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Exploiting temporal information of light propagation
captured at ultra-fast frame rates has enabled appli-
cations such as reconstruction of complex hidden ge-
ometry, or vision through scattering media. However,
these applications require high-dimensional and high-
resolution transport data which introduces significant
performance and storage constraints. Additionally, due
to different sources of noise in both captured and
synthesized data, the signal becomes significantly de-
graded over time, compromising the quality of the re-
sults. In this work we tackle these issues by proposing
a method that extracts meaningful sets of features to
accurately represent time-resolved light transport data.
Our method reduces the size of time-resolved transport
data up to a factor of 32, while significantly mitigating
variance in both temporal and spatial dimensions. ©

2020 Optical Society of America
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Transient imaging methods [1] typically exploit time-resolved
data in the order of nano- [2] to femto-seconds [3], involving
spatio-temporal data structures to represent light propagation.
Related applications such as reconstruction of hidden geometry
[4, 5] require exhaustive scans of the scene at multiple camera
and light locations, resulting in 5-dimensional data. Monte Carlo
methods for transient rendering [6, 7] allow to accurately simu-
late time-resolved light transport. As such, they have become
a helpful instrument for analysis, benchmarking, or as a data
source for machine learning approaches [8, 9]. This increased
dimensionality and high temporal resolution yield massive dis-
cretized representations of light transport that hamper the ef-
ficiency on practical applications. While methods to increase
computational performance exist [10], memory and bandwidth
are still limiting constraints. Moreover, this sort of time-resolved
signals are degraded either by the attenuation of captured light,
or due to variance in Monte Carlo simulations. Therefore noise
removal and reconstruction algorithms become key to develop
robust imaging methods. Feature extraction and representation
in alternative domains have been extensively used for recon-
struction and compression of different types of signals. There
exist a wide variety of encoding and fast decoding methods

for low-dynamic-range image and video data, where exploiting
frequency characteristics predominates in most widespread com-
pression algorithms [11]. Closer to our domain of application,
representing time-resolved light transport by a combination of
Gaussians and exponential functions has been proved useful for
applications such as illumination decomposition [12] or imaging
in scattering media [13].

However, while compression and denoising methods have
been extensively researched for steady-state images and video,
time-resolved light transport has distinctive properties that we
exploit in this paper. First, light propagation is heavily struc-
tured in both time and space: the magnitude and frequency of
the signal decrease over time due to multiple convolutions and
attenuations of scattered light (see Figure 1, right); moreover
temporal propagation is strongly correlated to spatial features of
the scene, since light time-of-flight depends in part on the optical
paths through the scene. Second, due to temporal delays in light
propagation, similar temporal patterns can occur at different
times. In Figure 1 (blue, red, yellow) we can see how the tempo-
ral delay of the initial peak is directly proportional to the depth
at different points of the scene. Finally, time-resolved transport
is particularly prone to noise, either due to signal attenuation in
captured data, or to slow convergence rates in simulation (see
Figure 1, right). These characteristics pose several challenges
when finding alternative representations of time-resolved light
transport. We take into account all these aspects to design a
method for compressing and recovering transient light transport
data based on encoder-decoder neural networks. We leverage ex-
isting databases [8] to learn sets of spatio-temporal features, and
build lightweight representations of discretized time-resolved
transport up to 32 times smaller than the original signal. This
work is a formalization and continuation of our preliminary
results [14].

Let L~ω(t), t ∈ [0, ∞) be a function that represents time-
resolved radiance in a scene from a viewing direction ~ω. While
L~ω(t) is continuous, this function does not have closed-form
solutions for general scenes. As a consequence, in prac-
tice L~ω(t) is represented by a discrete set of radiance val-
ues Lij[0, 1, ..., T − 1] ∈ RT—either measured or computed—
uniformly-distributed over time. Each Lij[k] represents the in-
tegrated radiance over a time interval ∆t centered at a time tk,
at pixel H[i, j, k] of a transient image HM×N×T (Figure 1, mid-
dle). For simplicity we will use Lij(t) to refer to these discretized
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Fig. 1. Left: Simulated steady-state render of the Altar scene.
Middle: Transient image of the scene. Right: Time-resolved radi-
ance at marked points of the scene. Transient light transport is
often characterized by arbitrary propagation delays, exponential
decay, and temporal frequency that decreases over time.

radiance profiles at positions {i, j} of a transient imageH.
In order to obtain accurate but small representations of time-

resolved pixels Lij(t) ∈ RT , we analyze and exploit the afore-
mentioned properties of transient light transport to introduce
a compression and denoising method. Recent works [8, 15, 16]
explicitly described the strong spatio-temporal correlation and
convolutional nature of light transport. Inspired by this, we
propose to use convolutional encoder-decoders to learn two
mappings. First, learning an encoding function E(·) to extract a
set of features fL from some discretized input data X,

E(X′) = fL, where X′ = g(X). (1)

The function g(·) represents a transformation function applied
to the input X. Second, learning a decoding function D(·) such
that

D( fL) = Y′, where g−1(Y′) = L̂ij(t), (2)

which estimates the target time-resolved radiance Lij(t) ≈ L̂ij(t)
based on the feature vector fL.

The resulting fL of the encoding function will be the com-
pressed representation of the signal Lij(t). The choice of X is
key to ensure that the encoding function E has enough informa-
tion to obtain a feature vector fL representative enough for the
decoder D to accurately estimate Lij(t). Functions g, E, and D
must account for the aforementioned challenges of time-resolved
radiance: 1) it decays exponentially and its frequency is reduced
over time; 2) it can have arbitrary propagation delays; 3) it can
suffer from signal noise. Finally, since the data can have arbitrary
temporal resolution, it is desirable to handle temporal profiles
of arbitrary length with the same compression ratio. We thus
introduce several design choices on the input data X, the trans-
formation function g, and the encoder and decoder operations
E, D.

Input data To leverage the local spatio-temporal coherence of
light transport, we propose to use a time-resolved spatial neigh-
borhood X ≡ 〈Lij〉 centered at Lij as input for the feature extrac-
tion step (Equation 1). Time-resolved signal has a high dynamic
range with exponential decay over time due to recursive light
bounces. To prevent the encoding step from ignoring low-valued
radiance features, we define a logarithmic transformation g over
the input data as

g(X) =

{
log10(X)− log10(ε) X ≥ ε

0 X < ε
. (3)

The threshold ε and offset log10(ε) ensure all resulting values
are above zero, and prevent input values close to zero going to
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Fig. 2. Our proposed architecture. The encoder extracts a total
of T/32 features fL from a 9× 9× T spatial neighborhood in
logarithmic space X′ = g(〈Lij〉), centered at the time-resolved
pixel Lij to compress. The decoding step uses these features
to recover the time-resolved pixel L̂ij = g−1(Y′) with a set of
deconvolutions and residual convolution blocks.

infinity. In our experiments, not applying a logarithmic transfor-
mation made our optimization fall into local minima with zero-
valued outputs for any input. We set a threshold of ε = 1e−7
based on radiance values distributions of our training and val-
idation datasets. In practice, we found that a neighborhood of
size 9× 9 allows to find enough spatio-temporal features, while
significantly mitigating noise in the recovered signal.

Encoding step To extract a set of representative features from
the spatial neighborhood 〈Lij〉, we design a fully-convolutional
learnable encoding function E (Equation 1). The function is com-
posed of 3D convolutional filters (see Figure 2, left) that operate
over both spatial and temporal dimensions. These filters exploit
spatio-temporal structures of light transport, while simultane-
ously discarding noise in the signal. The fully-convolutional
nature of this function allows us to keep a constant compression
ratios over arbitrary temporal resolutions. To enable this, the
filters simultaneously perform the following operations: a) pro-
gressively reduce the size of the spatial dimensions to 1× 1 in
the innermost layer (i.e. the compressed signal) by controlling
the padding over the fixed-size spatial neighborhood 〈Lij〉; b) se-
quentially apply strides of size 2 in the temporal dimension.
Each layer of this function works similarly to a downsampling
operation. However since the filters are optimized based on a
minimized loss between the estimated and the reference signals,
the encoding learns to extract the most representative features.
Each element of the resulting vector fL encodes features from a
bounded time interval of the input 〈Lij〉 (see Figure 3, left). Note
that while our encoding function is computationally expensive
due to 3D convolution operations, it needs to be run only once
per each time-resolved pixel when compressing our signal. We
design this function with five convolutional layers that gener-
ate a feature vector fL 32 times smaller than the original signal
Lij(t) to be compressed. This compression ratio can be varied
by retraining with different number of convolutional layers, but
in practice we found that this number provides a good trade-off
between size reduction, denoising, and preservation of features.

Decoding step Given a set of features fL, we aim to learn a
decoding function D (Equation 2) that estimates the target un-
compressed signal Lij. Note that we do not want to estimate
the whole input 〈Lij〉, but just the central time-resolved pixel
Lij. We design the function D to perform a set of 1D temporal
deconvolutions and convolutions that operate over the features
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Fig. 3. Our encoder output features map to bounded time inter-
vals of the decoder output, resulting in equally-shaped radiance
patterns at arbitrary times (bottom-left). Our decoding function
combines these features over the whole temporal domain in
an overlapped manner (bottom-right), where a time instant is
affected by multiple features.

fL extracted by the encoding step (Equation 1). This step works
as an upsampling operation with learnable 1D filters. Following
previous works on deep residual nets [17], we apply residual
connections between deconvolution blocks (see Figure 2). The
key aspect of our decoding function is that, by construction, it
learns a non-linear mapping between every feature and a cor-
responding time interval ∆t over the recovered signal. This en-
sures that our method can handle arbitrary propagation delays
that yield similar radiance patterns placed over the temporal
dimension. In Figure 3, left, we illustrate this by changing the
value of a single feature at different positions of fL, resulting in
equivalent temporal profiles over the corresponding time inter-
vals. More importantly, the convolutional blocks in our decoder
(see Figure 2, right) ensure each time instant t is covered by mul-
tiple features, and therefore its radiance value L(t) is the sum
of multiple non-linear mappings of the features that cover that
time instant, allowing for increased complexity in the recovered
signal. This is illustrated in Figure 3, right, where adjacent fea-
tures map to overlapping time intervals in the decoded radiance.

Training and loss function As in classic encoding-decoding ar-
chitectures, we perform simultaneous training of E and D pa-
rameters. We optimize these by minimizing an error function L
between the reference Lij and the decompressed time-resolved
radiance L̂ij. Since our encoding function operates over a log-
arithmic transformation of radiance (Equation 3), the features
fL handled to the decoder D and in consequence the resulting
output Y′ = D( fL) (Equation 2) are also in logarithmic space
of radiance. To keep a good trade-off between estimating peak
direct illumination and indirect illumination, we apply an ex-
ponential transformation over both the decoding output D( fL)
and the log-space central pixel g(Lij(t)), and minimize the mean
squared error over these, having

L =
1
T

T−1

∑
t=0

(
bg(Lij(t)) − bD( fL)(t)

)2
, (4)

where b is the base of the exponential function. In practice, we
found that choosing b = 2 provides good results for success-
fully decompressing both direct illumination peaks and smooth
indirect bounces (see Figure 4).

Dataset For training and validation, we rely on the publicly
available Zaragoza-DeepToF transient dataset [8], which contains
a sufficiently large number of complex scenarios to prevent over-
fitting in our approach. It contains 1050 time-resolved simula-
tions for a wide variety of architectural scenarios, with a spatial
resolution of 300× 300 and a temporal resolution of 4096 pixels
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Fig. 4. Results of the Altar scene (see Visualization 1), with refer-
ence frames (left). Training with our exponential transform MSE
loss (center, Equation 4) is able to recover strong direct peaks,
while a simple MSE loss applied directly over the logarithmic-
space of the decoder output (right) fails to recover these features.

Scene HDF5 OpenEXR RGBE Ours
Altar (Fig. 4) 9.5 % 8.8 % 8.9 %

3.1 %
Balcony (Fig. 5, left) 12.7 % 9.8 % 13.4 %

Building (Fig. 5, right) 17.1 % 12.9 % 16.6 %
Room (Fig. 6) 28.4 % 20.1 % 24.9 %

Table 1. Reduction ratios for the validation scenes illustrated in
this article for standard libraries supporting HDR compression.

at 16.6 picoseconds/pixel. For training, we randomly select a
total of 860 000 pixel neighborhoods of size 9×9 from 145 scenes.
For validation, we select a total of 370 000 inputs from 37 com-
pletely different scenes. While global illumination introduces
correlation between patches, our validation set is uncorrelated
with the training set, since the patches come from different sce-
narios. Our training is unsupervised, where our target Lij is
the central pixel of the input neighborhood 〈Lij〉. Although
the simulations in the dataset are not completely noise-free,
our method based on 3D convolutions is capable of extracting
spatio-temporal features while simultaneously removing high-
frequency variance from noisy data.

Figure 6 shows reference frames of the Room scene from the
validation set (top row), and the resulting frames after com-
pressing each reference time-resolved pixel to 128 features and
decompressing them back to 4096 pixels (second row). Bottom
row shows the full time-resolved signal at the marked location,
with the reference (blue) and our recovered radiance (green),
and the timestamps of the frames. Our trained decoder suc-
cessfully recovers most radiance features of the scene using
a compressed representation of the radiance 32 times smaller
than the original. Table 1 compares compression ratios for three
standard HDR compression libraries—RGBE, OpenEXR using
wavelet/Huffman compression, and HDF5 with gzip— for all
the validation scenes shown in this article, showing that our
method yields smaller representations (3.1% of the original sig-
nal) than other approaches (8.8% to 28.4%). Please refer to Vi-
sualization 1 for the entire frame sequences. One of the
pathological problems in transient light transport data is the
presence of different types of noise in the signal. In particu-
lar, Monte-Carlo-based transient rendering methods suffer from
high variance due to uneven distributions of samples over time
[6]. Our fully-convolutional encoder is capable of extracting the
most significant features by performing 3D spatio-temporal con-
volutions. In Figure 5 we can observe the results of the denoising
in two extreme cases with higher-order indirect illumination in
the Building and Balcony validation scenes. Our approach does
not force the compressed features (shown in red) to retain light
transport properties. However, while the samples at the tar-
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Fig. 5. Higher-order indirect illumination results in the Balcony (left) and Building (right) scenes from the validation set. Images show
selected reference frames (top) and our denoised frames (bottom) after encoding and decoding each time-resolved pixel. Plots show
our time-resolved profiles at marked pixels (green), reference samples of that pixel (blue), compressed features (red), and all the
spatio-temporal input samples analyzed by our encoder, color-coded by the distance to the center of the neighborhood 〈Lij〉. See
Visualization 1 for entire video.
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Fig. 6. Room scene (see Visualization 1) after encoding and de-
coding steps, showing high decompression accuracy, recovering
both high- and low-frequency features in the temporal domain.
Top: Reference input frames. Center: Our resulting frames after
decompressing all time-resolved pixels. Bottom: Time-resolved
transport at the marked location in the top-left frame.
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Fig. 7. Results for real data (blue) captured on a non-line-of-sight
setup (left) [5]. The plots show our results (green) at different
points of the captured grid.

get time-resolved pixel Lij (blue) present a lot of variance, the
spatio-temporal neighboring samples (brown color scale) con-
tain relevant information which our encoder uses to extract the
most significant features to decode our reconstructed signal. Fi-
nally, Figure 7 shows how our method generalizes to real data
captured in non-line-of-sight configurations (e.g. [4, 5]), where
the temporal profiles present much smoother features due to
direct illumination being scattered by an auxiliary capture wall.

In conclusion, we have presented a new method for compress-
ing and denoising transient light transport data. By observing
the characteristics of light transport in the temporal domain, we
have demonstrated how spatio-temporal 3D convolutions are ca-
pable of extracting most meaningful features even in extremely
noisy conditions. This leads to a compressed signal, from which
the original can be recovered with significantly less variance by
means of a convolutional decoder. Transient imaging methods
and hardware present critical trade-offs between capture time

and signal noise. Our method can mitigate this, while reducing
the computational time required to post-process the data. We
believe that our pipeline can be further applied to large captured
datasets, once acquisition processes become faster.
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