
1

Supplementary Material: Looking Around Flatland:
End-to-End 2D Real-Time NLOS Imaging

Marı́a Peña, Diego Gutierrez, Julio Marco

Abstract—In this supplementary document, we list the most
important symbols used throughout the paper and provide
implementation details and additional experiments.

S.I. SYMBOLS

In the following, we present two tables with the most
relevant symbols used throughout the paper to represent terms
related to transient light transport (Table II) and NLOS imag-
ing (Table III).

TABLE II
SYMBOLS RELATED TO TRANSIENT LIGHT TRANSPORT.

Symbol Meaning

Ij Spatio-temporal measurement

Ψ2D Space of light transport paths in 2D

x ∈ Ψ2D
Spatial coordinates of the vertices of
a light path between a light source and
a camera sensor

∆T Space of temporal delays of all paths

∆t ∈ ∆T
Sequence of time delays resulting from
the optical distance and scattering events
of a path x

∆tsi Scattering delay at path vertex xi

ρj(x,∆t) Measurement contribution function

dµ2D(x) Spatial integration at each path vertex
dµ(∆t) Temporal integration at each path vertex

ω 3D direction or solid angle
θ 2D direction or planar angle

n⃗
Normal direction to a point in a surface
or curve

da Differential area at a point in 3D
dl Differential arc-length at a point in 2D

L3D(x, ω)
Radiance in 3D arriving at or leaving
point x in direction ω

L2D(x, θ)
Radiance in 2D arriving at or leaving
point x in direction θ

Le(x0,x1,∆t0)
Emitted radiance from x0 toward x1

at time ∆t0

W
(j)
e (xm−1,xm,∆tm) Temporal sensor importance at pixel j

f(xi−1,xi,xi+1,∆ti)
Scattering coefficient at xi after
a time delay ∆ti

f(x) Total scattering attenuation at path x vertices

D(θ), s Microfacet distribution and roughness

G2D(xi,xi+1)
Geometric term in 2D, attenuation
between any pair of path vertices

G2D(x) Total geometric attenuation of path x

H(xl,xs, t) Impulse response function

S.II. IMPLEMENTATION DETAILS

We implement our end-to-end pipeline using the WebGL
API [1], relying on vertex and fragment shaders and storing
intermediate and final results in textures for efficient time-
resolved light transport simulation and NLOS imaging in 2D
scenes.

Simulation of 2D Transient Light Transport: We imple-
ment transient light transport in 2D by extending the WebGL-
based rendering engine Tantalum [2]. Tantalum simulates
conventional steady-state light transport in 2D scenes using
light tracing, assuming infinite speed of light and displaying
conventional fluence images of 2D scenes without any tempo-
ral dependency. Based on our 2D transient path integral formu-
lation, we extend Tantalum to support time-gated emission and
capture of irradiance values in 2D scenes. For this purpose, we
incorporate temporal dependency of light propagation during
the light tracing process by accounting for the optical distances
and refractive indices of the media traversed by the light paths
to compute the time-of-flight of light. Specifically, we leverage
the fourth channel of the radiance textures to store the time-
of-flight light samples.

Replicating the NLOS capture process: Real NLOS imag-
ing capture setups implement SPAD sensors focused at a finite
region on the relay wall to gather indirect photons from the
hidden scene. We add support for this process by implementing
a new kernel for computing H from the generated light
samples. This kernel gathers sampled paths in the vicinity of a
captured point xs and connects deterministic rays to the sensor
origin xs0. While SPAD-based NLOS imaging setups typically
return a list of individual photons and their corresponding
time of flight, it is common practice to accumulate those
in a temporal histogram for each captured point xs, i.e. H,
where each temporal bin accumulates photons with a time of
flight within a specific time interval based on a user-defined
sensor temporal resolution ∆te. To mimic this process, we
accumulate the resulting light samples of our simulation in
their corresponding temporal bins—represented by a texture—
based on their time of flight and ∆te. Similarly to Tantalum,
we configure NLOS scenes using shaders that contain a
list of geometric primitives and their materials. To facilitate
the process of scene configuration, we implement a visual
interface to create new scenes and modify existing ones, which
automates the generation of scene shaders.

NLOS imaging: Based on the scene geometry and pa-
rameters defined by the user, we implement real-time NLOS
imaging by feeding our implementation of different NLOS
imaging models with textures that accumulate small batches



2

TABLE III
SYMBOLS RELATED TO NLOS IMAGING.

Symbol Meaning

L Set of points illuminated in the relay wall
S Set of points captured in the relay wall
V Hidden scene volume

xl ∈ L A single illuminated point in the relay wall

x̃l Virtual light source
xs ∈ S A single captured point in the relay wall
xv ∈ V A single point in the hidden scene

xl0,xs0
Location of the laser and sensor devices,
respectively

x
Three-bounce light path between a light
source and a camera sensor

∆x Lateral resolution of captured points

t Time
∆te Sensor temporal resolution
Tmax Sensor temporal range

Nl, Ns
Number of illuminated and captured points,
respectively

Nt Number of temporal bins

Ft Fourier transform

Ω Imaging frequency

K(t) Pulsed function in the temporal domain

Ωc, λc, σ
Carrier frequency, central wavelength and
width of a pulsed virtual illumination
function with a Gaussian envelope

H(xl,xs, t) Impulse response function
H Discretized approximation of H(xl,xs, t)

Hl(x̃l,xs, t),Hl
Impulse response under virtual illumination
emitted from x̃l

HK(xl,xs, t),HK
Impulse response under an arbitrary virtual
illumination function

Ĥ(xl,xs,Ω) Frequency-domain impulse response function

f(xv) Albedo of diffuse surfaces in the hidden scene
f(xv , t) Time-resolved image of the hidden scene

f̂(xv ,Ω)
Set of phasors that represents an image of the
hidden scene at imaging frequencies Ω

f Discretized approximation of f(xv , t)
ftc(xv , t), ftc Image obtained by the time-gated camera
fcc(xv , t), fcc Image obtained by the confocal camera
fsc(xv), fsc(xv) Image obtained by the steady-state camera

jt Discrete time index of f

G(x) Geometric attenuation of path x

∆tv Time of flight of path x

dsv , tsv
Distance from xv to xs and time to travel
it in free space, respectively

dlv , tlv
Distance from xl to xv and time to travel
it in free space, respectively

P(xl, t) Virtual time-resolved illumination function
P(xs, t) Virtual response of the scene

P̂(xl,Ω), P̂(xs,Ω)
Virtual illumination and response phasors
at frequency Ω, respectively

Φ Wave-based imaging operator

of a few tens to hundreds of transient light transport samples.
We compute each pixel of V in parallel according to Eq. (11)
or Eq. (15), depending on the chosen NLOS imaging cam-
era model. For the steady-state camera model, we evaluate
Eq. (11) for all possible jt and accumulate all temporal bins.
For the filtering step, we implement three different convolution
shaders. Laplacian filtering is implemented as a 2D convolu-
tion of a texture with a 3 × 3 Laplacian kernel. Laplacian
of Gaussian (LoG) kernels are usually larger, so we perform
the 2D convolution between two textures cntaining H and the
LoG kernel, respectively. For phasor-based virtual illumination
we implement a 1D convolution between the texture storing
H, and a texture that stores the virtual illumination function,
which is one dimensional and complex valued. To provide an
intuitive visualization of the absolute monochromatic intensity
of the resulting reconstructions, we apply a high contrast color
map to the absolute intensity values of the imaging output, and
store it in a texture which is finally shown to the user. The
resulting reconstruction can be saved as floating-point values
without loss of precision for additional analysis.

The final algorithm coupling 2D light transport simula-
tion and NLOS imaging is summarized in Algorithm 1,
where gpuParallelFor stands for a shader call, and
captureSample(xi, θi) accumulates light samples in our im-
pulse response H when xi is in the chosen vicinity of one of
the scanned points xs.

S.III. SENSOR NOISE

NLOS imaging with real-world captured data is usually
photon-starved and suffers from Poisson noise and time jit-
ter introduced by SPAD sensors [3], [4]. Simulation often
overlooks these factors, making it difficult to match simulated
results to capture conditions. We mimic capture conditions of
real setups by post processing our simulated data. Following
common practice, we simulate time jitter by convolving the
temporal domain of our simulated impulse response function
with a Gaussian pulse, adjusting its Full Width at Half Maxi-
mum (FWHM). We then apply Poisson noise to the convolved
signal assuming the entire sensor domain gathers a total Mp

photons. In Fig. 13 we compare the signal (top row) and
resulting images (bottom row) for a reference simulation of
the BUNNY scene from Fig. 6 with no jitter or capture noise
(first column), including only time jitter with FWHM = 160 ps
(second column), adding low capture noise (Mp = 500000,
third column), and adding high capture noise (Mp = 50000,
fourth column). Including time jitter (second column) produces
ambiguities when estimating the position of the surfaces along
the axis coaxial to the relay wall (horizontal dimension in
the image), losing sharpness in the final image. The effect of
introducing Poisson noise (third and fourth columns) is more
noticeable: the signal is noticeably degraded, producing noisier
results, and showing difficulty in recovering the shape of the
hidden object for low photon counts (e.g., MP = 50000,
fourth column). This replicates results obtained in real cap-
tures, which usually need long capture times to gather a
sufficient number of photons. Incorporating these factors into
the simulation may help researchers establish a lower threshold
of photon counts to estimate optimal capture times.



3

Algorithm 1 Simulation and imaging algorithm in our system
Require: N : number of paths
Require: M : batch size
Require: m: path length
Require: filter: filtering strategy
Require: K: filtering kernel
Require: Nv: number of pixels in virtual image
Require: jt

for i← 1 to N/M do
// Light tracing
gpuParallelFor(1 to M ): xi, θi ← sampleLe()
for j ← 1 to m do

gpuParallelFor(1 to M ):
x′
i ← raytrace(xi, θi)

θ′i ← sampleBrdf(x′
i, θi)

gpuParallelFor(1 to M ): drawLine(xi,x
′
i)

gpuParallelFor(1 to M ): captureSample(xi, θi)
xi, θi ← x′

i, θ
′
i

end for
// NLOS imaging
if filter is phasor-based virtual illumination then
H′ ← convolution1d(H,K)

else
H′ ← H

end if
gpuParallelFor(xv ∈ V):

f [xv]← 0
for xs ∈ S do
d = distance(xl0 → xl → xv → xs → xs0)
t = d/c+ jt
f [xv]← f [xv] +H′[xl,xs, t]

end for
if filter is Laplacian or LoG then
f ← convolution2d(f ,K)

end if
end for

S.IV. EXHAUSTIVE CAPTURE SETUPS

The development of SPAD arrays facilitates simultaneous
capture of multiple sensor positions on the relay wall, dra-
matically improving capture SNR at low exposure times [4]–
[6], or enabling exhaustive capture setups where multiple
sensor pixels xs capture the response of multiple illuminated
points xl for more complex imaging modalities [7]. However,
exhaustive capture and simulation in 3D scenes leads to a
dramatic increase of the memory requirements, as the size of
the impulse response function grows with the fourth power
of the capture spatial resolution (Nl · Ns, with both grow-
ing quadratically). Existing works proved the applicability
of exhaustive captures with lateral resolutions of up to 32
illuminated and captured points [7]. Our 2D pipeline becomes
fundamental to analyze the performance of exhaustive captures
with higher resolution, as dimensionality reduction provides
a tractable memory footprint. We include proof-of-concept
results obtained with a 2D exhaustive capture, by capturing
and illuminating the same 128 points for both sensor and laser,

shown in Fig. 14, where we use the BUNNY scene described in
Fig. 6. In contrast to single-point illumination at the center of
the relay segment xl (first image), exhaustive captures (second
image) reveal the shape of the ear and head of the bunny.

REFERENCES

[1] T. K. G. Inc. Webgl. [Online]. Available: https://www.khronos.org/api/
webgl

[2] B. Bitterli. (2015) The secret life of photons. [Online]. Available:
https://benedikt-bitterli.me/tantalum/

[3] Q. Hernandez, D. Gutierrez, and A. Jarabo, “A computational model of
a single-photon avalanche diode sensor for transient imaging,” 2017.

[4] M. Renna, J. H. Nam, M. Buttafava, F. Villa, A. Velten, and A. Tosi,
“Fast-gated 16×1 spad array for non-line-of-sight imaging applications,”
Instruments, vol. 4, no. 2, p. 14, 2020.

[5] S. Riccardo, E. Conca, V. Sesta, A. Velten, and A. Tosi, “Fast-gated
16× 16 spad array with 16 on-chip 6 ps time-to-digital converters for
non-line-of-sight imaging,” IEEE Sensors Journal, vol. 22, no. 17, pp.
16 874–16 885, 2022.

[6] C. Jin, M. Tang, L. Jia, X. Tian, J. Yang, K. Qiao, and S. Zhang,
“Scannerless non-line-of-sight three dimensional imaging with a 32x32
spad array,” 2020.

[7] J. Marco, A. Jarabo, J. H. Nam, X. Liu, M. A. Cosculluela, A. Velten,
and D. Gutierrez, “Virtual light transport matrices for non-line-of-sight
imaging,” in Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), October 2021, pp. 2440–2449.

https://www.khronos.org/api/webgl
https://www.khronos.org/api/webgl
https://benedikt-bitterli.me/tantalum/

	Symbols
	Implementation Details
	Sensor Noise
	Exhaustive Capture Setups
	References

