings by using uninformative
prompts, such as “image”. Training is done in a NVIDIA A100
GPU with 1074 learning rate with batch size of 10. During infer-
ence, we use the Diffusers [vVPPL*22] implementation of the Con-
trolNet inpainting pipeline for Stable Diffusion XL.

S2. Training Dataset: Additional Details

We carefully create a training dataset suitable for the disentangle-
ment of appearance in image space. It consists of 98,550 synthetic
images rendered with Mitsuba [Jak10]. These images are the result
of the combination of the following factors:

e 30 geometries. We have selected geometries of different
levels of complexity and realism. The 3D models come from
publicly available sources: the Morgan McGuire’s Computer
Graphics Archive [McG17], Pixar’s Renderman (https:
//renderman.pixar.com/community_resources),
3D Assets One (https://3dassets.one), TurboSquid
(https://www.turbosquid.com/), and Polyhaven
(https://polyhaven.com/models).

e 365 measured BRDFs obtained from real materials. Among
these materials, 266 come from the MERL dataset [MPBMO3]
(173 of which are edits from the original ones [SCW*21]), 36
come from the RGL dataset [DJ18], and the remaining 63 come
from the UTIA dataset [FV14]. During the selection of mate-
rials, we aimed for a dataset balanced in terms of appearance
attributes.

e 9 lighting conditions. We create the different illuminations by
systematically rotating the Green Point Park environment map
(https://polyhaven.com/a/green_point_park) at
angles -50°, -25°, 0°, 25°, and 50° in the X-axis, and 15°, 0°, -15°,
-50°, and -70° in the Y-axis.

Fig. 8 shows a representative set of the aforementioned training
dataset: the first three rows contain samples of the 30 geometries
used, rendered with the same material and illumination. Rows four,
five, and six include samples featuring the bunny geometry, ren-
dered with a representative set of the materials used. Finally, the
last row contains the nine illuminations.
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Figure 1: Grid plots, showing the appearance reconstructed by the decoder when lineally combining pairs of dimensions of the latent
space. We show: (left) hue #1 and hue #2, (center) light dir. #2 and gloss, and (right) light dir. #2 and lightness. Interestingly, the model
has automatically learned to represent the hue in two dimensions that are perpendicular in the chromatic circle (left), without any explicit
supervision.
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Figure 2: Additional results of the posterior traversal plot. We use as reference three unseen samples, reconstructing the Havran geometry.

S3. Additional Results of our Appearance Encoder S3.2. Additional Posterior Traversals

This section contains additional results of our model designed to We include in Fig. 2 additional results of the posterior traversals

encode appearance in image space. For details on how this model plot (see main text, Fig. 4, right). Here, we compute posteriors with

is built, please refer to the main text. three additional test samples: a rendered blue rough blob, and two
real photographs of a glossy black statue, and a yellow plastic sea-

S3.1. Traversability and Continuity of the Latent Space horse, respectively. We use the Havran geometry as guidance in

the decoder, and highlight in green the samples corresponding to
reconstructions of the reference material, akin to what is done in
the main text.

In the main text (Fig. 3), we include the prior traversals plot of our
6D latent space, highlighting its disentanglement and interpretabil-
ity properties. Further, and thanks to these properties, we study the
result of combining, two by two, these disentangled dimensions.
Fig. 1 contains the result of combining three different pairs of di-
mensions. Thanks to the inherent continuity of VAE-based meth-

S3.3. Reconstruction of Unknown Geometries

ods, we see how combining the identified dimensions results in As discussed in the main text (Sec. 4.2), our VAE-based appearance
progressive changes in the appearance of the Havran geometry. encoder suffers from a limited capacity to reconstruct geometries
© 2025 The Author(s).
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Figure 3: Examples of reconstructions made with different goal
geometries. First row depicts the six in-the-wild images used as
appearance input. Second row acts as reference, performing a re-
construction using the blob geometry seen during training. Rows
three, four, and five contain the reconstructions using the test ge-
ometries monster, cat, and chair as reference geometry.

very different from those seen during training. This generalizabil-
ity issue is not an unexpected behavior, but it hinders the applica-
bility of such encoder alone to reconstruct appearance in unknown
scenarios. In Fig. 3 we show the result of reconstructing the real
images used in the main text (Fig. 4) with different objective ge-
ometries: as reference, we use the blob geometry (row two), which
is in the training dataset, and then test the reconstructions for three
unknown geometries, namely the monster, the cat, and the chair
in rows three, four, and five, respectively. Analyzing the results,
we see how the model is able to apply the reference appearance
to some extent, but struggles in the estimation of illumination cues
(i.e. shadows) and high frequency details of the geometries, while
generating unexpected artifacts. This issue arises from the use of
unknown geometries, which the decoder is not able to properly in-
terpret.

S3.4. Robustness of Encoding

To evaluate the robustness of the appearance encoder’s embed-
dings with respect to geometric variation, we conducted an exper-
iment using two distinct test geometries: a cylinder, representing
a smooth surface, and a statuette, characterized by high-frequency
geometric detail. All samples were rendered under the AutoService
environment map. We quantified embedding similarity using the
mean cosine similarity (range: [-1, 1]) computed between pairs of
embeddings. We observe that the mean similarity between samples
of the same material is 0.879, whereas it decreases to 0.321 for
samples with different materials. These findings suggest that the
encoder consistently maps samples with identical materials to sim-
ilar regions of the latent space, and vice versa.

© 2025 The Author(s).
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Table 1: Ablation study on alternative reconstruction loss func-
tions. We include results of interpretability (MIR metric) for four
different reconstruction losses.

BCE Bernoulli Huber L1-smooth
MIRT 0.1770 0.2440 0.2622 0.2940
Tetd Bernoulli
BCE
. Huber
o L1-smooth

200 400 600 800 1k 2k 4k 6k 8k 2k

Figure 4: Ablations. Evolution of different alternative reconstruc-
tion losses during training. Note that y-axis is log-scale.

S4. Additional Ablation Studies of our Appearance Encoder

In this section we include additional ablation studies of our appear-
ance encoder, highlighting the thoughtful design of our final model
(see main text, Sec. 3.4 for the main ablations).

S4.1. Reconstruction Loss

During the design of the final model, we tested four commonly used
reconstruction losses in autoencoder architectures, namely BCE,
Bernoulli, Huber, and L1-smooth [PGM*19]. In the final imple-
mentation, we chose to use the L1-smooth function, due to its su-
perior performance in our experiments, as shown in its improved
interpretability, measured by MIR, in Table 1). Additionally, the
first two reconstruction functions operate at a considerably higher
magnitude than the latter two alternatives (Fig. 4), which caused
training instabilities.

S4.2. Normal Map Downsampling Method

In the Sec. 3.1 of the main text, we explain that the geometry guid-
ance in the decoder of the FactorVAE-based architecture is imple-
mented by adequately concatenating the channels to layers of the
decoder pipeline. To adequately match the shape of the maps to that
of the feature maps of the layers, we need to resize the normal map
image. Here we ablate the algorithm used to perform such resizing
of the normal map, comparing the nearest neighbors (NN) and bi-
linear methods. Fig. 5 shows the performance of two models, each
one trained with one of the alternatives, when reconstructing a test
geometry. We can clearly see how the model that uses the bilinear
interpolation achieves a better understanding of the unseen geom-
etry, which is reflected in a reduced (but not inexistent) number of
artifacts. This is probably due to a smoother reduction of the reso-
Iution by the bilinear algorithm, in contrast to the nearest neighbors
one.
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Figure 5: Ablation study on the two alternatives for downsam-
pling the normal map information, namely nearest neighbors (NN),
and bilinear. Left: the reference geometry (cat), with its respective
resulting appearance after applying each of the two algorithms.
Right: samples used as appearance reference (first row), with their
respective reconstructions using each algorithm (second and third
row).

SS. Additional Details of our Diffusion-based Pipeline
Evaluation

Here we provide details regarding the evaluations performed in
the Sec. 5.2 of the main paper. The different real images we used
as input of the pipeline come from public datasets [SCW*21;
DLC*22], have been Al-generated [Lab23] or come from the fol-
lowing sources:

Copper teapot (Fig. 1, main, Fig. 6, supp): rawpixel.com.
Napoleon (Figs. 1, 8, 11, main): Daniel Robert, unsplash.com.
Green chair 1 (Fig. 1, main): alicdn.com.

Red chair (Fig. 4, main): imimg.com.

David (Fig. 7, main): Roberto Serra, news.artnet.com.

Green chair 2 (Fig. 8, main, Fig. 6, supp): grangecoop.com.
Luffy statue (Fig. 10, main): kumamoto.guru.

Statue of Liberty (Fig. 10, main): Riis2602 Wikimedia.

In the Fig. 8 of the main text, we compare our results with two
existing baselines: InstructPix2Pix[ BHE23], and Subias and Lagu-
nas [SL23]. For emulating the traversal of our latent space in the
InstructPix2Pix pipeline, we used the following configurations:

e For increasing the gloss of the statue, we used the prompt make
the statue shiny, with a text CFG of 5.0, 6.0, and 7.5.

e For decreasing the hue #2 of the resulting image of the previous
stage, we used the prompt make the statue orange, with a text
CFG of 2.0, 3.0, and 4.0.

e For increasing the hue #2 of the chess piece, we used the prompt
make the chess piece green, with a text CFG of 0.5, 2.0, and 5.0.

e For increasing the lightness of the resulting image, we used the
prompt make the chess piece light green, with a text CFG of 1.0,
5.0, and 8.0.

In the case of the Subias and Lagunas’ pipeline, we directly used
it for the attributes of the comparative handled by their model.

S6. Additional Results and Ablations of our Diffusion Pipeline

In this section we include additional results obtained with our
diffusion-based pipeline, discussed in the Sec. 5 of the main

Cat Napoleon
i £y :
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o |
K] S |
Blob Bunny Chair Teapot

26 P@

Figure 6: Inputs used for the diffusion-based posterior traversals
presented in Figs. 9- 23.

Appearances

manuscript, and run ablations on some of the design decisions taken
in the development of such pipeline.

S6.1. Posterior Traversals with our Diffusion-based Pipeline

Once trained, our diffusion pipeline is expected to resemble the
good properties of our appearance encoder (e.g., disentanglement,
interpretability, continuity). To evaluate this, we create a version
of the posterior traversals plot (main text, Fig. 4, right) with the
designed diffusion-based pipeline, using the four dimensions that
contain appearance-related features. We use the remaining two di-
mensions encoding illumination features exclusively to guide the
pipeline on the desired lighting conditions, thus we do not per-
form a traversal on such dimensions. For it, we start from the setup
displayed in the teaser (main text, Fig. 1, left), where we apply a
rough purple material to the painting of a car. Starting from this
appearance transfer (figures marked in green), we systematically
vary each of the four dimensions, obtaining as a result the visu-
alization of Fig. 9. Rows follow the same order as the traversals in
Fig. 2, namely lightness, hue #1, hue #2, and gloss. Note the overall
smoothness of transitions, achieved thanks to the guidance of our
custom appearance encoder. When traversing the same dimension
as the appearance transfer (e.g. trying to make the paint even more
purple), the representation may overflow the ranges seen during
training, creating saturated results. To further evaluate the robust-
ness of our method, we generate diffusion-based posterior traver-
sals using 15 combinations of the three geometries and five appear-
ances illustrated in Fig. 6. The resulting traversals are presented in
Figs. 9- 23. These results encompass a diverse range of appearances
and reference geometries, showcasing our method’s applicability to
real-world scenarios, as well as its limitations in some challenging
examples.

S6.2. Appearance Transfer Evaluation

To further assess the improved disentanglement between geometry
and appearance achieved by our custom appearance encoder, we
conducted a user study involving 20 participants. Each participant
was presented with results from an appearance transfer task and
asked to select the output that best fulfilled the objective: “Gener-
ate an image with the given geometry and the given material ap-
pearance”. As a baseline, we used the outputs of ZeST [CSM*24],

© 2025 The Author(s).
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Reference Canny

Figure 7: Ablation on the influence of the ControlNet weights over
the final result. On top are represented the geometry used as ref-
erence, with its respective estimated depth and Canny maps. Each
row contains the result of running the inference pipeline with the
same custom reference appearance and different weights. We in-
clude three close-up zooms for visualization purposes, and the re-
spective weights for the Depth (D) and Canny (C) ControlNets.

following the configurations shown in Figs. 9-23. Results showed
that our proposed method was preferred in 61.5% of the selections,
while ZeST was chosen in 38.5% of the cases.

S6.3. Ablation Study on the Influence of ControlNets

As described in the main paper, our inference pipeline leverages
a combination of two ControlNets [ZRA23] to provide geome-
try guidance. Each ControlNet must be appropriately weighted, as
these weights directly influence the final image. In our work, we
use fixed weights of 0.2 for the Depth ControlNet and 0.9 for the
Canny ControlNet. To analyze the impact of these weights, we run
an ablation study, presented in Fig. 7. As observed, the Canny map
may contain some ambiguous edges that require complex inter-
pretation during inference. When relying solely on this informa-
tion (D=0.0, C=1.0), the pipeline may misinterpret certain edges
as being outside of the main geometry, leading to artifacts such as

© 2025 The Author(s).
Proceedings published by Eurographics - The European Association for Computer Graphics.

the black blob (first row, second column). Conversely, the depth
map helps to better identify the geometry but lacks some details of
the scene. If only conditioning the diffusion pipeline with the esti-
mated depth map (Fig. 7, last row), high-frequency details are sig-
nificantly diminished, which is especially noticeable in the sphere
(last row, third column). Among the tested configurations, our cho-
sen weights offer the best balance between preserving geometric
structure and maintaining high-frequency fine details.
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Figure 8: Representative samples of the custom training dataset. Rows one, two, and three contain samples of the 30 geometries used. Rows
four, five, and six contain a representative set of the 365 measured materials. Row seven shows the nine illuminations used in the dataset.
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Figure 10: Posterior traversals plot generated using car and bunny as geometry and appearance references. Transfer marked in green.
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Figure 12: Posterior traversals plot generated using car and jar as geometry and appearance references. Transfer marked in green.
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Figure 14: Posterior traversals plot generated using cat and blob as geometry and appearance references. Transfer marked in green.
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Figure 16: Posterior traversals plot generated using cat and chair as geometry and appearance references. Transfer marked in green.
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Figure 18: Posterior traversals plot generated using cat and teapot as geometry and appearance references. Transfer marked in green.
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Figure 19: Posterior traversals plot generated using napoleon and blob as geometry and appearance references. Transfer marked in green.
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Figure 20: Posterior traversals plot generated using napoleon and bunny as geometry and appearance references. Transfer marked in green.
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Figure 22: Posterior traversals plot generated using napoleon and jar as geometry and appearance references. Transfer marked in green.
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Figure 23: Posterior traversals plot generated using napoleon and teapot as geometry and appearance references. Transfer marked in green.
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