

Effects of Approximate Filtering on the Appearance of Bidirectional Texture Functions

Adrian Jarabo, Hongzhi Wu, Julie Dorsey, Holly Rushmeier, Diego Gutierrez

[Filip et al.11]

[Schwartz et al.11]

- View- and light-dependent textures
- Encoding:
 - Complex reflectances
 - Parallax
 - Shadows
 - GI + local SSS

Undersampling (Aliasing)

Over-smooth (Blur)

Undersampling (Aliasing)

Over-smooth (Blur)

Angular-dependent textures

Our goal

Evaluate under which conditions an approximately pre-filtered **BTF** is considered **visually equivalente** to the ground truth.

Our goal

- 1. Is it possible to pre-filter BTFs maintaining visual equivalence to the reference solution?
- 2. What kind of **artifacts** (e.g. aliasing, blur) are more easily accepted? Under which conditions?
- 3. Does distance or motion affect visual equivalence?
- 4. Is this visual equivalence **correlated with high-level visual properties** of the surface?

- Static and dynamic experiments
 - Static light and camera, moving light & moving camera

- Static and dynamic experiments
- Several BTFs representing different materials
 - Each BTF has assigned a set of high-level visual properties: e.g. glossy, structured, relief

- Static and dynamic experiments
- Several BTFs representing different materials
- Analysis of filtering angular and spatial domains separately

Spatial domain

Undersampling (Aliasing)

Over-smooth (Blur)

Angular domain

- Static and dynamic experiments
- Several BTFs representing different materials
- Analysis of filtering angular and spatial domains separately
- Test different geometries and illumination

- Static and dynamic experiments
- Several BTFs representing different materials
- Analysis of filtering angular and spatial domains separately
- Test different geometries and illumination
- Use MTurk to get participants (~3000)

Analysis

- Check consistency between results on Mturk and controlled in-situ experiments.
- N-Ways ANOVA seeking for main and interaction effects.
- Tukey-Kramer post-hoc analysis.

Experiments Results (I)

- Aliasing (contrast) is preferred in static scenes...
- ... in contrast, oversmooth appearance is preferred for dynamic scenes.
- The angular domain supports for more aggresively pre-filter than the spatial domain.

Experiments Results (II)

- High-level descriptors of the surfaces relate with the results: their visual properties affect the level of blur or aliasing accepted.
- Low-level BTF statistics correlate with highlevel visual descriptors.
- Our results generalize to geometries and illumination with several levels of complexity.

Applications

- In rendering, BTF compression or filtering:
 - When a prefiltered approximation can be used for BTFs?

Applications

- In rendering, BTF compression or filtering:
 - When a prefiltered approximation can be used for BTFs?

Applications

- In rendering, BTF compression or filtering:
 - Adaptive rendering based on material props.

Speed-up: x2.5

- Approximate pre-filtering can be applied to BTF without sacrificing visual quality.
 - We can filter the angular domain more aggresively than the spatial domain.
 - High-level features can be used to determine optimal parameters for BTF filtering. And they correlate with low-level statistics!

- Approximate pre-filtering can be applied to BTF without sacrificing visual quality.
 - We can filter the angular domain more aggresively than the spatial domain.
 - High-level features can be used to determine optimal parameters for BTF filtering. And they correlate with low-level statistics!

- Approximate pre-filtering can be applied to BTF without sacrificing visual quality.
- Shown several applications for BTF rendering, filtering and compression.

- Approximate pre-filtering can be applied to BTF without sacrificing visual quality.
- Shown several applications for BTF rendering, filtering and compression.
- Future work: extrapolate findings and procedure to other material models?
 - e.g. SV-BRDFs

Thanks!

Data at:

http://giga.cps.unizar.es/~ajarabo/pubs/btfTVCG14/