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Figure 1. We propose a CNN-based saliency predictor built over panoramic convolutions, which are a type of dilated convolutions that
works on 360o equirectangular panoramas, a distorted projection of a 3D scene. Our model learns the intrinsic relations between pixels in a
panorama given its gnomonic projection (i.e., points on the surface of the sphere are projected from the sphere’s center to a tangent plane)
to then extract a saliency map. Our system outperforms current state-of-the-art saliency predictors for 360o equirectangular panoramas.

Abstract

We present a convolutional neural network based on
panoramic convolutions for saliency prediction in 360o

equirectangular panoramas. Our network architecture is
designed leveraging recently presented 360o-aware con-
volutions that represent kernels as patches tangent to the
sphere where the panorama is projected, and a spheri-
cal loss function that penalizes prediction errors for each
pixel depending on its coordinates in a gnomonic projec-
tion. Our model is able to successfully predict saliency in
360o scenes from a single image, outperforming other state-
of-the-art approaches for panoramic content, and yielding
more precise results that may help in the understanding
of users’ behavior when viewing 360o VR content. Our
project is publicly available in https://github.com/
DaniMS-ZGZ/Panoramic-CNN-360-Saliency

1. Introduction
Over the last years, we are witnessing an unprecedented

growth in the field of virtual reality (VR), which is increas-
ing its presence in consumers’ homes. However, much re-
mains unclear about what works and what does not work
in terms of content for VR experiences. This is intrinsi-
cally tied to how users behave in virtual environments (VE).
Some previous works have analyzed users’ behavior in VR

[16], providing some useful insights about how do people
explore virtual environments, and in particular about visual
saliency, gaze, and fixation behaviors. With the recent de-
velopment of deep learning techniques, many data-driven
approaches for saliency estimation have been developed,
that yield reasonable good results [13, 5]. Nevertheless,
most of those techniques have been trained with conven-
tional images. Thus, when employed with equirectangular
panoramas, such as those employed in cinematic VR, their
performance drastically drops.

To tackle this, some recent works have proposed dif-
ferent approaches to allow traditional saliency systems to
work with equirectangular panoramas. Within them, two
main types can be identified: heuristic and data-driven
approaches [20]. Heuristic approaches usually share a
common framework consisting of a pre-processing stage
(e.g., projection changes), a feature extraction stage (e.g.,
2D saliency estimation), and a post-processing stage (e.g.,
equator - center bias) that ends up with a 360o saliency map
[9, 17, 8, 11, 1, 23]. Data-driven approaches, on the other
hand, have adapted deep learning techniques to face some
VR open problems such as classification [4] or saliency de-
tection in 360o video [22, 10, 21, 18, 14]. In contrast to the
latter, predicting saliency in static scenes is harder, since no
motion nor optical flow cues are available. However, many
VR applications as virtual tourism, industrial or urban de-
sign, or some exploring experiences only provide static sce-
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Figure 2. Proposed model. Our approach is based on an encoder-decoder architecture, where the first half extracts features from our input
(RGB panoramas), and the second half learns how to reconstruct the output (a probabilistic saliency map) from that set of features. For
each block, 360o-aware kernels are used in convolutions and pooling operations, so that relations between pixels are calculated in spherical
space instead of in image space, thus taking into account panorama distortions.

narios. Although other works exist for this kind of content
[3, 12, 19], we propose a panoramic CNN that learns fea-
ture relations from a gnomonic, non-distorted space. The
gnomonic projection is a nonconformal map projection ob-
tained by projecting some points on the surface of sphere
from the sphere’s center to their corresponding points in a
plane that is tangent to that sphere (see Figure 1). With this
technique, neither reprojections (e.g., cubemaps) nor patch
decomposition is needed, hence global and local structure
and spatial dimensions are preserved.

2. Model architecture

To address saliency prediction in panoramas, we pro-
pose an U-Net-like encoder-decoder architecture [15], (ex-
tensively used in many scenarios, such as segmentation or
depth estimation problems), that takes a single equirectan-
gular panorama as input and outputs a probabilistic saliency
map, where each pixel p is assigned a value sp ∈ [0, 1], with
a higher value yielding a higher probability of the user di-
recting their attention to it. This kind of architecture has
been widely exploited due to its ability to extract inher-
ent features in the data and extrapolate information from
them. Our model architecture can be seen in Figure 2, and
has two clearly differentiated parts, encoder and decoder,
separated by a bottleneck layer. Encoder layers are com-
posed by two convolutional blocks, whereas decoder lay-
ers are composed by three convolutional blocks to facilitate
the inference steps. Each convolutional block consists of a
panoramic convolution, a batch normalization layer, and a
ReLU. Each encoder-decoder analogous layers include skip
connections to facilitate the saliency prediction process.

2.1. Panoramic convolutions

A key aspect of our architecture is that instead of
common convolutions, we leverage recent advances in
panoramic convolutions [4] to build our model. Those rep-

resent kernels as patches tangent to the sphere (see Figure
1) where the panorama would be projected. Each point s
in a unit sphere surface is defined as a function of its lati-
tude φ ∈ [−π2 , π2 ] and longitude θ ∈ [π, π]. For each of the
points, there exists a tangent plane located at s, whose co-
ordinates x, y ∈ R2 are related to a point on the sphere by
its gnomonic projection. The relation between pixels in a
panorama is thus established depending on the related pix-
els in the sphere, given the tangent plane for each of the
pixels. We build both convolutions and pooling layers in
our model following this strategy.

2.2. Loss function

Since equirectangular panoramas are strongly distorted,
errors in each pixel should not penalize equally for all pix-
els: errors in the top and bottom regions of the panoramas
are less critical than errors on the equator. This is even more
relevant given the equator bias in VR [16]. Therefore, we
utilize a 360o-aware loss function L [22] which is an adap-
tation of a traditional L2 loss function, such that:

L =

Φ,Θ∑
φ=0,θ=0

ωφ,θ(Sφ,θ − Pφ,θ)2 (1)

where S and P are the ground-truth and the predicted
saliency maps, respectively; φ and θ represent each pixel’s
latitude and longitude in the spherical geometry, and ωφ,θ
is the weight of each pixel’s error proportional to its solid
angle in the sphere (i.e., how large each part of the image
appears to an observer looking from that pixel). Given the
nature of this problem, other loss functions (e.g, Rieman-
nian distance loss [7]) could be further investigated.

2.3. Dataset

One of the main limitations of most 360o learning sys-
tems is the limited amount of data available. Panoramas
are complex to generate and capturing hardware is not as
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Figure 3. Results comparison between our model results and current state-of-the-art 360o saliency predictors. From left to right: RGB
original panorama, ground truth saliency map, our method, Xia et al. (whose method is an adaptation of their own previous work [19] to
work with 360o panoramas), Monroy et al. (SalNet360 [12]) and Chao et al. (SalGan360 [3]). Note that our system (third column, in bold)
yields the most precise results, avoiding the overestimation that other solutions suffer of.

Similarity ↑ CC ↑ AUC Borji ↑ AUC Judd ↑ KLDiv ↓ NSS ↑ IG ↑
Xia et al. 2016 [19] 0.5935 0.6269 0.8793 0.8816 0.7657 1.6008 2.0721

Monroy et al. 2017 [12] 0.5147 0.5596 0.8401 0.8636 0.7613 2.4898 2.0721
Chao et al. 2018 [3] 0.6385 0.7095 0.9006 0.9304 1.2000 3.3000 2.9064

Ours 0.6469 0.7212 0.9624 0.9650 0.4411 3.0309 2.9727

Table 1. Comparison of different metric scores proposed by Bylinskii et al. [2] (we refer the reader to this reference for an in-depth
explanation of these metrics). For each score, we indicate with an arrow which is better (a higher or lower value). The best result for each
of the metrics is indicated in bold. Note that our model outperforms all other current state-of-the-art methods in most of the cases.

widespread as traditional cameras. To feed our model,
we use two public, 360o saliency datasets that include 85
[6] and 22 [16] panoramas with ground-truth saliency map
computed from multiple users’ gaze data. To alleviate the
small amount of ground-truth data, we applied data aug-
mentation to our collection. Rotating, cropping or shearing
the images is not feasible since it would break the struc-
ture of the panorama. Thus, the only operation this type
of content allows is flipping, either vertically, horizontally,
or both ways. In addition, adding noise to the panora-
mas also benefits the network training process. For each
original panorama we obtain 7 additional RGB + saliency
map pairs (3 flips, and Gaussian, Poisson, salt-pepper and
speckle noise), yielding a final dataset of (85+22)∗8 = 856
images. We kept 7 images for testing and used the rest (with
augmentation, a total of 800 samples) for training.

2.4. Training

We trained our model for 700 epochs, batching it in sets
of 6 images. We applied Xavier’s uniform initialization in
our model, and our training parameters are: learning ra-

tio = 10−4, momentum = 0.9, and weight decay = 10−5.
The whole process was supported by a checkpointing sys-
tem that saved all training parameters each iteration, and
the model whenever it improved from previous iterations,
following a cross-validation strategy.

3. Results

Figure 3 shows our model’s predictions for four panora-
mas from our test set, compared to some state-of-the-art
static saliency predictors, namely Xia et al.’s 360o saliency
predictor based on their previous work [19], Monroy et al.’s
SalNet360 [12] and Chao et al.’s SalGan360 [3]. For all four
methods, we quantitatively evaluate some well-established
metrics for saliency comparison [2]. Even though each met-
ric is designed to measure different aspects of the prediction
(i.e., location-based vs. distribution-based metrics), our sys-
tem outperforms current state-of-the-art saliency predictors,
since it is able to extract real, intrinsic feature relations in
equirectangular panoramas more precisely, and predict vi-
sual attention based on them.
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