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Figure 1: We present a convolutional recurrent encoder-decoder network for saliency prediction in driving scenes. Its convolutional structure
allows for spatial reasoning, while its recurrent nature is well suited for learning the temporal dependencies of visual behavior in driving
scenarios. It takes a sequence of RGB driving frames (first row) as input, and returns a sequence of predicted saliency maps (third row).
We train different instances for varied weather and illumination conditions (namely daytime, nighttime, and rain), so that each of them is
able to learn the particularities of the conditions. Our results are close to the ground truth (second row), and clearly outperform previous
state-of-the-art approaches.

Abstract

Lately, the automotive industry has experienced a significant development led by the ambitious objective of creating an au-
tonomous vehicle. This entails understanding driving behaviors in different environments, which usually requires gathering and
analyzing large amounts of behavioral data from many drivers. However, this is usually a complex and time-consuming task,
and data-driven techniques have proven to be a faster, yet robust alternative to modeling drivers’ behavior. In this work, we
propose a deep learning approach to address this challenging problem. We resort to a novel convolutional recurrent architec-
ture to learn spatio-temporal features of driving behaviors based on RGB sequences of the environment in front of the vehicle.
Our model is able to predict drivers’ attention in different scenarios while outperforming competing works by a large margin.

CCS Concepts
• Computing methodologies → Interest point and salient region detections;

1. Introduction

During the last decades, the automotive industry has experienced
a significant technological development. To a large extent, this is
due to the ambitious objective of creating an autonomous vehicle,

in which the driver is relieved of most of their tasks. However, this
field is still at an early stage of development, and the driver is still
essential for several tasks, most of them involving traffic safety and
affecting users both inside and outside of the vehicle.
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Currently, and according to recent studies [MHW∗17], related-
to-attention behaviors (i.e., distraction, fatigue, and aggressive driv-
ing) encompass 90% of traffic accidents. This shows how cru-
cial it is for the driver to be alert, to be able to react to unex-
pected events that may entail a potential risk. To help drivers in
their driving tasks, and therefore diminish the risk of traffic ac-
cidents, Advanced Driver Assistance Systems (ADAS) are intro-
duced in vehicles. ADAS support drivers by assisting their deci-
sion making, and some of them can even partially take driving con-
trol over if required. Indeed, ADAS usage has proven to contribute
to decreasing the number of accidents that involve drivers’ atten-
tion [ENW14, Cic17].

Some ADAS are provided with indoor monitoring systems that
include head, face, or eye-tracking devices, which capture drivers’
visual behavior over time. This data, combined with information
from the environment, allow ADAS to detect potentially danger-
ous maneuvers. However, a part of these indoor devices usually
have a prohibitive cost, and are only part of high-segment vehi-
cles. With the surge of data-driven techniques, and motivated by the
availability of large datasets of drivers’ visual attention [APS∗16],
some methods have been proposed to predict where drivers look
at depending on the visual stimuli they are exposed to while driv-
ing [PAS∗18], which can be captured with affordable, widespread
cameras.

In this work, we present an end-to-end deep-learning approach
to predicting drivers’ visual attention (see Figure 1). Particularly,
and inspired by previous works [NLG19, PAS∗18, BLT16], we re-
sort to saliency as a measure of the probability of the driver to
direct their attention to each element of an environment, or, in
other words, a representation of the interest of each region seen
by a driver (see Figures 1 and 2). In this work we propose, for the
first time, an encoder-decoder architecture built over the recently
presented convolutional long short-term memory networks (Con-
vLSTM) [SCW∗15]. Their recurrent architecture accounts for the
temporal dependencies in visual behavior, while their convolutional
nature allows the model to learn spatial features (see Section 3).

We train our model over the DR(eye)VE dataset [APS∗16],
which contains information of visual attention from several drivers
in different routes. However, instead of training a single model
with the whole dataset, and unlike previous approaches, we split
the dataset based on particular illumination and weather condi-
tions (see Figure 1), and train a different instance of the model on
each of them. This way, each model can focus on the particulari-
ties of each condition, rather than on generalizing to every possible
scene. Additionally, to train our models, we augment our data fol-
lowing some image transform operations that resemble common
driving circumstances, such as sun flares or shadows, and that have
proven to improve the performance and generalization of deep net-
works [BIK∗20]. We finally evaluate our model and compare it
to previous approaches for drivers’ saliency prediction, with our
model outperforming them in most of the scenarios. Moreover, we
conduct several ablation studies to endorse the aforementioned de-
sign decisions.

Our code is publicly available at https://github.com/
DaniMS-ZGZ/DriveRNN.

Figure 2: Ground truth saliency maps for three different scenes,
each depicting a different weather and illumination condition (from
top to bottom: daytime, nighttime, and rain). In many cases,
drivers’ attention is directed to oncoming vehicles or obstacles that
could cause a maneuver, anticipating potential dangerous situa-
tions.

2. Related Work

In this section, we briefly review the literature on visual atten-
tion prediction, and then focus on the particular case of predicting
drivers’ attention.

2.1. Visual Attention Prediction

In the last decades, a large body of literature has attempted mod-
eling human visual attention. In 1998, Itti et al. [IKN98] estab-
lished an original work by computing a saliency map (i.e., a
topological representation of the conspicuity of the different el-
ements of an image) from several hand-crafted features. Since
then, many works have proposed similar approaches [WK06,
ZK11]. Nevertheless, with the surge of data-driven methods, the
increase of computational power, and the availability of large
datasets [JEDT09, BJB∗19], deep-learning based techniques have
proven to achieve significantly better results. Within them, convolu-
tional neural networks [VDC14,PSGiN∗16,AGiNMO17,KWB16],
generative networks [PCM∗18, MSB∗22], or recurrent neural net-
works [CBSC18, WSDB18, MGM22], have proven to develop a
good ability to extract image features and predict visual atten-
tion from them, even in complex scenarios such as virtual real-
ity [SSP∗18, MSM20].

2.2. Drivers’ Attention Prediction

Lately, many vehicles are being equipped with Advanced Driver
Assistance Systems (ADAS), which support the driver in some of
their driving tasks, and gather information from both the inside and
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Figure 3: Overview of the proposed saliency predictor. Our model follows an encoder-decoder architecture, where both modules are com-
posed of three-layer convolutional LSTMs, which are able to extract and parse both the spatial and temporal features of the input image
sequence. We feed our model with pairs of sequences of five RGB frames (corresponding to one second of the driving sequence), and their
corresponding image latent features extracted with a pretrained VGG19 [RDS∗15, SZ14] and a pretrained segmentation network built on
ResNet50 [HZRS16]. We include skip connections between both the second and the third layer of both modules, to ease the decoding process.
Our model predicts a sequence of the five saliency maps corresponding to the input sequence. Please see Section 3.1 for additional details.

the outside of the vehicle to assist them during different maneu-
vers. With the recent development of technology, the increasing af-
fordability of sensors and devices, and the development of artificial
intelligence techniques to process large amounts of data, ADAS
are evolving towards more and more functionalities, many of them
computer-vision-based. Within them, there has been a recent inter-
est on understanding, modeling, and predicting drivers’ attention;
and saliency has been argued to be essential for an ADAS to antici-
pate to dangerous situations and better support the driver [APS∗16].

Given this, and in order to better understand driving behaviors,
some works have been devoted to collecting enough real drivers’
data [APS∗16]. With them, and given the large body of litera-
ture endorsing the use of deep learning for visual attention predic-
tion (see Section 2.1), many works have attempted to leverage all
that knowledge to the specific case of drivers’ attention prediction.
Palazzi et al. [PSC∗17,PAS∗18] proposed two different approaches
for saliency prediction, based on three-dimensional convolutions
and a multi-branch approach, while Ning et al. [NLG19] resorted to
optical flow as an additional input. In a similar fashion, [FYQX19]
proposed a 3D convolutional framework, and included a compre-
hensive study on the relation between drivers’ visual attention and
traffic accidents. Aksoy et al. [AYK20] also resorted to CNN to
develop a model for predicting when a car should brake depend-
ing on saliency information. Other works have also attempted to
predict saliency with different techniques, such as semantic aug-
mentation [PMC20] or reinforcement learning [BPK∗21]. Differ-
ent from all of the forementioned works, we resort to a deep recur-
rent approach to learn and leverage both spatial and temporal fea-
tures of drivers’ attention. Moreover, unlike previous approaches,
we propose training different models depending on illumination
and weather conditions, rather than a single, generic model. This
way, our models are relieved of learning to generalize to every pos-
sible situation, and can learn the actual specifics of each condition.

We nevertheless refer the reader to the survey of Kotseruba et
al. [KT21] for an exhaustive review on modeling drivers’ attention,

and the one from Jha et al. [JMH∗21] for a large corpus on driving-
related datasets.

3. Our Model

We follow a convolutional recurrent approach where, given a se-
quence of five RGB driving frames, our model is able to predict
their corresponding saliency maps. In the following, we provide an
in-depth view on our model (Section 3.1) and the loss functions
used to train it (Section 3.2). Then, we introduce the dataset that
we use to train our model (Section 3.3), and the data augmenta-
tion strategy we follow to improve its performance (Section 3.4),
together with additional training details (Section 3.5).

3.1. Model Architecture

Our model (see Figure 3) follows an encoder-decoder architecture,
where both the encoding and decoding modules are composed of
a three-layer convolutional long short-term memory cell (ConvL-
STM) [SCW∗15], an adaptation of traditional LSTMs to work with
convolutional operations. The recurrent structure of ConvLSTMs
allows them to extract and leverage temporal dependencies in the
data, while their convolutional reformulation endorses their poten-
tial to work with spatial information. Specifically, the ConvLSTM
used through this work† can be defined as follows:

it = σ(Conv(xt ;wxi)+Conv(ht−1;whi)+bi)

ft = σ(Conv(xt ;wx f )+Conv(ht−1;wh f )+b f )

ot = σ(Conv(xt ;wxo)+Conv(ht−1;who)+bo)

gt = Tanh(Conv(xt ;wxg)+Conv(ht−1;whg)+bg)

ct = ft ⊙ ct−1 + it ⊙gt

ht = ot ⊙Tanh(ct), (1)

† https://github.com/ndrplz/ConvLSTM_pytorch
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where, for each timestep t, xt is the input sequence, wt and bt are the
weights and biases for each of the four convolutional LSTM gates
(i, f , o, and g), and ⊙ is the Hadamard product. Besides, ht and ct
are the hidden and cell states, as in traditional LSTMs. Please refer
to Figure 3, right, for an overview of a ConvLSTM cell.

Besides, and prior to our encoder-decoder block, we include an
image feature extractor module [SCW19], composed of a com-
bination of a pretrained VGG19 [RDS∗15, SZ14] and a pre-
trained semantic segmentation network (see Figure 4) built on
ResNet50 [HZRS16]. Particularly, we take the last layer of the pre-
trained VGG19 features (i.e., 512 features), and the 21 output fea-
tures from the ResNet50. We then resize VGG features to match the
size of ResNet50 outputs, and convolve them together with a 1x1
convolution into a single-channel image latent feature [SCW19]
that represents the spatial significance of features in the original
image, and which is later combined with the RGB sequence to feed
our encoder.

We additionally include skip connections to our model. Adding
these connections is a common practice in pure convolutional ap-
proaches, and we therefore apply them in our problem. This way,
our decoder ConvLSTM layers can recover information from their
encoder counterparts, thus enhancing their overall decoding ability.

3.2. Loss Function

To train our model, we resort to a loss function based on a weighted
combination of mean squared error (MSE) and Kullback-Leibler
divergence (KLDiv). On the one hand, MSE performs a pixel-
wise evaluation of the error between both predicted and ground-
truth saliency maps, offering stability and sensitiveness to outliers.
On the other hand, inspired by many state-of-the-art works on
saliency prediction [PAS∗18, BJO∗18], we include a second term
based on KLDiv, which measures the difference between a pre-
dicted saliency map and its ground truth counterpart as probability
distributions.

Thus, our loss function can be defined as follows:

L(P,Q) =
1
n

n

∑
i=1

(Q(i)−P(i))2 +λ

n

∑
i=1

P(i) ln
P(i)
Q(i)

(2)

where P and Q are the ground truth and predicted saliency maps,
and n is the number of pixels in the map. λ regularizes the weight
of the last term, and is empirically set to 0.01.

3.3. Dataset

Our model has been trained on the DR(eye)VE dataset [APS∗16],
which is publicly available, and composed of 74 video sequences
of 5 minutes each, recorded at a frame rate of 25 fps (yielding a
total of 555,000 frames). These sequences show the vehicle’s exte-
rior, towards the front, and have been recorded with a dashboard-
mounted camera in a vehicle driven by eight different drivers. The
videos were recorded in different surroundings (e.g., cities, high-
ways, secondary roadways), and under varying traffic, light (i.e.,
day, night) and atmospheric conditions (i.e., sunny, cloudy, rainy).

Figure 4: Visualization of semantic segmentation for two images
corresponding to Düsseldorf (left) and Cologne (right) [COR∗16].
Each color represents a different semantic category. Semantic ur-
ban scene understanding is critical when driving [COR∗16], and
we therefore provide our model with semantic information as part
of the input.

Each video sequence is hence composed of 7.500 frames. How-
ever, using all of them would require large amounts of memory, and
given the frame rate, changes on saliency for consecutive frames are
not significant. Therefore, we conduct a frame discretization pro-
cedure: For each sequence, we keep one out of every five frames.
This way, we reduce each sequence length to 1.500, for a total of
111.000 frames. Since every video is provided with its correspond-
ing saliency map sequence, we follow the same procedure with
them. We then split each video in sequences of five frames (i.e.,
each sequence represents one second) to feed our model. This deci-
sion is two-folded: On the one hand, driver’s reaction time has been
studied to be around 0.9 seconds [ZB07]; while on the other hand
too long sequences would hinder LSTMs memory capacity.

Additionally, when curating the dataset, we noticed significant
qualitative variations within the RGB images because of the differ-
ent illumination and weather conditions, which usually translates
into drivers having a different behavior (e.g., distractions could be
more likely to happen in monotone daytime environments). There-
fore, we hypothesize that having a different model for each of these
conditions would allow them to learn the particularities of viewing
behaviors in them, instead of generalizing for any circumstance.
Previous approaches have neglected this fact and trained a single
model; unlike them, we decide to divide all the driving sequences
into three different scenarios, to then train a different model for
each of them:

Daytime conditions (25 driving sequences), during daylight,
without rain, in which more brightness is observed. Also, flashes,
accentuated shadows, and broader amount of surrounding stimuli
(such as pedestrians, cyclists, or other vehicles) can be perceived.

Nighttime conditions (30 driving sequences), from dusk to dawn.
Most of the vehicle’s environment cannot be fully appreciated, and
headlight flares may occur.

Rain conditions (19 driving sequences), during daylight, where
the camera lens may be splashed with raindrops and visibility can
be partially limited. Outdoor occurrences may also vary due to rain.

However, and in order to perform a fair comparison, we keep
a total of nineteen driving sequences for each of the models: fif-
teen are kept for training and the rest, for testing purposes. Further
details on the sequences used in each category can be found in Ta-
ble 1.
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Figure 5: For a given image (top left), we show the different aug-
mentation techniques we use to train our model. Color jitter (top
right) allows our method to be invariant to changes in brightness,
contrast, and saturation. Random sunflare (middle left) simulates
sun glints in the upper half of the image, whilst random shadow
(middle right) simulates low-bright zones in the bottom half of the
image. Finally, blur (bottom left) and Gaussian noise (bottom right)
introduce noise to our training data and prevent our model from
overfitting.

Although other driving datasets have been presented
lately [GRS∗21, BPK∗21], these have been generated under
laboratory conditions, and thus some behaviors could be expected
not to be as in real driving scenarios. Thus, we resort to DR(eye)VE
as our dataset.

3.4. Data Augmentation

We have observed that, even when grouped (see Section 3.3), the
data still has a large variability (e.g., high contrast, lights and shad-
ows accentuation due to sunny scenarios, or cloudy skies that gen-
erate more homogeneity in the scene). Such a wide variety may
cause a poor adjust of the model to our problem since it is not able
to correctly identify these highly changing situations.

To alleviate this, we resort to data augmentation. In particular, we
use the Albumentations [BIK∗20] library, which offers a wide va-
riety of image transformation operations designed to improve deep
learning models’ overall performance. Particularly, we conduct five
different transformations that have been chosen to randomly alter
image parameters (see Figure 5), namely color jitter (which ran-
domly changes contrast, brightness, and saturation of the images),
random shadows and sunflares (which respectively simulate light
glints and shadows that may occur when driving), blur, and Gaus-
sian noise. We set a probability of 30% for each augmentation tech-
nique to be applied on each sequence of training data.

Additionally, and to avoid learning the center bias of the

Table 1: We divide the dataset [APS∗16] in three subsets, based on
different illumination and weather conditions. Each of the subsets
contains a total of nineteen sequences, from which fifteen are used
for training, and the rest are left for testing purposes.

Condition Train sequences ID Test sequences ID

Daytime
1, 2, 3, 6, 23, 25, 33, 35,
36, 45, 48, 49, 55, 60, 64

11, 34, 40, 42

Nighttime
9, 13, 15, 18, 19, 21, 24,

29, 30, 38, 39, 41, 43, 51, 52
4, 8, 16, 28

Rain
7, 10, 12, 14, 17, 26, 27, 31,

37, 44, 46, 47, 50, 59, 69
5, 32, 63, 74

data [APS∗16], we perform random vertical and horizontal shift-
ing in training images.

3.5. Training Details

We implemented our models in PyTorch [PGM∗19]. We use the
Adam optimization algorithm [KB14], with a learning rate lr =
10−4, and we set batch size to 1. We trained our different models
on a Nvidia RTX 2080 Ti with 11 GB of VRAM until convergence,
for a number of epochs ranging from 30 to 50 depending on the
instance of the model, and taking approximately five hours to train
each instance.

4. Evaluation

We conduct different qualitative and quantitative evaluations on our
results, to assess the performance of our models. In this section,
we first introduce the set of metrics used throughout the following
studies (Section 4.1) and discuss the results obtained with our dif-
ferent models (Section 4.2). Then, we provide comparisons with
existing approaches (Section 4.3), and an exhaustive ablation study
to endorse the different design decisions (Section 4.4).

4.1. Metrics

In order to quantitatively evaluate our predicted saliency maps, we
resort to three common saliency metrics [BJO∗18], namely Pear-
son’s Correlation Coefficient (CC), Kullback-Leibler Divergence
(KLDiv), and Normalized Scanpath Saliency (NSS).

Pearson’s Correlation Coefficient interprets both saliency maps
as random variables, and measures the linear relationship between
them as follows:

CC(P,Q) =
σ(P,Q)

σ(P)×σ(Q)
(3)

where P and Q are the predicted and the ground-truth maps, re-
spectively, and CC(P,Q)∈ [−1,1], where negative values represent
negative correlation, positive values represent correlation, and val-
ues close to zero represent uncorrelation.

Normalized Scanpath Saliency (NSS) measures the correspon-
dence between the predicted and the ground truth saliency map as
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the average normalized saliency at fixated locations, and is com-
puted as follows:

NSS(P,Q) =
1
N

N

∑
i

P−µ(P)
σ(P)

×Q(i) (4)

where P and Q are the predicted and the ground-truth maps, re-
spectively. Chance is at NSS(P,Q) = 0, while higher values indicate
better correspondence.

Kullback-Leibler Divergence (KLDiv) measures the difference
between two probability distributions. We resort to this metric for
optimizing our model, and thus refer to Section 3.2 for further in-
formation.

4.2. Results

We have trained three different models, each one for a different
driving scenario, mostly motivated by how weather conditions may
present different stimuli and impact drivers’ attention, namely day-
time, nighttime, and rain conditions (see Section 3.3). We evaluate
each of these models with a subset of sequences left unseen during
training (see Table 1). A quantitative evaluation of these models can
be found in Table 2. All three models yield a good performance,
with rain conditions being significantly superior to the rest. On the
other hand, daytime conditions yield a slightly lower performance.
We hypothesize that this is due to our data division, since daytime
conditions also usually present more varied contrast and brightness
changes, and drivers are more likely to be distracted, which may be
hindering the ability of that network to generalize.

Qualitative results of our model can be seen in Figure 6. We
show different predictions on scenarios from all three illumination
and weather conditions in sets of three rows, showing, from top to
bottom, the original RGB image, the ground truth (GT) saliency
map, and the predicted (Pred.) saliency map. Besides, each RGB
frame includes its corresponding weather condition overlaid in the
top-right. Our predicted saliency maps resemble the ground truth
ones, focusing on relevant areas, such as moving vehicles (first row,
first column), or streets where the vehicle is turning towards (third
row, fourth column).

4.3. Comparisons

We have also compared our models to previous approaches. Al-
though other driver attention prediction approaches have been pre-
sented lately [BPK∗21, GRS∗21], these works have been trained
or tested on other datasets that have been generated under lab-
oratory conditions (see Section 3.3), and we thus compare our-
selves only to those that trained and tested their model on the
DR(eye)VE dataset [MS14, WSS15, WSP15, CBSC16, BLT16,
PSC∗17, PAS∗18, NLG19], as we did throughout this work.

Table 2 shows the results of the conducted quantitative com-
parisons. First and second rows are two lower baselines included
for completeness: Gaussian baseline represents a centered heat
map, while mean baseline is the average of all training fixation
maps [PAS∗18]. Third to tenth rows include the different aforemen-
tioned saliency prediction approaches, while last three rows show

Table 2: We have compared our model to previous approaches for
saliency prediction using two common saliency metrics, namely CC
and KLDiv (see Section 4.1). Here, we include two lower baselines,
namely a Gaussian baseline (representing a centered heat map),
and a mean baseline (i.e., the average of all training fixations),
and eight existing saliency prediction approaches. The last three
rows show the values yielded by our specific models. Arrows show
whether higher or lower is better, and best results are boldfaced.
Our proposed specific models outperform previous approaches in
most of the scenarios. Please refer to Section 4.3 for further discus-
sion.

Model CC↑ KLDiv↓
Baseline Gaussian 0.40 2.16
Baseline Mean 0.51 1.60
Mathe et al. [MS14] 0.04 3.30
Wang et al. [WSP15] 0.04 3.40
Wang et al. [WSS15] 0.11 3.06
MLNet [CBSC16] 0.44 2.00
RMDN [BLT16] 0.41 1.77
Palazzi et al. [PSC∗17] 0.55 1.48
Palazzi et al. [PAS∗18] 0.56 1.40
Ning et al. [NLG19] 0.57 1.50
Ours (daytime) 0.59 1.46
Ours (nighttime) 0.61 1.40
Ours (rain) 0.70 1.06

the performance of each of our specific models, which outperform
previous approaches in most of the scenarios.

4.4. Ablation Studies

In order to endorse the different design decisions on our model,
we conduct several ablation studies. We resort to the metrics in-
troduced in Section 4.1 to quantitatively evaluate those decisions.
Results can be seen in Table 3.

Model architecture. Previous works (see Section 4.3) followed
convolutional approaches. Taking this into consideration, we de-
veloped an encoder-decoder architecture similar to our proposed
recurrent one (i.e., three encoding and decoding layers, skip con-
nections, and semantic segmentation), where both modules con-
sisted of convolutional layers instead of ConvLSTM layers. Our
proposed ConvLSTM model (last row) significantly outperforms
any convolutional approach (first three rows), since the latter are
only provided with spatial features, while the former is able to pro-
cess, extract, and leverage both spatial and temporal features, which
are crucial for modeling human visual attention.

Data Augmentation. During the design process, we also analyzed
the use of data augmentation while training the model (see Sec-
tion 3.4). Data augmentation has proven to be very effective to im-
prove performance and reduce overfitting [BIK∗20]. Indeed, when
we carry out our data augmentation strategy (third row), results
are significantly better than when using no augmentation technique
(second row), verifying the benefits of this kind of procedures.

Illumination and weather conditions. Finally, we evaluate
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Figure 6: Qualitative results of our model. We show different saliency predictions in sets of three rows, where the first one depicts the original
RGB frame, the second one corresponds to the ground truth (GT) saliency map, and the third one is the predicted (Pred.) saliency map. We
include whether the image is from daytime, nighttime, or rain conditions (see Section 3.3) overlaid on the top-right of each RGB frame. Our
predicted saliency maps closely resemble the ground truth ones, focusing on relevant parts, such as moving vehicles (first row, first column),
or the streets the car is turning towards (third row, fourth column). Please refer to Table 2 for a quantitative evaluation.
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Table 3: Results of our ablation studies. We have evaluated the
effectiveness of our data augmentation strategy (second and third
rows, see Section 3.4 for additional details), which generates a con-
sistent improvement in performance. We have also analyzed the
benefits of training a specific model for a particular illumination
and weather condition instead of training a single model with the
whole training set (first and second rows, see Section 3.3 for ad-
ditional details), obtaining results that ratify the usage of several,
more specialized models. Additionally, given the temporal compo-
nent of visual attention while driving, we have evaluated whether
a recurrent neural network is better suited than a convolutional
model (third and fourth row, see Section 3.1), since results prove
that the ability of RNNs to handle temporal dependencies signifi-
cantly improves the overall performance of the model. Please refer
to Section 4.4 for further discussion on these studies.

Model Condition CC↑ KLDiv↓ NSS↑
Generic conv. model
(no augmentation)

- 0.41 2.25 3.45

Weather conv. model
(no augmentation)

Daytime 0.37 2.37 3.24
Nighttime 0.44 2.07 3.47

Rain 0.47 1.98 4.03

Weather conv. model
(w/ augmentation)

Daytime 0.45 2.19 3.88
Nighttime 0.53 1.82 4.22

Rain 0.57 1.73 5.20
Generic ConvLSTM model
(w/ augmentation) (ours) - 0.60 1.43 4.76

Weather ConvLSTM model
(w/ augmentation) (ours)

Daytime 0.59 1.46 4.37
Nighttime 0.61 1.40 4.25

Rain 0.70 1.06 5.74

whether dividing the dataset into three different illumination and
weather conditions can lead to better results. We compare a generic
model trained following the same train-test data separation as in
Palazzi et al. [PAS∗18] to our three specific models, both in an
only-convolutional (first row compared to second row) and recur-
rent (fourth row compared to fifth row) fashion, trained as com-
mented in Section 3.3. With our proposed division, nighttime and
rain models’ performance increase, achieving more accurate pre-
dictions. However, it is noteworthy that daytime conditions slightly
worsen. This behavior holds in every tested model configuration,
and we believe this is due to the great variability that exists in the
daytime pictures. However, overall results successfully prove sepa-
rating the data into different categories, which is also supported by
the fact that drivers’ behavior changes depending on the environ-
ment, as well as the insufficient ability of a single model to learn
and generalize attentional patterns in many different situations.

5. Conclusion

In conclusion, we have proposed a convolutional recurrent ap-
proach for saliency prediction in driving image sequences. We
leverage a combination of a pretrained VGG19 and a segmenta-
tion ResNet50 network to generate image latent features, and resort
to a convolutional recurrent encoder-decoder architecture with skip
connections to extract spatio-temporal features and predict saliency
from them.

We have trained three different models, each of them devoted

to a different subset of possible driving scenarios in terms of illu-
mination and weather conditions (i.e., daytime, nighttime, and rain
conditions), and which outperform previous state-of-the-art meth-
ods. Additionally, we have conducted several ablation studies to
endorse the different design decisions on our model.

5.1. Limitations and Future Work

The proposed approach predicts saliency based on a sequence of
RGB images. However, information about the driver’s psychologi-
cal and physical parameters (see, e.g., [CMPR15]) can be of great
relevance to anticipate drivers’ maneuvers. To this end, providing
our network with data from different sensors [UKT94] remains an
interesting avenue for future work. Besides additional information
of the driver, our model could also benefit from having additional
information from the environment, either as additional visual infor-
mation (such as lidar, radar, etc.), or as multimodal cues. Specifi-
cally, auditory cues (such as ambulance sirens or another vehicle’s
horn) may influence driver’s attention.

Generating three different models adapted to light and weather
conditions involves selecting the appropriate model for each situ-
ation. In this work, such classification has been carried out manu-
ally, considering the light conditions (i.e., daytime and nighttime)
first, and then classifying daytime images based on further weather
conditions (i.e., rainy), as explained in Subsection 3.3. However,
in order to process unlabelled data, our model would require either
a manual selection or a classification method to decide the most
suitable model for each case.

We believe that having a model able to accurately and rapidly
predict driver’s attention could have a significant impact on many
applications, including developing driving simulators to train elder
drivers’ visual attention [HBMH18]; understanding human behav-
ior while doing particular driving tasks [FPBBT13, HWC06], or
even enhancing current ADAS by increasing traffic safety, for in-
stance by ensuring that drivers’ attention is directed towards rele-
vant or dangerous stimuli. We believe our work is a timely effort
and an important step towards modeling and understanding driving
behaviors.
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