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Figure 1: We investigate the relationship between cognitive load and a number of objective and subjective measures while conducting
visual search tasks in immersive environments. Left: We have devised an experiment in which participants are prompted with a
visual search task and, in some cases, with an additional auditory task, which requires them to divert their cognitive resources.
Center: We have measured several physiological signals during the task, such as electrocardiogram (ECG) or electrodermal activity
(EDA), as well as collected task performance measures and subjective responses on workload. Right: We have exhaustively
analyzed how markers derived from those signals, as well as their evolution over time, relate to increases in cognitive demand.

ABSTRACT

The study of cognitive load (CL) has been an active field of research
across disciplines such as psychology, education, and computer
graphics and visualization for decades. In the context of Virtual
Reality (VR), understanding mental demand becomes particularly
relevant, as immersive experiences increasingly integrate multisen-
sory stimuli that require users to distribute their limited cognitive
resources. In this work, we investigate the effects of cognitive
load during a search task in VR, combining objective and subjec-
tive measurements, including physiological signals and validated
questionnaires. We designed an experiment in which participants
performed a visual search task under two cognitive load conditions
(either alone or while responding to a concurrent auditory task) and
across two visual search areas (90◦ and 360◦). We collected a rich
dataset comprising task performance, eye tracking, electrocardio-
gram (ECG), electrodermal activity (EDA), photoplethysmography
(PPG), and inertial measurements, along with subjective assessments
(NASA-TLX questionnaires). Our analysis shows that increased
cognitive load hinders visual search performance and affects mul-
tiple physiological markers, offering a solid foundation for future
research on cognitive load in multisensory virtual environments.

Index Terms: Cognitive load, physiological signals, perception,
visual search
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1 INTRODUCTION

Virtual Reality (VR) is becoming increasingly widespread and popu-
lar, driven by advances in hardware and software that have enabled
its integration into a wide range of domains, including education,
healthcare, entertainment, and professional training, among many
others [2, 31]. As VR technologies continue to mature, there is a
growing interest in developing experiences that leverage multiple
sensory modalities (primarily visual, auditory, and haptic) to create
richer and more compelling content [37, 40]. These multisensory
inputs not only increase realism and immersion, but can also be
used, for example, to improve spatial perception [13, 30] or guide
attention [12, 16].

However, although the benefits of audiovisual integration are
gathering attention, much remains untapped about the challenges and
implications arising from combining audiovisual stimuli, especially
in terms of mental demand and cognitive load. Cognitive load (CL)
refers to the amount of mental resources that humans allocate to
working memory at any given time [44, 45]. Sweller’s theory [50]
posits that mental resources are limited and that the cognitive load
derived from the allocation of those resources can be distinguished
in three categories: intrinsic, germane and extraneous. While the
first two are considered inherent to the task or the user, respectively,
extraneous cognitive load is considered external to those and is
affected by the way the experience is conveyed. Some aspects of
an experience can contribute to an increase in the mental resources
required, making the task substantially more difficult. In fact, in
many virtual experiences, users are exposed to multiple sources of
stimuli that do not necessarily contribute to their main goal and can
lead to an increase in extraneous cognitive load, which ultimately
hinders user performance [37].



Measuring and quantifying cognitive load levels is an ongoing
problem encompassing disciplines such as psychology [45, 51], ed-
ucation [9], and even computer graphics and visualization [3], for
which no definite solution has yet been found. However, there seems
to be a consensus that some changes in physiological signals could
be highly correlated with cognitive load and its fluctuation, such
as in eye tracking [33], electrocardiogram (ECG) [1], electroder-
mal activity (EDA) [19], or respiration [25], together with subjec-
tive measurements, such as the well-known NASA-TLX question-
naire [28]. However, while several recent works have explored the
prediction [46] or classification [14] of cognitive load in immersive
environments using selected physiological markers, comprehensive
analyses that examine a broad set of signals jointly and account for
their temporal evolution remain scarce. In this work, we present and
analyze a novel dataset that, to the best of our knowledge, offers the
most extensive combination to date of physiological signals for in-
vestigating cognitive load in a systematically designed VR scenario
(see Fig. 1).

In particular, we focus on visual search, one of the most common
tasks in VR [36], and analyze how task performance and physiologi-
cal signals vary under different levels of cognitive load and across
different search areas. We designed an experiment in which 36 par-
ticipants performed a visual search task under two conditions: either
alone (low cognitive load, LCL), or while concurrently performing
an auditory task that required detecting and responding to specific
stimuli (high cognitive load, HCL). The task was performed in two
visual search area configurations: a narrow 90◦ search area and a
wider 360◦ one. Throughout the experiment, we recorded a broad
set of physiological signals, including eye tracking, ECG, EDA, and
photoplethysmography (PPG), along with inertial measurements
of head and body rotation, subjective assessments (NASA-TLX
questionnaires), and task performance metrics.

From these physiological signals, we derived a set of physiologi-
cal markers commonly used in the study of cognitive load, allowing
us to study their behavior under varying conditions. We focused on
the mean heart rate (HR), the mean respiration frequency (RF), the
median of the EDA tonic component (EDAtonic), and the median
of the EDA phasic component (EDAphasic). Our analysis revealed
several key insights. First, we observed that high levels of cogni-
tive load induced by audiovisual multitasking significantly impaired
visual search performance. Second, physiological markers such
as EDAtonic, RF, and HR were found to correlate with cognitive
load levels, with EDAtonic exhibiting consistent behavior, while
RF and HR appeared more susceptible to confounding factors such
as movement during the search. Finally, we observed that HR, RF,
and EDAphasic varied noticeably over time, suggesting their sensi-
tivity to temporal dynamics and experience duration. In contrast,
EDAtonic remained temporally stable, reinforcing its potential as a
robust marker for sustained cognitive load.

In summary, our contributions include:

• A rich and diverse dataset collected during a visual search task
in VR under both low and high cognitive load conditions (with
and without a concurrent auditory task), encompassing phys-
iological signals (including eye tracking, electrocardiogram
(ECG), electrodermal activity (EDA), photoplethysmography
(PPG), and respiration (RESP)), inertial measurements of body
and head movement, subjective measurements of cognitive
load (NASA-TLX questionnaire), and task performance.

• A detailed analysis of how cognitive load affects performance
in visual search tasks.

• A comprehensive study of the relationship between cognitive
load and multiple physiological markers, analyzed across dif-
ferent visual search areas.

• An exploration of the temporal evolution of these markers for
each experiment condition and their dynamic correlation to
cognitive load over time.

We believe this work provides a timely foundation for future
studies investigating the role of physiological markers in assessing
cognitive load within multisensory virtual environments.

2 RELATED WORK

2.1 Cognitive Load

The study of cognitive load (CL) has been an active research
area [18, 52, 53] since the publication of the seminal work from
Sweller [50], which established the basis of the cognitive load theory.
It defined CL as the amount of cognitive resources allocated to com-
pleting a specific task. Building upon it, different works have studied
the influence of CL in task-oriented scenarios, across domains such
as learning, memory, or navigation, among others, showing that high
levels of cognitive load generally hinder task performance [4,10,47].
However, as posited by the Yerkes-Dodson law [58], and later re-
vised in different scenarios [20, 22, 34, 48], performance follows an
inverted U-shape, and some moderate workload can increase perfor-
mance up to a peak. Numerous studies have emphasized the need to
design interfaces and content to maintain CL at an “optimal” level to
improve task performance and experience [29, 43]. Achieving this
goal involves measuring and characterizing CL, which has no defi-
nite solution yet, and has been an active field of research for years.
This becomes significantly more challenging in multisensory envi-
ronments such as virtual reality (VR), where multiple sensory inputs
simultaneously influence cognitive demands [17, 37, 54], complicat-
ing the estimation of the amount of cognitive resources occupied by
each task at any given time.

2.2 Physiological Markers

Several works have studied the correlation between cognitive load
(CL) and the fluctuation of different physiological markers, such as
eye-tracking data [33] (including pupillometry [41], blinks [42], or
fixations [21]), electrocardiogram (ECG) [1], electrodermal activity
(EDA) [19], or respiration (RESP) [25], among many others. The
autonomic nervous system (ANS) is a fundamental part of the ner-
vous system and regulates most of the aforementioned involuntary
physiological functions. It comprises two main branches: the sym-
pathetic nervous system (SNS), which helps the body enter an alert
state (“fight or flight” response), and the parasympathetic nervous
system (PNS), which helps the body enter a calm state (“rest and
digest”). These two branches typically operate in a dynamic balance,
allowing the body to adapt to the environment.

The most used, non-invasive way to assess ANS function is
through the analysis of heart rate (HR) and its variability (HRV).
These measures can be derived from the ECG signal, which repre-
sents the electrical activity of the heart measured on the surface of
the skin. Photoplethysmography (PPG), which captures variations
in peripheral blood volume, can also enable access to the so-called
pulse rate variability (PRV), which highly correlates with HRV [24],
and other SNA markers [35]. Respiration is also driven by the ANS,
which affects both breathing patterns and frequency. ECG-derived
respiration (EDR) methods remain an unobtrusive way of estimating
respiratory parameters, proving effective even in ambulatory condi-
tions, avoiding the need for additional sensors [55]. EDA reflects
changes in sweat gland activity modulated by SNS. Previous stud-
ies have identified EDA as a robust indicator of acute stress and
cognitive load, particularly through decomposing EDA signals into
phasic and tonic components [27]. Notably, the phasic component,
indicative of discrete, sudden sympathetic activations, provides valu-
able information about momentary cognitive and emotional states,
showing consistent increases with higher cognitive load [26].



2.3 Cognitive Load in VR
Most studies have explored CL measurement in traditional, screen-
based devices [6, 21, 41, 42]. However, virtual reality (VR) experi-
ences introduce additional challenges, such as multisensory environ-
ments, users freely moving around–which may affect physiological
signals–, and a generally higher cognitive load due to increased real-
ism and immersion. Assessing such levels of CL is paramount for en-
hancing user experience. For example, Wen et al. [57] used guidance
techniques in VR learning setups that were reported (NASA-TLX)
to reduce CL and improve learning outcomes. Chiossi et al. [19]
leveraged real-time EDA to dynamically adjust induced CL by ma-
nipulating a VR game difficulty, and Marucci et al. [39] showed
that using multisensory stimuli (vibrotactile, auditory, and visual)
reduced CL and improved performance.

Motivated by the potential of physiological signals for assess-
ing CL in VR environments, some works have gathered datasets
encompassing physiological responses and CL. Some of these stud-
ies have collected datasets to train machine-learning based models
across the past years [5] for distinguishing between different levels
of CL [14, 46, 56], with a strong focus on classification rather than
on in-depth analysis of the underlying mechanisms and rationale
underneath. Other studies have investigated the effects of CL on spe-
cific physiological markers. For instance, Lee et al. [33] examined
pupillometry in educational VR settings and found that increased
task difficulty, associated with higher CL, led to larger pupil diam-
eters, a trend also reported by Ahmadi et al. [1]. However, both
studies acknowledge that pupil-based measurements are sensitive
to lighting conditions and individual light reflexes, which may limit
their reliability in practical, real-world settings. Ahmadi et al. [1]
also evaluated HR, electroencephalogram (EEG), and EDA for CL
during tasks involving moderate arm movement. They observed
increased EDA responses with higher task difficulty but found no
clear relationship with HR, likely due to a short measurement win-
dow. Marucci et al. [39] similarly reported an increase in EDA with
higher CL and further examined EEG and electrooculography to
assess experienced workload.

Despite these efforts, a robust and reliable physiological marker
for CL assessment has yet to be identified, mainly due to the high
complexity of virtual environments and the large number of con-
founding factors. We aim to exhaustively explore the influence of CL
on different physiological signals. We have captured a dataset that
includes ECG, EDA, pupillometry, eye-tracking, and PPG signals,
and is designed for a systematic and comparative analysis across
the different physiological signals. In this work, and motivated by
previous literature, we focus on markers derived from the ECG and
EDA signals, since they are reported to be the most promising ones.
Beyond prior work, we also introduce two different levels of par-
ticipant movement, enabling us to examine how movement affects
physiological measurements and their reliability for CL assessment.

3 EXPERIMENTAL SETUP

Our study is designed to elicit different degrees of cognitive load
in the participants, and measure their physiological signals as they
conduct one or more tasks while immersed in a virtual environment.
The tasks involve multisensory inputs: the main task is a visual
search one, while the secondary task (which may or may not be
present) is based on recognition of specific words within auditory
input. The search is conducted either within a 90◦ area in front of
the participant, or in the full 360◦ around them.

Four different conditions were thus tested in the experiment, re-
sulting from the combination of two binary independent variables
in a full factorial design. Those two variables are the level of cog-
nitive load and the search area. The two levels of cognitive load
differed in whether the participant had to conduct only the main task
(low cognitive load, LCL) or the main task plus the secondary task
(high cognitive load, HCL). The two search areas tested were 90◦,

Figure 2: Top: Virtual scene used during our experiments. Par-
ticipants sat in the center of a furnished room, in which they were
instructed to find an object that was highlighted as golden (inset).
Bottom: Overview of our experimental procedure, which included an
initial relaxation segment to acquire a reliable baseline for the phys-
iological measures, and four test segments, one per experimental
condition (combinations of search area levels (90◦ and 360◦) and
cognitive load (CL) levels (high and low), see Section 3), followed by
another relaxation segment to recover from the previous one.

in which the visual content was only in front of the participant, and
360◦, in which the content fully surrounded the participant, who had
to turn around as they explored the scene to conduct the search task.

In addition to physiological signals, we also measure participant
performance when conducting the tasks, and gather subjective re-
sponses to questionnaires on sickness and workload (NASA-TXL).

Hardware We used the Varjo XR-4 head-mounted display
(HMD), which incorporates eye-tracking technology capable of
following participants’ eye movements with sub-degree accuracy.
The HMD, one of the leading headsets in VR in terms of image
quality, has a spatial resolution of 3840×3744 per eye, a field of
view (FOV) of 120◦×150◦, a temporal resolution of 90 Hz, and
51 pixels per degree (PPD). We performed five-point eye-tracker
calibration and recorded gaze and eye measurements at a rate of 100
Hz. Although the Varjo HMD has integrated speakers, the audio in
the experiment was reproduced through the ASUS TUF Gaming H3
headphones for better audio quality. The ECG signals were recorded
using the Shimmer3 ECG unit, and the EDA and PPG signals were
recorded using the Shimmer3 GSR+ unit. Both units were connected
to a separate computer via Bluetooth, and recorded the data in their
respective SD cards. The signals from the shimmer ECG unit and
the shimmer GSR+ unit were synchronized using the UNIX TimeS-
tamps provided by the devices. More details (e.g., sampling rate)
can be found in Sec. 3.1 and in the supplementary material.

Participants We performed a power analysis for a repeated-
measures design with two within-subjects factors (2x2 design). The
estimated sample size for detecting a medium effect size is 36 par-
ticipants. Therefore, we recruited 36 participants for the study, 12
of which were female and none of them identified themselves as
non-binary, not listed or prefer not to disclose. Ages of the partici-
pants ranged from 22 to 62 (mean age of 31.94 and STD of 11.16).
All participants provided written consent. We tested for vision and
audition (as described below, in the Procedure); one participant
was excluded following these tests and did not proceed with the
experiment. None of the participants reported heart conditions. The



whole experimental procedure was approved by Comité de Ética de
la Investigación de la Comunidad Autónoma de Aragón: CEICA.

Virtual environment and tasks The virtual environment was a
room in which the wall (90◦ search area) or walls (360◦ search area)
were lined up with shelves filled with different objects (see Fig. 2,
top). The participant sat in the middle of the room, in a swivel chair,
and could rotate but was instructed not to translate.

The main task involved searching for objects highlighted in
golden color among the numerous objects on the shelves. At each
point, only one object was highlighted, and when the participant
found it (by signaling it with the controller), a new object was high-
lighted from the set of objects present. In the case of a 90◦ search
area, the next object to highlight is picked randomly among those
in the only non-empty wall (the north wall); in the case of the 360◦
search area, a displacement angle with respect to the previous object
was randomly chosen from the set {0◦, 90◦, 180◦, 270◦}, a ray
was traced adding this displacement angle to the yaw angle of the
participant’s forward vector, and the closest object to where this ray
landed was chosen to highlight. In this way, we fostered a broader
search while reducing the variability of the so-called displacement
angles (angle between a target object and the next).

The secondary task consisted of recognizing certain words within
an auditory input: the participant had to press the “A” button on
the controller every time they heard an odd number. The audio
track used narrates a coherent story, which was manually crafted to
include a significant portion of odd and even numbers. The audio
task was present for both HCL segments (90◦ and 360◦). To avoid
learning effects, the story heard during the second HCL segment
encountered was a continuation of the first and not a repetition. The
distribution of odd and even numbers in both halves was equal.

Procedure At the beginning of the study, participants were
informed of which data would be captured and what the experiment
consisted of. They were asked to provide written consent and were
tested for visual and auditory capabilities. Vision acuity was tested
with the Snellen test [49], color blindness with the Ishihara test [15],
and depth perception with the Titmus test [23]. Audio perception
was tested by playing different spatialized audio tracks and asking
the participant where they perceived the sound was coming from.
One of the participants was discarded as a result of this initial assess-
ment. Next, the instructor put the ECG and GSR+ sensors on the
participant, calibration for the HMD eye-tracking was performed,
and the actual experiment began.

The experiment itself consisted of four test segments (one per
condition) with a duration of 4 minutes each, as shown in Fig. 2, bot-
tom. The order of the four conditions (LCL-90, HCL-90, LCL-360,
HCL-360) was randomized. Before the start of each test segment,
the participant was informed of the next segment’s search area and
whether there would be a secondary task or not; they were told both
with textual cues shown before the segment and by the instructor of
the experiment. Additionally, the participant was always reoriented
towards the north wall at the start of each segment to avoid spurious
delays, particularly in the 90º search area case. Participants were
also instructed to avoid raising their arms above their shoulder height
or moving their non-dominant hand (which had the GSR+ sensor
attached) to minimize signal noise.

Prior to the first test segment, participants underwent a 4-minute
relaxation segment. In it, they encountered a calm night scene
next to a river and a bonfire with soothing music. This lasted for 3
minutes and 40 seconds, followed by a 20-second segment where
the participant was transported (fade-in transition) to the room of
the experiment, still hearing the soothing music. The purpose of
this relaxation segment was to help participants relax and create a
reliable baseline for the physiological signals. The final 20 seconds
in the experiment room were intended to create a baseline for pupil
data in similar lighting conditions. Once the relaxation was over,
participants did a short tutorial prior to the start of the first segment

to make sure they understood the tasks and controls. Additionally,
between test segments there were short relaxation segments lasting
two minutes each. These intermediate segments had the purpose of
separating test segments, under the reasonable assumption that the
ANS returns to baseline state within such time.

Once the last test segment was completed, the participant was
asked to fill out questionnaires regarding sickness and load per task
(NASA-TLX). Finally, they were asked to answer verbal questions
about the story they had listened to during the HCL segments (they
had not been told that they would be asked about the story). It is
worth mentioning that the audio used for the secondary task was one
complete track narrating a coherent story which was separated in
two segments: The first half of the audio was played during the first
HCL segment that appeared in the experiment, and the second half
of the audio resumed for the second HCL segment (the audio track
not only included an equal number of odd and even numbers, but
also a similar number-to-word ratio in both halves).

3.1 Collected dataset
We have three sources of information recorded from 35 participants
during the experiment: physiological signals, subjective responses
to questionnaires, and objective measures of task performance.

Physiological signals include: Electrocardiogram (ECG) and
Impedance Pneumography (RESP) from the Shimmer3 ECG unit;
Inertial Measurement Unit (IMU), Photoplethysmography (PPG)
and Electrodermal Activity (EDA) from the Shimmer GSR+ unit;
gaze data and Pupil Dilation (PD) from the Varjo XR-4’s integrated
eye-tracker. ECG signals were recorded at 512Hz, GSR+ signals at
256Hz –since a lower temporal resolution is sufficient in this case–,
and eye tracking at 100Hz.

Subjective data include responses to: the NASA-TLX question-
naire [28], measuring workload along the six usual dimensions (Men-
tal Demand, Physical Demand, Temporal Demand, Performance,
Effort and Frustration) on a scale from 0 to 20, for both the high and
the low cognitive load conditions; and to a sickness questionnaire
including responses to General Discomfort, Headache, Eye Strain
and Nausea on a 4-point scale of None, Slight, Moderate and Severe.

Finally, in terms of performance measures, we report mean search
time per object and total number of objects found for the main (visual
search) task, and accuracy for the secondary (auditory recognition)
task. More details on these measures can be found in Sec. 4.3.

Table 1 compiles an overview of the dataset. This wealth of data
from different sources and for different experimental conditions (two
levels of cognitive load and two search areas) enables an in-depth
study of cognitive load and its relationship with different measure-
ments. In the next section, we analyze the data along key dimensions.
Besides, our dataset is publicly available1 for researchers to study
and build upon.

4 RESULTS

With the overarching goal of analyzing the effect of cognitive load
on different physiological signals and their temporal evolution, we
conduct here several analyses. First, we assert that our experimen-
tal setup does indeed induce the intended low and high levels of
cognitive load, as reported by participants through the NASA-TLX
questionnaire (Sec. 4.2), and look into the effects of this cognitive
load on user performance on the different tasks (Sec. 4.3). Then, we
study the effect of cognitive load, as well as our other factor search
area, on the physiological signals (Sec. 4.4). Finally, we extract
insights on the temporal aspect of these signals, comparing the shifts
in the different markers for different conditions (Sec. 4.5).

4.1 Physiological Data Processing
From the physiological data gathered per participant (Sec. 3.1), we
have processed the ECG and EDA raw signals to obtain meaningful

1https://graphics.unizar.es/projects/CL_Biosignals/

https://graphics.unizar.es/projects/CL_Biosignals/


Table 1: Overview of the data available in our dataset, encompassing physiological signals, subjective measurements, and objective performance
metrics. We provide such data for a total of 35 participants across the different experimental conditions, including two levels of cognitive load (LCL
and HCL) and two search areas (90◦ and 360◦). Please refer to Section 3 for details on the experimental and data collection procedures.

Source Data Description
Shimmer

ECG unit

Electrocardiogram (ECG) Electrical activity of the heart (mV)

Impedance Pneumography (RESP) Respiratory effort measured through thoracic impedance variations (kΩ)

Shimmer

GSR+ unit

Inertial Measurement Unit (IMU)
Acceleration (accelerometer, g), angular velocity (gyroscope, deg/s),

magnetic field (magnetometer, gauss)

Photoplethysmography (PPG) Peripheral blood volume variations measured optically (a.u.)

Electrodermal Activity (EDA) Skin conductance (µS) reflecting sweat gland activity

Varjo XR-4
Gaze data Gaze fixation coordinates inside the participant’s field of view

Pupil Dilation (PD) Estimation of the diameter of the pupil and the iris-pupil ratio

Questionnaires
NASA TLX scores Self-reported evaluation of CL level in six categories for LCL and HCL

Sickness questionnaires Self-reported evaluation of sickness levels before and after the experiment

Performance
Search time (visual) Performance temporally annotated (i.e., time to find a highlighted object, ms)

Nº. of objects per segment Total number of objects found during each segment of the visual search task

Accuracy (auditory) Ratio of odd numbers correctly identified by the participant (from 0 to 1)

physiological markers to be used in subsequent analyses. The col-
lected data underwent thorough processing to ensure its quality; we
briefly outline this processing here, while full technical details can
be found in the supplementary material.

Heart rate ECG signals were first resampled to 1000 Hz, and
R-wave detection performed using a wavelet-based algorithm [38].
Using the R-wave occurrence time, the time intervals between con-
secutive normal heartbeats (the so-called RR series) were obtained,
after ectopic removal and outlier correction through the Integral
Pulse Frequency Modulation (IPFM) model [8]. This allowed us to
extract derived markers of participants’ heart rate. From them, we
have focused on the mean heart rate (HR) in the analysis, since it
has been found to correlate with cognitive load before [7].

Respiration An estimation of the respiratory signal during the
experiment was obtained via ECG-derived respiration (EDR) using a
QRS slope-based approach [32], later combined with the impedance
pneumography recorded by the sensor to obtain the final markers,
from which we extract mean respiratory frequency (RF).

Electrodermal Activity EDA signals were analyzed using the
convex optimization approach cvxEDA [26], robustly decomposing
the signals into their tonic and phasic components. From these com-
ponents, a number of markers can be extracted, among which we
analyze the mean of the tonic (EDAtonic) and phasic (EDAphasic)
components, which have been studied as indicators of CL varia-
tions [7]. Data for three participants was corrupted, and their EDA
signals are not included in the dataset or the analysis.

Outlier Rejection We performed outlier rejection on the data
across all the metrics analyzed, including performance and the four
physiological markers extracted. Outliers were defined based on
interquartile range (IQR), and values considered as outliers were
removed for each metric and condition. All participants completed
the full experiment, and none of them reported sickness symptoms.

4.2 Subjective Assessment of Cognitive Load
We collected participant responses to NASA-TLX questionnaires to
assess their self-perceived workload for each of the two cognitive
load conditions: performing the visual search task alone (low cog-
nitive load, LCL) or together with the auditory task (high cognitive
load, HCL). This well-known tool asks participants to evaluate their
experience according to six categories: mental demand, physical

Figure 3: Distribution of the normalized mental demand scores S for
the low (LCL, orange) and high cognitive load (HCL, purple) conditions.
Histograms have been normalized to represent probability density.
The horizontal shift between plots indicates that conditions labeled as
high cognitive load indeed entail a larger mental demand.

demand, temporal demand, performance, effort, and frustration [28].
Following previous work [56], we decided to use the mental demand
score as representative of the self-perceived cognitive load of the
participant. The scores for all the categories of the questionnaire can
be found in the supplementary material.

Given the high variability between subjects, we perform within-
subject normalization of the mental demand score per participant by
subtracting the mean score of that participant across cognitive load
levels. As a result, the mental demand score S for participant i and
cognitive load level c is computed as:

Si,c = S′i,c −
S′i,L +S′i,H

2
, (1)

where S′ is used to denote the raw, reported scores and c ∈ {H,L}.



Figure 4: Distributions of main task (visual search) performance for
all participants, for the 90◦ (left) and 360◦ (right) conditions, colored
according to the cognitive load level (orange is LCL, purple is HCL).
Statistical differences are marked with an asterisk (p < 0.0001). His-
tograms have been normalized to represent probability density. Note
that in both search areas, performance is significantly different be-
tween CL levels, with search times being lower for the LCL, suggesting
that higher levels of CL lead to longer search times.

Fig. 3 shows the distribution of the normalized scores S from
all participants, for the LCL (orange) and HCL (purple) conditions
(see Sec. 6.1 in the supplementary material for the raw scores).
It shows how participants clearly perceived the two conditions as
eliciting different degrees of mental demand. Specifically, the peaks
of both distributions are circa 10 points apart, with the raw scores
S ∈ [0,20]. Additionally, we used Wilcoxon Signed-Rank tests and
found a significant difference between the scores of LCL and HCL
conditions, both for the normalized scores (W = 0, p < 0.0001) and
the raw scores (W = 0, p < 0.0001). This validates our experimental
setup with regard to the levels of cognitive load. At the same time, it
suggests that self-reported scores may not be robust indicators, due
to the high variability in the responses within each condition.

4.3 Task Performance and Cognitive Load
To investigate the effect of cognitive load (CL) on task performance,
we record objective measures of performance for each participant in
both the main (visual search) and secondary (auditory recognition)
tasks. For the visual search task, we record the time (ms) it takes
the participant to select each object since the instant the object turns
golden. We then average these times across all searches in a segment
to obtain our main task performance measure, mean search time.
For the auditory recognition task, we record the instant when the
participants press a controller button and compare it with the instant
they hear an odd number. We established a three-second window for
a button press to be eligible as correct. If more than one odd number
appeared within that window, valid button presses were associated
with the numbers following a first-in-first-out strategy. We then
calculate the accuracy as the percentage of odd numbers correctly
identified and use it as our secondary task performance measure.

We first look into the effect of cognitive load on the main task
performance, given by the mean search time. Results are shown in
Fig. 4, separated by search area (90◦ and 360◦). Given the within-
subject design and the presence of both fixed-effects factors (cogni-
tive load and search area) and random effects (participant and trial
order), we analyzed task performance using a generalized linear
mixed-effects model (GLMM) fitted with restricted maximum likeli-
hood. To stabilize variance, we applied a logarithmic transformation
to the response variable. Post hoc pairwise comparisons were con-
ducted using estimated marginal means with false discovery rate
(FDR) correction [11]. Tables with the full results can be found in
the supplementary material. We found a significant main effect of
search area (p < 0.0001, t = 48.13), with longer search times in the
360◦ condition, as expected given the larger spatial extent of the
search area. We also observed a significant main effect of cognitive
load, with longer search times in the high load (HCL) condition

Figure 5: Correlation between the performance in the main (visual
search) and secondary (auditory recognition) tasks for both the 90◦

(left) and 360◦ (right) search areas in the high cognitive load (HCL)
case. The x-axis shows the mean search time in the visual task for
each participant, normalized within-subject, while the y-axis shows
their accuracy in the auditory task. Statistical analyses show that,
for the 360◦ search area, there is a mild, yet significant, negative
correlation between both performance metrics: Generally, an increase
in search time correlated to lower accuracies in the auditory one,
i.e., performance was consistent across tasks. However, no direct
correlation was found between levels of performance and CL scores.

(p < 0.0001, t = 7.42). However, the interaction between cognitive
load and search area was not significant (p = 0.54, t = 0.62), sug-
gesting that the effect of cognitive load was consistent across both
search areas. Post hocs show significant differences between the low
(LCL) and high (HCL) cognitive load conditions for both the 90◦
(p < 0.0001, t = 5.48) and 360◦ (p < 0.0001, t = 6.44) search areas.
The effect was moderate at 90◦ (η2

p = 0.42) and very large at 360◦

(η2
p = 0.97). As expected, participants took longer to complete their

visual search task when being simultaneously prompted to pay atten-
tion to the auditory task. Accuracy rates in the secondary task were
in the range [0.59,0.96], indicating that participants did not ignore
this secondary task in favor of the first one. All this suggests that
the auditory task was absorbing a significant part of the cognitive
resources that would otherwise be focused on the visual search, and
thus aligns with the hypothesis that having additional tasks involving
multisensory processing can hinder task performance.

We then analyze, for the high cognitive load (HCL) conditions,
the correlation between performance in both tasks (main and sec-
ondary), as well as with the self-reported mental demand. Fig. 5
shows scatter plots (one per search area) depicting the relationship
between both performance measures; additionally, points are color-
coded according to mental demand. To make it comparable between
subjects, mean search time is normalized within each subject (akin
to S in Eq. 1). In the case of the 360◦ search area, statistical analyses
show a mild negative correlation between performance in both tasks
(Pearson’s r =−0.4628, p = 0.0198 and Spearman’s ρ =−0.4533,
p = 0.0229). This suggests that factors like expertise might have a
significant influence. Interestingly, this correlation is not found in
the 90◦ search area. A discussion on this can be found in Sec. 5.

With regard to the correlation between mental demand and perfor-
mance measures within the HCL conditions, we find no significant
correlation of mental demand with either performance measure, as
also hinted by Fig. 5. In the case of the LCL conditions, there is also
no significant correlation between performance and mental demand.
This suggests that, while both mental demand and main task perfor-



mance were affected by the level of cognitive load (Figs. 3 and 4),
within a certain cognitive load level we find no clear relationship
between perceived mental demand and performance.

4.4 Effect of Cognitive Load on Physiological Signals

Here we look into the effect of cognitive load on various physiologi-
cal signals collected in our study. We focus on electrocardiogram
(ECG) and electrodermal (EDA) signals, which are known to be
affected by high-level cognitive processes like changes in cogni-
tive load [1, 39]. In particular, we extract the following markers
from those signals: mean heart rate (HR, measured in beats/minute),
mean respiration frequency (RF, breaths/minute), median EDA tonic
(EDAtonic, µs), median EDA phasic (EDAphasic, µs). In our anal-
yses, each of them was a dependent variable, with a value per test
segment. We normalized every marker’s value by computing the
difference between the value in the test segment and the participant
baseline recorded in the first relaxation segment (see Sec. 3).

Given that we have a repeated measures experimental design,
with both fixed-effects factors (cognitive load and search area) and
random factors (participant, gender and experimental order in which
the test segments were presented), we fitted a generalized linear
mixed-effects model (GLMM) using a restricted maximum likeli-
hood approach with a Gaussian distribution and identity link for
each response variable using R. Each variable thus depends on two
fixed-effects factors with two levels each (cognitive load (HCL vs.
LCL) and search area (90◦ vs. 360◦)), a first-level interaction be-
tween said factors, and two random intercepts (participant and order).
For all physiological markers analyzed, the search area had a sig-
nificant main effect, while the interaction between factors were not
significant. In the following, we focus on the effects of cognitive
load. Tables with the full results from the GLMMs, along with the
post-hoc pairwise comparisons, can be found in the supplementary
material, while we report here the main findings.

Fig. 6 depicts the distributions of the four markers for both cog-
nitive load levels, grouped by search area (first row) and then sep-
arated (90◦ in the second row and 360◦ in the third row). De-
tails from the global analysis are presented in Tab. 1 of the sup-
plementary material. When looking at the global results (first
row), both for HR and RF we find a significant influence of
CL of medium effect size (t = −2.577, p = 0.012,η2

p = 0.07 and
t =−2.602, p = 0.011,η2

p = 0.07, respectively), and a large-sized
effect of search area (t = −9.943, p < 0.0001,η2

p = 0.51 and
t = 5.220, p < 0.0001,η2

p = 0.22, respectively). In both cases,
the interaction is not significant. EDA signals behave differently:
In the case of EDAtonic, we find a large-sized, significant effect
of both CL (t = −4.516, p < 0.0001,η2

p = 0.22) and search area
(t = −6.005, p < 0.0001,η2

p = 0.33), yet no interaction between
both. Finally, EDAphasic is only significantly affected by search area
(t =−7.288, p < 0.0001,η2

p = 0.39). This difference between the
tonic and the phasic component of EDA could reflect different mech-
anisms for instantaneous and sustained responses to CL. Further
analysis can be found in Sec. 4.5.

We then analyze the effect of CL within each search area through
post-hoc pairwise comparisons, results in Tab. 2 of the supplemen-
tary material. In the case of the 90º search area (Fig. 6, second row),
we find no significant difference between LCL and HCL for all mark-
ers, except for EDAtonic (t = −3.370, p = 0.0017). In the case of
the 360◦ search area (Fig. 6, third row), both HR (t =−2.081, p =
0.0481) and EDAtonic (t =−3.009, p = 0.0041) exhibit significant
differences between LCL and HCL. These results suggest that the
influence of different search areas and levels of movement should
not be neglected when measuring shifts in CL, especially when us-
ing signals that are sensitive to movement like HR or RF. At the
same time, the results also hint at the robustness of EDAtonic as a
CL indicator across search areas.

Regarding random effects, we found that participant-level vari-
ance was strongest in EDAtonic (SD = 0.51), RF (SD = 2.08), and
HR (SD = 2.79), suggesting that their baseline states varied in-
dependent of experimental conditions. Unlike them, EDAphasic
(SD = 0.05) showed minimal participant-level variance. This sug-
gests that individual differences should be considered when design-
ing virtual experiences, highlighting the importance of adaptive
experiences. On the other hand, trial order effects remained smaller
(SD = 0.57 being the largest, belonging to RF), suggesting that our
counterbalanced design was effective and there was no significant
habituation effect. Our analysis did not show significant interactions
between gender and the way CL levels affected any of the markers:
HR (p = 0.335), EDAtonic (p = 0.502), EDAphasic (p = 0.441) and
RF (p = 0.177). However, a more diverse population could show
more robust results regarding gender-specific comparisons.

4.5 Temporal Evolution of Physiological Markers
A common approach in CL analysis using physiological markers is
to compute average measures over the entire task duration. However,
different physiological markers may exhibit distinct temporal dynam-
ics. For instance, the tonic component of EDA changes gradually,
requiring a longer time to reflect meaningful variations, whereas
the phasic component responds more rapidly, capturing changes
over shorter time windows [7]. In this section, we explore how the
different physiological markers we study evolve over time, and the
effect that the different CL levels have on them.

Specifically, we study changes in each marker between a temporal
window at the beginning and a temporal window at the end of
each test segment, named wi and w f , respectively. For each test
segment (i.e., for each experimental condition), we compute the
participant-averaged mean HR and RF, and the median EDAtonic
and EDAphasic over the duration of wi and w f . An analysis of its
influence (see supplementary material) led us to establish a window
length of 40 seconds. We term this additional factor (whether we
measure the marker in the first or last window of the segment) the
observation period. As shown in Fig. 7, markers exhibit diverse
temporal patterns: some vary significantly between the two periods,
while others remain constant.

To assess these differences, we fitted a GLMM for each marker,
including period, search area, and cognitive load as fixed effects,
and participant and trial order as random effects for within-subject
variability and repeated measures order. Full results are provided in
the supplementary material. All markers except EDAtonic showed
significant effects of observation period, with large effect sizes for
HR (p < 0.0001, t = 7.74, η2

p = 0.21) and EDAphasic (p < 0.0001,
t = 6.91, η2

p = 0.20), and a medium effect for RF (p < 0.0001, t =
−5.28, η2

p = 0.11). This highlights EDAtonic as the most temporally
stable marker, yielding consistent results across periods.

We further conducted post hoc pairwise comparisons of the es-
timated marginal means, with p-values corrected using the False
Discovery Rate (FDR) method [11] (see supplementary material).
Results show a consistent decrease in HR between the first and
last periods across all conditions: HCL–90◦ (p = 0.007, t =
2.943), LCL–90◦ (p = 0.039, t = 2.299), HCL–360◦ (p < 0.0001,
t = 4.917), and LCL–360◦ (p < 0.0001, t = 5.331). Similarly,
EDAphasic shows significant changes in HCL–90◦ (p = 0.042,
t = 2.204), HCL–360◦ (p < 0.0001, t = 5.634), and LCL–360◦
(p = 0.0001, t = 4.350). In contrast, EDAtonic remains stable (i.e.,
with no statistically-significant difference between periods) for most
conditions, with a single significant change observed for LCL–90◦
(p = 0.004, t = 3.097). RF also shows minimal change, except in
HCL–360◦ (p < 0.0001, t =−4.598). Again, EDAtonic stands out
for its stability, while HR and EDAphasic vary more strongly over
time, possibly because they are influenced by factors beyond CL.
These results underscore the importance of temporal considerations
when analyzing physiological markers for CL, as marker sensitivity



Figure 6: Distribution across participants of physiological markers –one per column, from left to right: HR, RF, EDAtonic and EDAphasic– for the two
cognitive load levels (LCL in orange, HCL in purple). Different rows show the results grouped by search area (first row) or separated (90◦ in the
second row and 360◦ in the third row). While HR and RF are differently affected by different experimental conditions, EDAphasic remains unaffected
by cognitive load and EDAtonic shows consistent significant differences with CL regardless of search area.

can depend strongly on the selected observation window.

5 DISCUSSION

Our study shows that cognitive load has a measurable effect on both
quantitative and qualitative responses. In particular, we find a signif-
icant effect between HCL and LCL levels for subjective assessment
of cognitive load, task performance, physiological signals, and their
temporal evolution. These robust trends highlight the transversal
effect of CL in physiological processes. As expected, the analysis
of the NASA-TLX questionnaires shows a clear difference between
LCL and HCL levels for mental demand despite the high inter-user
variability. This first correlation confirms that participants perceive
different levels of cognitive load in our user study. Additionally, the
high inter-user variability also highlights the importance of identify-
ing reliable physiological indicators of cognitive load.

Regarding performance, the main task was significantly affected
by CL (with worse results under HCL levels), regardless of the
search area. Participants consistently showed slower response times
for the segments with high cognitive load when compared to the
segments with low cognitive load. The secondary task had a rela-
tively high accuracy rate (over 0.59), suggesting that our participants
were indeed paying attention to both tasks. In this context, multi-
tasking may lead to a division in the allocation of limited cognitive
resources. However, we did not find significant correlations between
performance and perceived mental demand. This could be due to
several reasons: not enough precision when self-reporting subjective
data, a difference between perceived and measured performance,
personal strategies to fulfill the assigned tasks, or individual skill
levels. Further research should be carried out in order to investigate
if there is indeed a lack of correlation between self-perceived CL
and task performance. Performance for both tasks shows a weak

correlation, suggesting that individual skill plays an important role.
Moving on to the effect of cognitive load on physiological mark-

ers, EDAtonic seems to be a more reliable marker for CL from the
four studied signals. Unlike RF and HR, EDAtonic shows consistent
differences regardless of the search area. EDAphasic, on the other
hand, does not yield significant differences for complete segments in
any search area, nor globally. This suggests that some signals, such
as EDAtonic, are more robust to variations in context or movement,
while others may be more affected by user mobility. EDAtonic poses
as a stable CL indicator, reflecting sustained sympathetic arousal.
This same stability, however, would most likely hinder its ability to
account for fast variations. Discerning the optimal indicator for such
scenarios would require a user study specifically designed for sudden
stimuli. Moreover, the individual variation found in the random inter-
cept of the statistical models reinforces the need to consider adaptive
solutions when studying these responses. Our statistical analyses did
not reveal significant interactions between gender and cognitive load
levels for any of the physiological markers or performance measures.
With 24 male and 12 female participants, the generalizability of our
results is limited, and although the sample size was adequate for the
main analyses, some effects might not be visible, and thus a more
balanced population may be necessary to draw specific conclusions
regarding gender-related effects. Additionally, there are interesting,
significant differences in markers when considering the temporal
evolution of the physiological signals. HR and EDAphasic show
significant changes between the first and last seconds of each seg-
ment. In the case of EDAphasic, differences between experimental
conditions were more pronounced at the beginning of each segment.
On the other hand, RF and EDAtonic seem quite consistent from
start to finish, especially the latter, while changes in RF could be
influenced by movement. Interestingly, RF appears to highlight
cognitive load differences more clearly toward the end of the 360◦
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Figure 7: Evolution of physiological markers with time within a test segment. Plots show mean value across participants for HR, RF, EDAtonic,
and EDAphasicfor the first (wi) and last (w f ) 40 seconds of each segment. The different colors indicate the level of cognitive load (LCL in orange,
HCL in purple), while both search areas are represented with continuous (90◦) and dashed lines (360◦). Error bars represent the standard error.
Significant differences between the beginning and the end of the segment are marked with an asterisk.

segments, suggesting that temporal positioning and task scope may
modulate its sensitivity. Notably, we found a link between the tem-
poral stability of markers and their overall reliability. Markers that
presented more drastic changes in time, like HR or EDAphasic, of-
fered weaker overall differences, while more constant markers like
EDAtonic seemed to be robust for all the segments. These differences
in temporal evolution indicate that researchers should direct their
focus to different aspects of the response variables depending on the
signal and the temporal window that are being considered. Further
investigating the temporal changes in physiological signals, together
with additional markers from our dataset, remains a future avenue.

All in all, our results highlight the transversal effect of cognitive
load across a variety of responses from task performance to physi-
ological activity. Although we have found some seemingly robust
markers (like EDAtonic), more sensitive signals could be useful in
different contexts. A central takeaway from our results is that the sen-
sitivity of physiological markers to cognitive load is shaped by user
variability, experimental context, and temporal dynamics. Choos-
ing the most appropriate marker should therefore be a deliberate
decision guided by the specific goals of each study. In the absence
of clear guidelines, we advocate for recording multiple signals and
comparing their behavior to ensure robust interpretation. We believe
our inclusion of multisensory stimuli, different levels of movement
and the study of time progression enhance ecological validity and
bring our insights closer to real-world applications.

5.1 Limitations and Future Work
Our work provides an in-depth analysis of the relationship between
cognitive load, performance, and physiological signals in VR, yet
plenty of avenues for future exploration and improvement remain.

First, a strength of our work is the fact that we measure a large
number of physiological signals per participant, and analyze and
compare several key physiological markers. However, many more
markers could be derived from the raw signals we measure, and
added to the analysis. According to our findings, markers derived
from the EDA signal seem to be among the most promising. We
suggest possible markers in the supplementary material, and have
made our dataset publicly available for future research to build on.

Our experimental setup is designed to cover different use case
scenarios, including ones in which the participant needs to rotate
and move when doing search tasks in a 360◦ area. Measurements of
respiration obtained from impedance pneumography are sensitive to
movement and can produce artifacts, even after mitigating the effect
with ECG-derived respiration. As a result, the signal may not only
be influenced by cognitive load variations, but also by movement.

Isolating those confounding factors, even in controlled environments
like this, remains a challenge, but our aim is to find informative
signals in ecologically-valid scenarios, thus our design.

While our focus here is on analyzing the impact of cognitive
load on measurable variables, searching for an objective and reliable
indicator of the degree of cognitive load is a long-standing goal in
the field. Our results suggest that inferring coarse levels of cognitive
load from physiological markers is feasible. Finer inference would
require reliable, and ideally continuous, quantification of cognitive
load that can be used as ground truth, which is still a challenge [56].

A valuable future direction would be to design studies that dis-
entangle the sources of cognitive load. While this work focuses on
overall CL effects, distinguishing between intrinsic, germane, and
extraneous load could inform better VR experience design.

Finally, our findings also reflect a high inter-subject variability in
certain response variables, especially in subjective measurements
and performance, but also in some of the physiological markers stud-
ied. This speaks to the importance of working towards adaptive VR
experiences that factor in this variability, and further exploration of
it can contribute to the development of more engaging VR systems.

6 CONCLUSION

In this work, we have provided a complete and comprehensive
dataset encompassing physiological signals, subjective measure-
ments of CL, and performance metrics for two distinct CL condi-
tions and for two search areas with different movement requirements.
Using this data, we have performed a detailed analysis of the impact
of CL on task performance and several physiological markers in VR.
We identified EDAtonic as a robust indicator of CL, and acknowl-
edged the limitations of other markers like HR or RF, sensitive to
different levels of movement. Our temporal analysis also revealed
the consistency of EDAtonic across time, while HR and EDAphasic
presented noticeable shifts from start to finish. Ultimately, our work
offers a rich set of publicly available data, along with valuable in-
sights that can foster future research on incorporating cognitive load
into user-centric VR applications.
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